

PII: S0031-9422(97)00233-1

TETRANORTRITERPENOIDS FROM AZADIRACHTA INDICA

Consolacion Y. Ragasa,* Zenaida D. Nacpil, Gaudencio M. Natividad, Masaru Tada,†
John C. Coll; and John A. Rideout;

Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila, 1004 Philippines; †Chemistry Department. Waseda University, Tokyo, 169 Japan; ‡Chemistry Department, Central Queensland University, Rockhampton 4702, Queensland, Australia

(Received in revised form 25 January 1997)

Key Word Index—*Azadirachta indica*; Meliaceae; neem tree; tetranortriterpenoid; azadirachtolide; deoxyazadirachtolide.

Abstract—Azadirachta indica afforded two novel tetranortriterpenoids by gravity column chromatography. Their structures were elucidated by extensive 1D and 2D NMR techniques. © 1997 Elsevier Science Ltd

INTRODUCTION

Azadirachta indica is used as an anti-malarial, anti-inflammatory, anti-pyretic, antitumour and anthel-mintic, a febrifuge, and an astringent. It is also used for the treatment of ulcers and skin diseases. The plant is known for its insecticidal and pesticidal properties [1–2]. Earlier studies reported on the isolation of tetranortriterpenoids and triterpenoids [3–24] from the plant which are of relevance to our present report. We now report two additional tetranortriterpenoids (1–2) from the same species.

RESULTS AND DISCUSSION

The $CHCl_3$ extract of the air-dried leaves of A. indica afforded compounds 1 and 2. The structures of which were elucidated by NMR and FT-IR spectroscopy and mass spectrometry.

The mass spectrum of 1 contained a [M]⁺ peak at m/z 570 which corresponds to a molecular formula of $C_{33}H_{46}O_8$. The ¹H NMR spectrum showed resonances for a senecioyloxy substituent [δ 1.88 (3H, d, J = 1.2 Hz), δ 2.20 (3H, d, J = 1.2 Hz), δ 5.70 (1H, s, br)] [25], an acetate [δ 1.96 (3H, s)], four additional methyl singlets (δ 0.97, δ 1.0, δ 1.05, δ 1.19), two olefinic hydrogens [δ 5.50 (dd, J = 1.74, 3.0 Hz), 5.70 (s, br)], methylene hydrogens bonded to oxygenated carbons [δ 4.4 (1H, t, J = 7.7 Hz), δ 3.95 (1H, t, J = 7.7 Hz), δ 3.63 (1H, d, d = 7.6 Hz), δ 3.56 (1H, d, d = 7.6 Hz)], and methine hydrogens bonded to oxygenated carbons [δ 4.12 (1H, dd, d = 3.3, 12 Hz), δ 4.14 (1H, s, br), δ 4.70 (1H, t, d = 3.0 Hz), δ 4.90 (1H, t, d = 3.0

1 R = =O 2 R = H

Hz)] (Table 1). The 13 C and DEPT NMR spectra gave the following functionalities: a carbonyl of a lactone at δ 176.0, a carbonyl of an acetate at δ 171.0, a carbonyl of a conjugated ester at δ 166.0, four oxygenated methine carbons at δ 74.0, 72.8, 71.8 and 71.2, two oxygenated methylene carbons at δ 77.9 and 72.4, two non-protonated olefins at δ 157.4 and 160.0, two

^{*} Author to whom correspondence should be addressed.

Proton	$1 (\delta)$	$2\left(\delta\right)$	
1	4.70 (t, 3.0 Hz)	4.70 (t, 3.0 Hz)	
2,2'	2.15 (m)	2.15 (m)	
3	4.90 (t, 3.0 Hz)	4.90 t, 3.0 Hz)	
5	2.65 (m)	2.65 (m)	
6	4.12 (dd, 3.3, 12 Hz)	4.11 (dd, 3.3, 12 Hz)	
7	4.14(s, br)	4.14(s, br)	
9	1.65 (m)	1.65 (m)	
11, 11'	1.38 (m), 1.55 (m)	1.38 (m), 1.55 (m)	
12, 12'	1.60 (m), 2.55 (m)	1.60 (m), 2.55 (m)	
15	5.50 (dd, 1.74, 3.0 Hz)	5.50 (dd, 1.74, 3.0 Hz)	
16	2.25 (m), 2.20 (m)	2.25(m), 2.20(m)	
17	$1.80 \ (m)$	$1.80 \ (m)$	
18	1.00(s)	1.00(s)	
19	0.97(s)	0.97(s)	
20	2.70 (m)	2.70 (m)	
21, 21'	3.95 (t, 7.7 Hz), 4.40 (t, 7.7 Hz)	4.14 (t, 7.7 Hz), 3.78 (t, 7.7 Hz)	
22	2.25 (m), 2.52 (m)	2.25 (m), 2.52 (m)	
23		3.45(m), 3.55(m)	
28,28′	3.56 (d, 7.6 Hz), 3.63 (d, 7.6 Hz)	3.56 (d, 7.6 Hz), 3.63 (d, 7.6 Hz)	
29	1.19 (s)	1.19 (s)	
30	1.05(s)	1.05(s)	
OSen	5.70 (s, br)	5.70(s, br)	
	1.88(s, br)	1.88(s, br)	
	2.20(s, br)	2.20 (s, br)	

1.96(s)

Table 1. 300 MHz ¹H NMR spectral data of compounds 1 and 2 in CDCl₃

protonated olefins at δ 116.0 and 120.0, five methylene, four methine, four quaternary and seven methyl carbons (Table 2). The DEPT spectrum indicated 45 protons attached to carbons, while the FT-IR spectrum indicated a hydroxyl at 3439 cm⁻¹ to account for 46 hydrogens. From the molecular formula, the index of hydrogen deficiency is 11. With three carbonyls [1774, 1732 and 1724 cm⁻¹] and two double bonds in 1, the rest of hydrogen deficiency is accounted for by six ring systems.

