

PII: S0031-9422(97)00109-X

STEROIDAL GLUCOSIDES FROM LEAVES OF CORDYLINE STRICTA

YOSHIHIRO MIMAKI,* YOKO TAKAASHI, MINPEI KURODA and YUTAKA SASHIDA*

School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

(Received in revised form 22 December 1996)

Key Word Index—Cordyline stricta; Agavaceae; leaves; steroidal glucosides; steroidal saponins; spirostanol saponins; furostanol saponins; pregnane glucoside.

Abstract—A phytochemical study on the leaves of *Cordyline stricta* yielded four new spirostanol saponins, three new furostanol saponins and a new pregnane glucoside. The structures were determined by detailed analysis of their 1 H and 13 C NMR spectra, acid-catalysed hydrolysis and by comparison with spectral data of known compounds. Each of the isolated steroidal compounds contained a 3α -hydroxyl group bearing a glucose as the common structural feature. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The genus Cordyline with ca 20 species is distributed in south-east Asia, Australia and New Zealand. Although, several steroidal sapogenins have been isolated from the neutral fraction of saponified extracts of C. manners-suttoniae [1], C. terminalis var. petiolaris [1], C. banskii [1], C. indivisa [1], C. pumilio [1], C. cannifolia [2], C. stricta [1-3], C. australis [1, 4] and C. rubra [1, 5], no steroidal saponins appear to have been isolated from a Cordyline species. Cordyline stricta is an evergreen shrub native to Australia and an extract of the leaves have been used as a haemostatic in traditional Chinese medicine. A methanolic extract of C. stricta leaves has been chemically investigated and the structures of four new spirostanol saponins, three new furostanol saponins and a new pregnane glucoside isolated from the extract are reported in the present paper.

RESULTS AND DISCUSSIONS

The 1-butanol-soluble fraction of the methanolic extract of *C. stricta* leaves was fractionated by a combination of silica gel, octadecylsilanized (ODS) silica gel and Diaion HP-20 column chromatography, and preparative HPLC resulted in the isolation of four new spirostanol saponins (1-4), three new furostanol saponins (5-7) and a new pregnane glucoside (8).

Compound 1 ($C_{33}H_{54}O_9$) was obtained as an amorphous solid, $[\alpha]_D - 55.2^\circ$ (methanol). Its ¹H NMR spectrum showed two singlet signals at δ 1.05 and 0.88 (each 3H), indicating the presence of two angular methyl groups, as well as two doublet signals

at δ 1.11 (3H, J = 6.9 Hz) and 1.07 (3H, J = 7.1 Hz) assignable to secondary methyl groups. The structure of 1 based upon a (25S)-spirostanol derivative was suggested by the above ¹H NMR data, a quaternary carbon signal at δ 109.7 in the ¹³C NMR spectrum [6] and by the characteristic IR absorptions at v_{max} 980, 915, 890 and 840 cm^{-1} with the absorption at 915 cm⁻¹ being of greater intensity than that at 890 cm⁻¹ [7–9]. In addition, the presence of a β -D-glucopyranosyl moiety in 1 was readily recognized by the appearance of an anomeric proton signal at δ 4.93 (1H, d, J = 7.8 Hz) in the ¹H NMR spectrum and also by the characteristic six signals at δ 102.6 (CH), 75.3 (CH), 78.7 (CH), 71.7 (CH), 78.3 (CH) and 62.9 (CH₂) in the ¹³C NMR spectrum. Acid hydrolysis of 1 with M hydrochloric acid in dioxane-H₂O gave an aglycone (1a) and D-glucose. The ¹H NMR spectrum of 1a displayed two exchangeable proton signals at δ 5.84 (1H, br s) and 5.39 (1H, br d, J = 5.1 Hz), which disappeared on addition of methanol- d_4 , accompanied by a change in the signals at δ 4.39 (1H, m) and 4.36 (1H, br s) to δ 4.29 (1H, dd, J = 11.4, 4.7 Hz) and 4.30 (1H, br s), respectively, indicating the presence of two hydroxyl groups with axial and equatorial orientations. The above data and inspection of the IR and ¹³C NMR spectra identified **1a** as (25S)-5α-spirostane- 1β , 3α -diol, that is, cordylagenin, which have been isolated as the major sapogenin from the leaves of C. cannifolia after treatment with acid [2]. The linkage position between the β -D-glucose and the aglycone was established by comparison of the ¹H NMR spectrum of 1 with that of the corresponding peracetyl derivative (1b). The signal for 1-H of the aglycone was shifted to lower field by 0.78 ppm by O-acetylation appearing at δ 5.05 (dd, J = 11.6, 3.4 Hz), whereas that for 3-H at δ 4.16 (br s) was little affected in the

^{*} Authors to whom correspondence should be addressed.

1230 Y. Mimaki et al.

¹H NMR spectrum of **1b**, clearly accounting for the β -D-glucose moiety linkage to the C-3α(ax) hydroxyl position. The structure of **1** was thus characterized as (25*S*)-5α-spirostane-1 β ,3α-diol 3-*O*- β -D-glucopyranoside.

All spectral properties of $2 (C_{33}H_{52}O_9)$, $3 (C_{33}H_{52}O_9)$ and $4 (C_{33}H_{54}O_{10})$ were closely similar to those of 1; their structures were determined by the following spectral comparison and chemical method.

