

PII: S0031-9422(97)00295-1

ASTRAGALIN 2",6"-DI-O-GALLATE FROM LOROPETALUM CHINENSE

YANZE LIU,* YANGJIE WU,† KE YUAN, CHUNRU JI, AIJUN HOU, TAKASHI YOSHIDA‡ and TAKUO OKUDA‡

Department of Phytochemistry, Henan College of Traditional Chinese Medicine, Zhengzhou 450003, People's Republic of China; †Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China; ‡Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700, Japan

(Received 28 October 1996)

Key Word Index—*Loropetalum chinense*; Hamamelidaceae; astragalin 2",6"-di-*O*-gallate; Loropetalin D; kaempferol 3-(2",6"-digalloylglucoside); astragalin 2"-*O*-gallate and 6"-*O*-gallate; galloylated flavonol glycosides; hydrolysable tannins.

Abstract—A new galloylated flavonol glycoside, astragalin 2",6"-di-O-gallate (loropetalin D), together with two related flavonol glycosides was isolated from the leaves of *Loropetalum chinense*. The two related flavonol glycosides were characterized as astragalin 2"-O-gallate and astragalin 6"-O-gallate by chemical methods, ¹H and ¹³C NMR spectral analysis. The structure of loropetalin D was established by comparison of ¹H and ¹³C NMR spectral data with those of the monogallates. © 1997 Published by Elsevier Science Ltd

INTRODUCTION

In the course of chemical and pharmacological studies on tannins and other related polyphenols of Loropetalum chinense Oliv., we have reported previously four new oligomeric hydrolysable tannins: prostratin B [1] and loropetalin A-C [2], and 18 other known compounds including four oligomeric hydrolysable tannins. Further examination of the tannins and related polyphenols in this plant by HPLC led to the isolation of a new galloylated flavonol glycoside, loropetalin D (1) along with two known related compounds, astragalin 2"-O-gallate (2) and astragalin 6"-O-gallate (3). Compounds 2 and 3 have been reported for their biological activity in inhibiting xanthine oxidase (XOD) [3], but ¹H and ¹³C NMR data have not been published previously. We now present the isolation and structural elucidation of loropetalin D as well as 2 and 3, which are reported from this plant for the first time.

RESULTS AND DISCUSSION

The concentrated 70% aqueous acetone extract from a homogenate of the dried leaves was fractionated by column chromatography (CC) over Diaion HP-20 as described previously [2]. The 40 and 60% methanol eluates were further examined by TLC and compared with standard markers. Repeated CC

over Toyopearl HW-40 and Sephadex LH-20 using aqueous methanol resulted in the isolation of loropetalin D (1), astragalin 2"-O-gallate (2) and astragalin 6"-O-gallate (3). Compound 2, a yellow amorphous powder, gave colour reactions characteristic of a flavonol glycoside. It gave a bright-yellow colour with 2% ZrOCl₂ reagent which disappeared on addition of 2% citric acid and water, showing the presence of a free hydroxyl at the 5-position but no free 3-hydroxyl. UV spectral analysis confirmed the presence of free C-4' and C-7 hydroxyls. The ¹H NMR spectrum showed the presence of one galloyl group by a twoproton singlet, a kaempferol moiety by the signals of δ 8.00 (2H, d, J = 8.7 Hz, H-2',6'), 6.92 (2H, d, J = 8.7, Hz, H-3',5'), 6.42 (1H, d, J = 2.3 Hz, H-8) and 6.19 (1H, d, J = 2.3 Hz, H-6) and a sugar moiety. The configuration at C-1 of the glucose was determined to be β , as shown by the coupling constant of the anomeric proton signal (J = 8.0 Hz). The linkage of the galloyl group to the glucose was decided to be at C-2 by the triplet (δ 5.11, 1H, t, J = 8.0 Hz) and spin-decoupling experiment, i.e., when given irradiation to the doublet of glucose H-1, the triplet at 5.11 became a doublet. Thus, compound 2 was identified as astragalin 2"-O-gallate. Compound 3 had the same colour reaction as 2, indicating that it was also a flavonol glycoside and had no free 3 hydroxyl. ¹H NMR spectroscopy showed similar proton signals to compound 2 except for the signals of δ 4.25 and δ 4.35 attributable to glucose at H-6 instead of the triplet of δ 5.10 caused by glucose at H-2, indicating that the C-6 hydroxyl of the glucose is acylated by a galloyl