On comparison between the ¹H and ¹³C NMR spectra of **2** with those of **1**, signals due to the C-27 secondary methyl group, which were observed at $\delta_{\rm H}$ 1.07 (3H, d, J = 7.1 Hz) and $\delta_{\rm C}$ 16.3 in **1**, were replaced by the signals assignable to an exomethylene group at $\delta_{\rm H}$ 4.82 and 4.78 (each 1H, br s), and $\delta_{\rm C}$ 144.5 (C) and 108.6 (CH₂) in **2**. Hydrogenation of **2** over platinum oxide under a hydrogen atmosphere gave **1**, indicating that **2** was the 25,27-dehydro derivative of **1**. The structure of **2** was therefore shown to be 5 α -spirost-25(27)-ene-1 β ,3 α -diol 3-O- β -D-glucopyranoside.

The ¹H and ¹³C NMR spectra of **3** also showed signals for an exomethylene group at $\delta_{\rm H}$ 5.28 (1H, d, J=1.9 Hz) and 5.03 (1H, d, J=1.4 Hz), and $\delta_{\rm C}$ 153.2 (C) and 107.5 (CH₂), as in the case of **2**. A spin-decoupling experiment in the ¹H NMR of **3** revealed that the signal at δ 4.70, assignable to 16-H, was coupled to 17-H (δ 2.67) with a J value of 7.2 Hz, which in turn coupled to the exomethylene protons with J values of 1.9 and 1.4 Hz. The above data were consistent with the structural assignment of **3** as (25*S*)- $\delta \alpha$ -spirost-20-ene-1 β ,3 α -diol 3-O- β -D-glucopyranoside.

In the 'H NMR spectrum of 4, the three-proton doublet signal due to 27-Me was missing but a deshielded three-proton singlet signal could be recognized at δ 1.56 (3H). Furthermore, 26-H₂ were observed as an ABq-like signal at δ 4.15 and 3.62 (each 1H, d, J = 10.3 Hz). On comparison between the ¹³C NMR spectrum of 4 with that of 1, the signal due to the C-25 carbon, which was observed at δ 27.5 (CH) in 1, appeared at δ 66.4 as a quaternary carbon signal, accompanied by downfield shifts of the signals due to C-23 (+4.0 ppm), C-24 (+9.2 ppm), C-26 (+4.9 ppm)and C-27 (+8.7 ppm). Thus, the introduction of a hydroxyl group onto C-25 was evident. Takeda et al. reported that the IR spectral bands from 1100 to 800 cm⁻¹ were useful in distinguishing between 25R- and 25S-hydroxyspirostanols [10]. The absorptions at v_{max} 920 cm⁻¹ (strong) and 840 cm⁻¹ observed in the IR spectrum of 4 was consistent with the C-25R configuration. The above data allowed the identification of 4 as (25R)-5 α -spirostane-1 β ,3 α ,25-triol 3-O- β -Dglucopyranoside.

Compound 5 ($C_{40}H_{68}O_{14}$) was shown to be a 22-methoxyfurostanol saponin using Ehrlich's test [11, 12] and from its ¹H and ¹³C NMR spectra [δ_H 3.26 (3H, s); δ_C 112.7 (C) and 47.3 (Me)] [6]. The ¹H NMR spectrum showed two anomeric proton signals at δ 4.91 (1H, d, J = 7.7 Hz) and 4.85 (1H, d, J = 7.7 Hz), as well as four steroid methyls at δ 0.81 and 0.74 (each

3H, s), and 1.17 (3H, d, J = 6.9 Hz) and 1.06 (3H, d, J = 6.7 Hz). Enzymatic hydrolysis of 5 with β glucosidase gave the corresponding spirostanol saponin (5a) and glucose, and acid hydrolysis with M hydrochloric acid gave an aglycone (5b) and glucose. The ¹H NMR spectrum of **5b** provided evidence for the presence of an axial hydroxyl group [δ 5.55 (1H, br s), which disappeared on addition of methanol- d_4 ; δ 4.29 (1H, br s)]. The 'H NMR data and inspection of the IR and ¹³C NMR spectra allowed the identification of **5b** as (25S)- 5α -spirostan- 3α -ol, that is, 3epi-neotigogenin [1]. The structure of 5 was thus assigned as 26-O-β-D-glucopyranosyl-22-O-methyl-(25S)-5 α -furostane-3 α ,22 ξ ,26-triol 3-O-β-D-glucopyranoside.

Compound 6 ($C_{40}H_{68}O_{15}$) was also a 22-methoxy-furostanol saponin. The ¹H NMR and ¹³C NMR spectra, and enzymatic hydrolysis, which gave 1 and glucose, confirmed the structure of 6 to be 26-O- β -D-glucopyranosyl-22-O-methyl-(25S)-5 α -furostane-1 β , 3α ,22 ξ ,26-tetrol 3-O- β -D-glucopyranoside.

Compound 7 ($C_{39}H_{64}O_{14}$) was suggested to be a furostanol saponin related to 6 from its spectral data. It differed from 6 in the presence of an olefinic group ($\delta_{\rm C}$ 152.3 and 103.7). Furthermore, the 21-Me methyl doublet signal observed at δ 1.06 (3H, d, J = 7.0 Hz) in the ¹H NMR spectrum of 6 was absent from that of 7 but was replaced by a methyl singlet at δ 1.59 (3H, s). Acid hydrolysis of 7 with M hydrochloric acid yielded 1, 1a and glucose. The above data were consistent with 7 being the corresponding $\Delta^{20(22)}$ -furostanol saponin of 6. Its structure was thus formulated as 26-O- β -D-glucopyranosyl- 5α -furost-20(22)-ene- 1β , 3α , 26-triol 3-O- β -D-glucopyranoside.

The ¹H NMR spectrum of $8 (C_{27}H_{42}O_8)$ showed two tertiary methyl proton signals at δ 1.07 and 0.99 (each 3H, s), an acetylmethyl proton signal at δ 2.21 (3H, s), an olefinic proton signal at δ 6.59 (1H, dd, J = 3.1, 1.6 Hz) and an anomeric proton signal at δ 4.95 (1H, d, J = 7.7 Hz). The presence of an α, β -unsaturated carbonyl group was indicated by the IR (v_{max} 1650 cm⁻¹), UV [λ_{max} 241 nm (log ε 3.94)] and ¹³C NMR [δ 196.2 (C=O), 155.8 (C) and 144.5 (CH)] spectra. Acid hydrolysis of 8 with M hydrochloric acid gave an aglycone ($C_{21}H_{32}O_3$) and glucose. The above data suggested that 8 was a glucoside of a pregnane with a 16ene-20-one structure derived from a spirostanol by Marker's degradation [13]. On comparison between the ¹³C NMR data of 8 with those of 1, the ¹³C signals due to the A and B parts, including C-19, were superimposable on those of 1, indicating the presence of 1β , 3α -hydroxyl group bearing a glucose at C-3. The 16-ene-20-one structure of 8 was well supported by agreement of the NMR data of the D-ring part, C-18 methyl and acetylmethyl groups with those of the pregnane glycosides previously isolated by us from Sansevieria trifasciata [14]. Accordingly, the structure of **8** was shown to be 1β , 3α -dihydryoxy- 5α -pregn-16en-20-one 3-O- β -D-glucopyranoside.

Compounds 1-8 are new naturally occurring con-

stituents. This is believed to be the first report of the isolation of the steroidal glucosides from a plant of the genus *Cordyline*.

EXPERIMENTAL

General. NMR (ppm, J Hz): 400 MHz for 1 H NMR. CC: silica gel (Fuji-Silysia Chemical), ODS silica gel (Nacalai Tesque) and Diaion HP-20 (Mitsubishi-Kasei). TLC: precoated Kieselgel 60 F₂₅₄ (Merck) and RP-18 F₂₅₄S (Merck). HPLC: Capcell Pak C₁₈ column (Shiseido, 10 mm i.d. \times 250 mm, ODS, 5 μ m) for prep. and a TSK-gel ODS-Prep column (Tosoh, 4.6 mm i.d. \times 250 mm, ODS, 5 μ m) for analytical; UV or RI detection.

Plant material. Purchased from Exotic Plants Co. Ltd, Japan; a specimen is on file in our laboratory.

Extraction and isolation. (Leaves fr. 8 kg) was extracted with hot MeOH (18 1×2). The MeOH extract was conced under red. pres. and the viscous concentrate (680 g) partitioned between H₂O and *n*-BuOH. CC of the *n*-BuOH-soluble phase (320 g) on silica gel (600 g) and elution with a gradient mixt. of CHCl₃-MeOH system (9:1; 4:1; 2:1) and, finally, with MeOH, gave 5 frs (I-V). Fr. II (32 g) was subjected to CC on silica gel eluting with CHCl₃-MeOH (5:1) and ODS silica gel with MeOH-H₂O (17:3), and to prep. HPLC with MeOH-H₂O (9:1) to yield compounds 1 (668 mg), 2 (37.1 mg) and 3 (7.5 mg). Fr. III (28 g) was purified by CC on silica gel eluting with

CHCl₃-MeOH (5:1) and ODS silica gel with MeOH-H₂O (7:3) and, finally, by prep. HPLC with MeCN-H₂O (2:3) to yield 4 (5.9 mg) and 5 (430 mg). Fr. IV (110 g) was passed through a Diaion HP-20 (375 g) column eluting with H₂O with increasing amounts of MeOH in H₂O and, finally, with MeOH. The 80% MeOH and MeOH eluate frs were combined and chromatographed on silica gel eluting with CHCl₃-MeOH-H₂O (20:10:1) to give frs IV(a)-IV(c). Fr. IV(a) was chromatographed on an ODS silica gel column eluting with MeOH-H₂O (7:3) to yield 8 (78.7 mg). Fr. IV(b) was purified by CC on ODS silica gel eluting with MeOH-H₂O (3:7) to yield 6 (3.96 g) and 7 (335 mg).

Compound (1). Amorphous solid. $[\alpha]_D^{27}$ -55.2° (MeOH; c 0.11). Negative-ion FAB-MS m/z 593 [M-H]⁻. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3410 (OH), 2920 (CH), 1445, 1365, 1345, 1305, 1270, 1220, 1160, 1060, 1020, 980, 935, 915, 890, 840 (intensity 915 > 890, 25S-spiroacetal). ¹H NMR (pyridine- d_5): δ 4.93 (1H, d, J = 7.8 Hz, 1'-H), 4.52 (2H, overlapping, 16-H and 6'a-H), 4.38 (1H, dd, J = 11.6, 5.0 Hz, 6'b-H), 4.33 (1H, br s, 3-H), 4.27 (1H, dd, J = 12.0, 3.7 Hz, 1-H), 4.26 (1H, dd, J = 8.8,8.8 Hz, 3'-H), 4.22 (1H, dd, J = 8.8, 8.8 Hz, 4'-H), 4.06 (1H, dd, J = 10.8, 2.8 Hz, 26a-H), 4.05 (1H, dd, J = 8.8, 7.8 Hz, 2'-H, 3.89 (1H, ddd, J = 8.8, 5.0, 2.3)Hz, 5'-H), 3.36 (1H, br d, J = 10.8 Hz, 26b-H), 1.11 (3H, d, J = 6.9 Hz, 27-Me), 1.07 (3H, d, J = 7.1 Hz,21-Me), 1.05 (3H, s, 19-Me), 0.88 (3H, s, 18-Me). ¹³C NMR: Table 1.