^{*} Author to whom correspondence should be addressed.

group. Because no ¹H and ¹³C NMR data have been published for this compound, we compared its ¹³C NMR data with those of astragalin (4) and kaempferol 3-O-(6"-O-coumaroyl- β -D-glucoside) (5) [4]. As indicated in Table 1, the chemical shift variation of sugar moiety of 3 is consistent with those of 5. Thus, 3 was identified as astragalin 6"-O-gallate.

Compound 1 showed the characteristic colouration and precipitation of hydrolysable tannin with FeCl₃ (dark blue) and geratin, indicating that it was a hydrolysable tannin. Its UV spectrum is very similar to that of 2 and 3 except that the absorption at 210 nm and 267 nm attributable to the galloyl group is significantly stronger than in 2 and 3, indicating the presence of more than one galloyl group. ¹H NMR spectroscopy, in addition to aromatic protons similar to 2 and 3, displayed two two-proton singlets at δ 7.24 and 7.06 due to two galloyl groups, a triplet at δ 5.20 (J = 8.0 Hz) and a broad singlet at δ 4.39 attributable

Table 1. ¹³C NMR data for loropetalin D (1), compound 3 and related compounds 4 and 5

C no.	4	5	3	1
Aglycone			-	
C-2	156.3	156.4	156.8	156.3
3	133.0	133.4	133.2	132.7
4	177.4	177.5	177.3	177.2
5	161.1	161.3	160.9	160.7
6	98.2	98.5	98.7	98.6
7	163.9	164.2	164.2	163.7
8	93.6	93.5	93.8	93.8
9	156.3	156.5	156.8	157.0
10	104.7	103.7	104.0	104.1
1'	121.0	120.7	120.7	121.1
2′	130.7	130.0	130.8	130.6
3′	115.0	115.7	115.1	115.0
4′	159.8	159.7	159.8	159.2
5′	115.0	115.7	115.1	115.0
6′	130.7	130.0	130.8	130.8
Glucose				
C-1"	101.4	101.2	101.4	98.6
2′	74.2	74.3	74.1	74.2
3"	76.5	76.3	76.0	74.2
4"	70.1	70.4	69.2	70.3
5"	77.2	74.3	74.0	74.2
6"	61.0	63.0	62.8	62.8
Galloyl				
C-1‴			119.4	119.9, 120.2
2"', 6"'			108.5	109.0, 109.6
4‴			138.5	137.9, 138.1
3"', 5"'			145.4	144.6, 144.6
có			165.7	166.0, 166.3

to H-2 and H-6 of glucose, respectively, which were assigned by a spin-decoupling experiment. The upfield shifts of C-1, C-3 and C-5 due to acylated C-2 and C-6 hydroxyls and downfield shifts of C-2 (unchanged) and C-6 of glucose in ¹³C NMR compared with 4 and 5 are consistent with those of 3 and 2 (Table 1). Thus, the structure of 1, named loropetalin D, was established as astragalin 2",6"-di-O-gallate.

EXPERIMENTAL

General. ¹H and ¹³C NMR spectra were measured on Bruker AM 500 instrument. Normal-phase HPLC was carried out on a Supersphere Si60 (Merck) column (4×125 mm) developed with *n*-hexane–MeOH–THF–HCOOH (60:45:15:1) containing oxalic acid (450 mg l⁻¹) (flow rate, 1.5 ml min⁻¹; detection 280 nm) at room temp. Analytical TLC was carried out on silica gel G plate prepd by 0.8% CMC-Na soln and developed with EtOAc–HCOOH–H₂O (7:2.2:3). CC was carried out on Toyopearl HW-40 (Tosoh) and Sephadex LH-20 (Merck).

Plant material. Leaves of Loropetalum chinense Oliv., were collected at Xin Xian county, Henan prov-

ince, People's Republic of China in September 1988, and air-dried. The identity of plant material was verified by Mr Wei-Zheng Xiong and a voucher specimen is deposited at the Herbarium of Henan College of Traditional Chinese Medicine.