Table 1. ¹³C NMR spectral data for compounds 1, 1a, 2-5, 5a, 6-8 and 8a (pyridine-d₅)

С	1	1a	2	3	4	5	5a	5b	6	7	8	8a
1	73.7	74.1	73.7	73.7	73.7	32.7	32.7	32.8	73.7	73.7	73.5	73.8
2	37.1	41.4	37.1	37.1	37.1	25.6	25.6	29.9	37.1	37.1	37.1	41.3
3	73.9	66.2	73.9	73.8	73.8	73.1	73.1	65.5	73.8	73.8	74.0	66.2
4	35.1	37.1	35.1	35.1	35.1	35.0	35.0	36.9	35.1	35.1	35.1	37.1
5	39.1	38.9	39.1	39.1	39.1	39.5	39.5	39.4	39.1	39.2	39.3	39.1
6	28.7	28.9	28.7	28.6	28.7	28.8	28.7	29.0	28.7	28.7	28.6	28.9
7	32.5	32.8	32.5	32.4	32.4	32.4	32.4	32.6	32.4	32.7	32.1	32.4
8	36.0	36.2	36.0	36.4	36.0	35.2	35.2	35.4	36.0	35.8	34.5	34.7
9	55.1	55.8	55.1	55.0	55.1	54.0	54.0	54.7	55.1	55.1	55.6	56.3
10	42.6	43.1	42.6	42.6	42.6	36.1	36.1	36.5	42.6	42.6	42.7	43.2
11	24.8	24.9	24.8	24.5	24.8	20.8	20.8	21.0	24.8	25.0	24.9	25.0
12	40.9	41.0	40.9	39.8	40.9	40.1	40.2	40.3	40.8	40.6	36.0	36.0
13	40.4	40.4	40.5	42.6	40.5	41.1	40.8	40.8	40.8	43.4	46.2	46.2
14	56.8	56.9	56.8	57.0	56.8	56.5	56.6	56.6	56.7	55.1	56.8	56.8
15	32.3	32.4	32.3	33.0	32.3	32.0	32.0	32.1	32.3	34.7	32.5	32.5
16	81.2	81.2	81.4	81.2	81.3	81.4	81.2	81.2	81.3	84.4	144.5	144.5
17	63.2	63.1	63.3	60.6	63.2	64.4	62.9	62.9	64.6	64.9	155.8	155.8
18	16.8	16.8	16.7	15.2	16.8	16.6	16.6	16.7	16.7	14.6	16.3	16.3
19	6.5	6.5	6.5	6.5	6.5	11.6	11.6	11.6	6.5	6.5	6.5	6.5
20	42.5	42.5	41.9	153.2	41.5	40.5	42.5	42.5	40.5	103.7	196.2	196.3
21	14.8	14.9	15.0	107.5	14.9	16.3	14.8	14.9	16.3	11.8	27.1	27.1
22	109.7	109.7	109.4	107.5	109.3	112.7	109.7	109.7	112.7	152.3	_	_
23	26.2	26.2	33.2	26.3	30.2	30.9	26.2	26.2	31.0	31.4		
24	26.4	26.4	29.0	26.6	35.6	28.2	26.4	26.4	28.2	23.6		_
25	27.5	27.5	144.5	27.8	66.4	34.5	27.5	27.5	34.5	33.7		_
26	65.1	65.0	65.0	66.1	70.0	75.0	65.1	65.1	75.0	75.2	_	
27	16.3	16.3	108.6	16.5	25.0	17.6	16.3	16.3	17.6	17.2	_	_
OMe						47.3				47.3		
1'	102.6		102.7	102.6	102.6	102.6	102.6	_	102.6	102.6	102.7	
2′	75.3	_	75.4	75.4	75.4	75.4	75.4	_	75.4	75.3	75.3	_
3′	78.7	_	78.7	78.7	78.7	78.7	78.7	_	78.7	78.7	78.7	_
4'	71.7	_	71.8	71.8	71.8	71.8	71.8	_	71.8	71.7	71.7	_
5'	78.3		78.4	78.4	78.4	78.4	78.4		78.4	78.4	78.3	
6'	62.9	_	62.9	62.9	62.9	62.9	62.9	_	62.9	62.9	62.9	_
1"		_	_		_	105.1	_		105.1	105.2	-	_
2"		_	_		_	75.2	_	_	75.2	75.2		_
3"	_		_		_	78.6			78.6	78.6	_	
4"	_		_			71.8			71.7	71.7	_	_
5"	_	_		_	_	78.5	_	_	78.5	78.5	_	_
6"		_			_	62.9	_	_	62.9	62.9	_	

Acid hydrolysis of 1. A soln of 1 (30 mg) in M HCl (dioxane-H₂O, 1:1, 4 ml) was heated at 100° for 2 hr under an Ar atmosphere. After cooling, the reaction mixt. was neutralized by passing it through an Amberlite IRA-93ZU (Organo) column and then chromatographed on silica gel eluting with a gradient mixt. of CHCl₃-MeOH (19:1; 1:1) to give an aglycone (1a) (14.6 mg) and a monosaccharide (7.7 mg). Compound **1a.** Amorphous solid. $[\alpha]_D^{29} - 59.7^{\circ}$ (MeOH; $c \ 0.59$). EI-MS m/z (rel. int.): 432 [M]⁺ (4), 359 (9), 318 (9), 289 (20), 139 (100). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3425 (OH), 2910 (CH), 1440, 1365, 1335, 1265, 1215, 1165, 1115, 1060, 1045, 1015, 980, 955, 930, 910, 885, 860, 840 (intensity 910 > 885, 25S-spiroacetal). ¹H NMR (pyridine- d_5): δ 5.84 (1H, br s, OH), 5.39 (1H, br d, J = 5.1 Hz, OH), 4.51 (1H, q-like, J = 7.2 Hz, 16-H), 4.39 (1H, m, 1-H), 4.36 (1H, br s, 3-H), 4.06 (1H, dd, J = 10.9, 2.6 Hz, 26a-H), 3.36 (1H, br d, J = 10.9 Hz, 26b-H), 1.13 (3H, s, 19-Me), 1.11 (3H, d, J = 7.0 Hz, 27-Me), 1.07(3H, d, J = 7.1 Hz, 21-Me), 0.92 (3H, s, 18-Me). ¹H NMR (pyridine- d_5 +methanol- d_4): δ 4.50 (1H, q-like, J = 7.3 Hz, 16-H, 4.30 (1H, br s, 3-H), 4.29 (1H, dd,J = 11.4, 4.7 Hz, 1-H), 4.05 (1H, dd, J = 10.9, 2.6 Hz)26a-H), 3.35 (1H, br d, J = 10.9 Hz, 26b-H), 1.10 (3H, d, J = 6.9 Hz, 27-Me), 1.08 (3H, s, 19-Me), 1.07 (3H, d, J = 7.0 Hz, 21-Me), 0.88 (3H, s, 18-Me). ¹³C NMR: Table: 1. The monosaccharide was suggested to be glucose by direct TLC comparison with an authentic sample; R_f : 0.36 (*n*-BuOH–Me₂CO–H₂O, 4:5:1). The monosaccharide (2 mg) was diluted with H₂O (1 ml) and treated with $(-)-\alpha$ -methylbenzylamine (5 mg) and Na[BH₃CN] (8 mg) in EtOH (1 ml) at 40° for 4 hr, followed by acetylation with Ac₂O (0.3 ml) in pyridine (0.3 ml). The reaction mixt, was passed through a SepPak C_{18} cartridge (Waters) with H_2O –MeCN (4:1; 1:1; 1:9, each 10 ml). The H_2O –MeOH (1:9) eluate fr. was further passed through a Toyopak IC-SP M cartridge (Tosoh) with EtOH (10 ml) to give a 1-[(S)-N-acetyl- α -methylbenzylamino]-1-dioxyalditol acetate derivative of the monosaccharide [15, 16], which was then analysed by HPLC under the following conditions: solvent, MeCN- H_2O (2:3); flow rate, 0.8 ml min⁻¹; detection, UV 230 nm. The derivative of D-glucose was detected. R_t (min): 24.16. As D-glucose was identified as the sugar component of 1, it was assumed to be present in all of the isolated compounds.

Acetylation of 1. Compound 1 (41 mg) was acetylated with Ac₂O (0.5 ml) in pyridine (0.5 ml). After addition of H₂O, the reaction mixt. was extracted with Et₂O and the extract was chromatographed on silica gel eluting with hexane-Me₂CO (5:2) to give the peracetate (1b) (47.4 mg). Compound 1b. Amorphous solid. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 2950 and 2850 (CH), 1755 (C=O), 1445, 1430, 1375, 1235, 1165, 1125, 1100, 1060, 1035, 995, 985, 960, 940, 910, 905, 850. H NMR (pyridine d_5 : δ 5.76 (1H, dd, J = 9.6, 9.6 Hz, 3'-H), 5.51 (1H, dd, J = 9.6, 8.1 Hz, 2'-H), 5.49 (1H, dd, J = 9.6, 9.6 Hz, 4'-H), 5.06 (1H, d, J = 8.1 Hz, 1'-H), 5.05 (1H, dd, J = 11.6, 3.4 Hz, 1-H), 4.61 (1H, dd, J = 12.3, 5.1 Hz, 6'a-H), 4.49 (1H, q-like, J = 7.4 Hz, 16-H), 4.40 (1H, dd, J = 12.3, 2.4 Hz, 6'b-H), 4.16 (1H, br s, 3-H), 4.11 (1H, ddd, J = 9.6, 5.1, 2.4 Hz, 5'-H), 4.05 (1H, dd, J = 10.9, 2.6 Hz, 26a-H), 3.36 (1H, br d,J = 10.9 Hz, 26b-H), 2.42, 2.07, 2.06, 2.03 and 2.02 (each 3H, s, Ac), 1.14 (3H, d, J = 6.9 Hz, 27-Me), 1.07 (3H, d, J = 7.1 Hz, 21-Me), 0.96 (3H, s, 19-Me), 0.82(3H, s, 18-Me).