Isolation of galloylated flavonol glycosides. As described previously [2] the dried leaves (2 kg) were homogenized in 70% Me₂CO and filtered. The concd extract was chromatographed over Diaion HP-20 using H₂O and aq. MeOH in a step gradient (10-100%). A part (24 g) of the 40% MeOH eluate (33 g) was subjected to CC over Toyopearl HW-40 (coarse grade) developing with aq. MeOH and Me₂CO $(40\% \text{ MeOH} \rightarrow 60\% \text{ MeOH} \rightarrow \text{MeOH-Me}_2\text{CO-H}_2\text{O})$ 8:1:1 \rightarrow 70% Me₂CO). Frs 307–319 (15 ml fr⁻¹, 150 mg, 60% MeOH) were combined and further purified by CC over Sephadex LH-20 eluated with H₂O and aq. MeOH (10% MeOH \rightarrow 20% MeOH \rightarrow 60% MeOH) to give 2 (80 mg). The 60% MeOH eluate (40 g) from the Diaion HP-20 CC was chromatographed over Toyopearl HW-40 (coarse grade) developing with the same solvent system as 2 to yield two yellow crystalline compounds: 3 (440 mg, 60% MeOH) and 1 (80 mg, 60% MeOH).

Compound 1, loropetalin D. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 211(br), 267, 290(sh), 347; (NaOMe) 205, 274, 321, 389; (NaOAc) 210(br), 267, 290(sh), 347; (NaOAc-H₃BO₃) 211(br), 267, 295(sh), 347; (AlCl₃) 212, 267, 290(sh), 347. 'H NMR (Me₂CO- d_6 , δ): 8.00 (2H, d, J = 8.8 Hz, H-2′,6′), 7.24 (2H, s, galloyl-H), 7.06 (2H, s, galloyl-H), 6.87 (2H, d, d = 8.8 Hz, H-3′,5′), 6.40 (1H, d, d = 2.0 Hz, H-8), 6.20 (1H, d, d = 2.0 Hz, H-6), 5.92 (1H, d, d = 8.0 Hz, H-1 Glc), 5.20 (1H, t, d = 8.0 Hz, H-2 Glc), 4.39 (2H, d) d = 8.7 (2H, d) d = 8.7 (2H, d) d = 8.7 (2H, d) d = 8.9 Hz, H-1 Glc), 3.0–4.0 (d) (d) Glc-H).

Compound 2, astragalin-2"-O-gallate. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 227, 266, 294(sh), 352; (NaOMe) 275, 324, 399;

Compound 3, astragalin-6"-O-gallate. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 205, 267 295(sh), 347. 'H NMR (Me₂CO-d₆, δ): 8.01 (2H, d, J = 8.5 Hz, H-2',6'), 7.00 (2H, s galloyl-H), 6.85 (2H, d, J = 8.5 Hz, H-3',5'), 6.49 (1H, d, J = 1.5 Hz, H-8), 6.29 (1H, d, J = 1.5 Hz, H-6), 5.54 (1H, d, J = 7.5 Hz, H-1 Glc), 4.35 (1H, d, J = 11.0 Hz, H-6 Glc), 4.25 (1H, dd, J = 11.0, 3.5 Hz, H-6' Glc), 3.54 (1H, m, H-5 Glc), 3.49, 3.40, 3.34 (each 1H, t, J = 8.5 Hz, H-2, 3, 4 Glc).

Acknowledgements—The authors are grateful to Dr Chenxia Du for the ¹H NMR and ¹³C NMR measurements. We are also grateful to National Natural Science Foundation of The Peoples Republic of China for its financial support.

REFERENCES

- Yoshida, T., Namba, O., Chen, L., Liu, Y. Z. and Okuda, T., Chemical and Pharmaceutical Bulletin, 1990, 38, 3296.
- Yoshida, T., Tanei, S., Liu, Y. Z., Yuan, K., Ji, C.
 R. and Okuda, T., Phytochemistry, 1993, 32, 1287.
- 3. Hatano, T. and Okuda, T., *Planta Medica*, 1991, **57**, 83.
- Gong, Y. H., ¹³C NMR of Natural Organic Compounds. Yunnan Science and Technology Press, Kunming, 1986.