Compound (2). Amorphous solid. $[\alpha]_D^{27} - 45.5^\circ$ (MeOH; c 0.44). Negative-ion FAB-MS m/z 591 [M-H]⁻. IR v_{max}^{KBr} cm⁻¹: 3430 (OH), 2910 (CH), 1440, 1365, 1220, 1165, 1150, 1065, 1035, 985, 950, 935, 915, 890, 865. ¹H NMR (pyridine- d_s): δ 4.97 (1H, d, J = 7.7 Hz, 1'-H), 4.82 and 4.78 (each 1H, br s, 27-H₂), 4.55 (2H, overlapping, 16-H and 6'a-H), 4.47 and 4.04 (each 1H, br s, J = 12.2 Hz, 26-H₂), 4.42 (1H, dd, J = 11.8, 4.9 Hz, 6'b-H), 4.35 (1H, br s, 3-H), 4.30 (1H, dd, J = 8.8, 8.8 Hz, 3'-H), 4.29 (1H, overlapping, 1-H), 4.25 (1H, dd, J = 8.8, 8.8 Hz, 4'-H), 4.08 (1H, dd, J = 8.8, 7.7 Hz, 2'-H), 3.91 (1H, ddd, J = 8.8, 4.9, 2.5 Hz, 5'-H), 1.07 (3H, s, 19-Me), 1.06 (3H, d, J = 7.1 Hz, 21-Me), 0.89 (3H, s, 18-Me). ¹³C NMR: Table 1.

Catalytic hydrogenation of 2. A mixt. of 2 (10 mg) and PtO₂ (5 mg) was stirred under an H₂ atmosphere at ambient temp. for 12 hr. The reaction mixt., after removal of PtO₂ by filtration, was subjected to prep. HPLC eluting with MeOH-H₂O (9:1) to furnish 1 (4.8 mg).

Compound 3. Amorphous solid. $[\alpha]_D^{27} - 32.2^{\circ}$ (MeOH; c 0.21). Negative-ion FAB-MS m/z 591 [M-H]⁻. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420 (OH), 2920 (CH), 1445, 1365, 1345, 1270, 1205, 1155, 1120, 1070, 1035, 1015, 980, 960, 935, 920, 890, 840. ¹H NMR (pyridine- d_5): δ 5.28 (1H, d, J = 1.9 Hz, 21a-H), 5.03 (1H, d, J = 1.4 Hz,

21b-H), 4.97 (1H, d, J = 7.7 Hz, 1'-H), 4.70 (1H, ddd, J = 7.2, 7.2, 4.6 Hz, 16-H), 4.55 (1H, dd, J = 11.3, 2.5 Hz, 6'a-H), 4.42 (1H, dd, J = 11.3, 5.1 Hz, 6'b-H), 4.34 (1H, br s, 3-H), 4.30 (1H, dd, J = 8.8, 8.8 Hz, 3'-H), 4.29 (1H, overlapping, 1-H), 4.25 (1H, dd, J = 8.8, 8.8 Hz, 4'-H), 4.11 (1H, dd, J = 11.0, 2.9 Hz, 26a-H), 4.08 (1H, dd, J = 8.8, 7.7 Hz, 2'-H), 3.91 (1H, ddd, J = 8.8, 5.1, 2.5 Hz, 5'-H), 3.39 (1H, br d, J = 11.0 Hz, 26b-H), 2.67 (1H, ddd, J = 7.2, 1.9, 1.4 Hz, 17-H), 1.10 (3H, d, J = 7.0 Hz, 27-Me), 1.05 (3H, s, 19-Me), 0.83 (3H, s, 18-Me). 13 C NMR: Table 1.

Compound 4. Amorphous solid. $[\alpha]_D^{27} - 25.3^\circ$ (MeOH; c 0.30). Negative-ion FAB-MS m/z 610 [M]⁻. IR v_{max}^{KBr} cm⁻¹: 3420 (OH), 2910 (CH), 1440, 1370, 1240, 1190, 1175, 1060, 1020, 985, 965, 920, 840. ¹H NMR (pyridine- d_5): δ 4.97 (1H, d, J = 7.7 Hz, 1'-H), 4.55 (2H, overlapping, 16-H and 6'a-H), 4.41 (1H, dd, J = 11.5, 4.8 Hz, 6'b-H), 4.35 (1H, br s, 3-H), 4.30 (1H, dd, J = 8.8, 8.8 Hz, 3'-H), 4.29 (1H, overlapping, 1-H), 4.25 (1H, dd, J = 8.8, 8.8 Hz, 4'-H), 4.15 and 3.62 (each 1H, d, J = 10.3 Hz, 26-H₂), 4.08 (1H, dd, J = 8.8, 7.7 Hz, 2'-H), 3.91 (1H, ddd, J = 8.8, 4.8, 2.4 Hz, 5'-H), 1.56 (3H, s, 27-Me), 1.14 (3H, d, J = 6.9 Hz, 21-Me), 1.07 (3H, s, 19-Me), 0.90 (3H, s, 18-Me). ¹³C NMR: Table 1.

Compounds 5. Amorphous solid. $[\alpha]_0^{27} - 43.6^{\circ}$ (MeOH; c 0.11). Negative-ion FAB-MS m/z 772 [M]⁻. IR $v_{\text{max}}^{\text{KB}}$: 3420 (OH), 2930 (CH), 1445, 1375, 1250, 1190, 1160, 1070, 1030, 1015, 895, 840. ¹H NMR (pyridine- d_5): δ 4.91 (1H, d, J = 7.7 Hz, 1'-H), 4.85 (1H, d, J = 7.7 Hz, 1"-H), 3.26 (3H, s, OMe), 1.17 (3H, d, J = 6.9 Hz, 27-Me), 1.06 (3H, d, d) = 6.7 Hz, 21-Me), 0.81 (3H, d), d0.74 (3H, d0.75 NMR: Table 1.

Enzymatic hydrolysis of 5. Compound (5) (64.8 mg) was treated with β -glucosidase (30 mg) in HOAc-NaOAc buffer (pH 5, 5 ml) at room temp. for 24 hr. The reaction mixt. was chromatographed on ODS silica gel eluting with MeOH-H₂O (17:3) to give the corresponding spirostanol saponin (5a) (16.9 mg) and glucose (8.4 mg). Compound (5a). Amorphous solid. $[\alpha]_D^{27}$ – 36.0° (MeOH; c 0.10). Negative-ion FAB-MS m/z 577 [M-H]⁻. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 2930 (CH), 1445, 1375, 1335, 1270, 1220, 1210, 1170, 1125, 1095, 1060, 1050, 1030, 985, 960, 955, 920, 895, 845. ¹H NMR (pyridine- d_5): δ 4.91 (overlapping with H_2O signal, 1'-H), 4.56 (1H, dd, J = 11.5, 2.4 Hz, 6'a-H), 4.52 (1H, q-like, J = 7.4 Hz, 16-H), 4.42 (1H, dd, J = 11.5, 5.3 Hz, 6'b-H, 4.29 (2H, overlapping, 3'-H)and 4'-H), 4.26 (1H, br s, 3-H), 4.07 (1H, overlapping, 2'-H), 4.06 (each 1 H, dd, J = 10.9, 2.3 Hz, 26a-H), 3.95 (1H, m, 5'-H), 3.37 (1H, br d, J = 10.9 Hz, 26b-H), 1.15 (3H, d, J = 6.9 Hz, 27-Me), 1.08 (3H, d, J = 7.0 Hz, 21-Me, 0.82 (3H, s, 18-Me), 0.74 (3H, s, 18-Me)19-Me). ¹³C NMR: Table 1.

Acid hydrolysis of **5**. Compound **5** (45 mg) was subjected to acid hydrolysis as described for **1** and the reaction mixt. was chromatographed on silica gel eluting with CHCl₃–MeOH (19:1; 1:1) to give an aglycone (**5b**) (13.3 mg) and glucose (16.7 mg). Compound

1234 Y. Mimaki *et al.*

5b. Amorphous solid. $[\alpha]_D^{29} - 49.0^{\circ}$ (MeOH, c 0.45). CI-MS m/z (rel. int.): 415 $[M-H]^+$ (31), 399 (24), 302 (22), 273 (40), 139 (100), 115 (27). IR v_{max}^{KBr} cm⁻¹: 3420 (OH), 2920 (CH), 1445, 1375, 1335, 1300, 1270, 1245, 1220, 1165, 1125, 1095, 1060, 1050, 1030, 1010, 1000, 985, 960, 950, 915, 895, 845. ¹H NMR (pyridine- d_5): δ 5.55 (1H, br s, OH), 4.52 (1H, q-like, J = 7.3 Hz, 16-H), 4.29 (1H, br s, 3-H), 4.07 (1H, dd, J = 10.8, 2.7 Hz, 26a-H), 3.38 (1H, br d, d = 10.8 Hz, 26b-H), 1.16 (3H, d, d = 6.9 Hz, 27-H), 1.09 (3H, d, d = 7.0 Hz, 21-Me), 0.88 (3H, s, 19-Me), 0.83 (3H, s, 18-Me). ¹³C NMR: Table 1.

Compound 6. Amorphous solid. $[\alpha]_{2}^{27} - 36.4^{\circ}$ (MeOH; c 0.11). Negative-ion FAB-MS m/z 788 [M]⁻: IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420 (OH), 2910 (CH), 1445, 1370, 1250, 1155, 1065, 1015, 985, 935, 890, 835. 1 H NMR (pyridine- d_{5}): δ 4.96 (1H, d, J = 7.7 Hz, 1'-H), 4.84 (1H, d, J = 7.7 Hz, 1"-H), 3.26 (3H, s, OMe), 1.13 (3H, d, J = 6.9 Hz, 27-Me), 1.07 (3H, s, 19-Me), 1.06 (3H, d, d = 7.0 Hz, 21-Me), 0.87 (3H, s, 18-Me). 13 C NMR: Table 1.

Enzymatic hydrolysis of **6**. Compound **6** (45 mg) was treated with β -glucosidase (30 mg) in HOAc–NaOAc buffer (pH 5, 5 ml) at room temp. for 24 hr. The reaction mixt. was chromatographed on silica gel eluting with CHCl₃–MeOH (4:1) and ODS silica gel with MeOH–H₂O (9:1) to give **1** (22.1 mg) and glucose (8.7 mg).

Compound 7. Amorphous solid. $[\alpha]_D^{27} - 10.0^{\circ}$ (MeOH; c 0.10). Negative-ion FAB-MS m/z 756 [M]⁻. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 2920 (CH), 1445, 1370, 1155, 1075, 1030, 940, 895. ¹H NMR (pyridine- d_5): δ 4.96 (1H, d, J = 7.7 Hz, 1'-H), 4.82 (1H, d, J = 7.7 Hz, 1"-H), 1.59 (3H, s, 21-Me), 1.06 (3H, s, 19-Me), 1.03 (3H, d, d = 6.6 Hz, 27-Me), 0.76 (3H, s, 18-Me). ¹³C NMR: Table 1.

Acid hydrolysis of 7. Compound 7 (50 mg) was subjected to acid hydrolysis as described for 1 and the reaction mixt. chromatographed on silica gel eluting with CHCl₃-MeOH (19:1; 1:1) to give 1 (3.1 mg), 1a (3.2 mg) and glucose (12.5 mg).

Compound 8. Amorphous solid. $[\alpha]_D^{27} + 43.2^{\circ}$ (MeOH; c 0.13). Negative-ion FAB-MS m/z 493 [M-H]⁻. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 241 (3.94). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 2920 (CH), 1650 (C=O), 1580 (C=C), 1440, 1420, 1360, 1315, 1225, 1195, 1155, 1070, 1025, 990, 930, 890, 840, 825, 815. ¹H NMR (pyridine- d_5): δ 6.59 (1H, dd, J = 3.1, 1.7 Hz, 16-H), 4.95 (1H, d, J = 7.7 Hz, 1'-H), 4.54 (1H, dd, J = 11.7, 2.5 Hz, 6'a-H), 4.41 (1H, dd, J = 11.7, 4.9 Hz, 6'b-H), 4.34 (1H, br s, 3-H), 4.29 (1H, dd, J = 8.9, 8.9 Hz, 3'-H), 4.28 (1H, overlapping, 1-H), 4.24 (1H, dd, J = 8.9, 8.9 Hz, 4'-H), 4.06 (1H, dd, J = 8.9, 7.7 Hz, 2'-H), 3.91 (1H, ddd, J = 8.9, 4.9, 2.5 Hz, 5'-H), 2.21 (3H, s, 21-Me), 1.07 (3H, s, 19-Me), 0.99 (3H, s, 18-Me). ¹³C NMR: Table 1.

Acid hydrolysis of **8**. Compound **8** (30 mg) was subjected to acid hydrolysis as described for **1** and the reaction mixt. chromatographed on silica gel eluting

with CHCl₃–MeOH (39:1; 1:1) to give an aglycone (8a) (7.3 mg) and glucose (7.9 mg). Compound 8a. Amorphous solid. [α]_D²³ +43.5° (MeOH; c 0.29). EI MS m/z (rel. int.): 332 [M]⁺ (27), 289 (21), 93 (21), 61 (100). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 240 (3.86). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420 (OH), 2905 and 2840 (CH), 1650 (C=O), 1580 (C=C), 1445, 1425, 1360, 1310, 1285, 1270, 1250, 1225, 1170, 1155, 1135, 1100, 1065, 1050, 1020, 1005, 995, 960, 930, 910, 890, 835, 815. ¹H NMR (pyridine- d_5): δ 6.60 (1H, dd, J = 3.1, 1.7 Hz, 16-H), 5.85 and 5.34 (each 1H, br s, OH×2), 4.37 (2H, overlapping, 1-H and 3-H), 2.22 (3H, s, 21-Me), 1.14 (3H, s, 19-Me), 1.02 (3H, s, 18-Me). ¹³C NMR: Table 1.

Acknowledgement—We are grateful to Dr Y. Shida of the Central Analytical Center of our University for MS measurements.

REFERENCES

- Blunden, G., Jaffer, J. A., Jewers, K. and Griffin, W. J., Journal of Natural Products, 1981, 44, 441.
- Jewers, K., Manchanda, A. H., Dougan, J., Nagler, M. J., Blunden, G. and Griffin, W. J., Tetrahedron Letters, 1974, 1475.
- Blunden, G., Jaffer, J. A., Jewers, K. and Griffin, W. J., *Tetrahedron*, 1981, 37, 2911.
- 4. Blunden, G., Sitton, D., Beach, S. J. and Turner, C. H., Journal of Natural Products, 1984, 47, 266.
- Yang, M.-H., Blunden, G., Patel, A., Grabb, T. A. and Griffin, W. J., *Phytochemistry*, 1989, 28, 3137
- Agrawal, P. K., Jain, D. C., Gupta, R. K. and Thakur, R. S., *Phytochemistry*, 1985, 24, 2479.
- Wall, M. E., Eddy, C. R., McClennan, M. L. and Klumpp, M. E., Analytical Chemistry, 1952, 24, 1337.
- Eddy, C. R., Wall, M. E. and Scott, M. K., Analytical Chemistry, 1953, 25, 266.
- Jones, R. N., Katzenellenbogen, K. and Dobriner, K., Journal of the American Chemical Society, 1953, 75, 158.
- Takeda, K., Minato, H., Shimaoka, A. and Matsui, Y., Journal of the Chemical Society, 1963, 4815.
- 11. Kiyosawa, S., Hutoh, M., Komori, T., Nohara, T., Hosokawa, I. and Kawasaki, T., *Chemical and Pharmaceutical Bulletin*, 1968, **16**, 1162.
- Nohara, T., Miyahara, K. and Kawasaki, T., Chemical and Pharmaceutical Bulletin, 1975, 23, 872
- 13. Gould, D. H., Staeudle, H. and Hershberg, E. B., *Journal of the American Chemical Society*, 1952, 74, 3685.
- 14. Mimaki, Y., Imoue, T., Kuroda, M. and Sashida, Y., *Phytochemistry*, 1997, 44, 107.
- 15. Oshima, R. and Kumanotani, J., Chemistry Letters, 1981, 943.
- Oshima, R., Yamauchi, Y. and Kumanotani, J., Carbohydrate Research, 1982, 107, 169.