1.97(s)

OAc

The COSY spectrum of 1 enabled quite extensive chains of coupling to be delineated. Thus, the proton at δ 4.70 (H-1) was coupled to the methylene hydrogens at δ 2.15 (H-2, H-2'), which were in turn coupled to the proton at δ 4.90 (H-3). The coupling chain was then blocked by non-proton-bearing carbons. Further short coupling chains linked the proton at δ 3.63 (H-28) to the hydrogen to δ 3.56 (H-28') and the proton at δ 2.65 (H-5) to the hydrogen at δ 4.10 (H-6), which was further coupled to the proton at δ 4.14 (H-7). Further coupling chains linked the hydrogen at δ 1.55 (H-9) to the methylene protons at δ 1.38 (H-11) and 1.65 (H-11'), which were in turn coupled to the methylene protons at δ 2.55 (H-12) and 1.60 (H-12'). Another coupling chain linked the olefinic proton at δ 5.50 (H-15) to the methylene hydrogens at δ 2.25 (H-16) and 2.20 (H-16'), which were in turn coupled to the proton at δ 1.80 (H-17), which was further coupled to the hydrogen at δ 2.70 (H-20). The last hydrogen was coupled to the methylene protons at δ 2.52 (H-22) and

2.25 (H-22') and the methylene protons at δ 4.40 (H-21) and 3.95 (H-21').

The ¹³C and ¹H NMR assignments for 1 (Tables 1 and 2) were verified by HMQC and connectivity was verified by an inverse long-range heteronuclear experiment HMBC optimized for J=8 Hz (Table 3). The relative stereochemistry of 1 was determined by NOESY which indicated correlation through space of the ¹H nuclei in the molecule (Table 4). The trivial name azadirachtolide is suggested for 1.

The structure of 2 was determined by comparing the ¹H and ¹³C NMR spectral data of 2 with those of 1 (Table 1). Compound 2 indicated similar resonances to those in 1. The differences are the shielding of the methylene protons (H-21) attached at an oxygenated carbon at δ 3.90 and 4.40 in 1 to δ 3.75 and 4.15 in 2 and the appearance of another pair of hydrogens attached to an oxygenated carbon at δ 3.45 and 3.55 in 2. The ¹³C NMR spectral data of 2 (Table 2) indicated similar resonances to those in 1. The differences are the absence of the carbonyl carbon of the lactone at δ 175.0 and the oxygenated methylene carbon at δ 72.4 in 2. However, two oxygenated methylene carbons appeared at δ 64.2 and 60.8 in 2. This indicated that the carbonyl carbon of the lactone in 1 was converted to an oxygenated methylene carbon in 2 which results in the shielding of the methylene carbon at δ 72.4 in 1. This change in structure also caused the shielding of the methine carbon in δ 58.1 in 1 to move to δ 54.4 in 2 and the deshielding of the methine carbon at δ

CDCl₂

Table 2. 75 MHz ¹³C NMR data for compounds 1* and 2 in Table 3. 300 MHz ¹³C-¹H long-range correlation data of compound 1 in CDCl3

· · · · · · · · · · · · · · · · · · ·						
C	1 (δ)	2 (δ)	С	Long-range het. corr. expt.		
1	71.2	71.2	1	H2, H3, H19		
2	27.6	27.5	2	H1, H3		
3	71.8	71.8	3	H1, H2, H29		
4	42.3	42.3	4	H3, H5, H28, H29		
5	39.8	39.8	5	H19, H28, H29		
6	74.0	74.1	6	H5, H7, H19		
7	72.8	73.0	7	H6, H30		
8	45.5	45.7	8	H9, H15, H30		
9	33.2	33.4	9	H5, H7, H12, H19, H30		
10	39.3	39.7	10	H1, H19		
11	15.2	15.6	11	H9, H12		
12	34.0	34.4	12	H11, H18		
13	46.7	46.7	13	H15, H16, H18		
14	160.0	160.5	14	H18, H30		
15	120.0	120.6	15	H16		
16	34.7	34.8	16	H15, H17, H20		
17	58.1	54.4	17	H15, H16, H18, H21		
18	20.1	19.9	18	H12, H17		
19	15.4	15.4	19	H1, H5, H9		
20	37.5	39.3	20	H15, H17, H21, H22		
21	72.4	64.2	21	H17, H20, H22		
22	33.8	33.4	22	H20		
23	176.0	60.8	23	H21, H22		
28	77.9	77.8	28	H29		
29	19.6	19.6	29	H3, H5, H28		
30	26.3	26.3	30	H7, H9		
OSen	166.0	165.7	OSen			
	116.0	116.0	-C=	$2CH_3$, $CH=$		
	157.4	157.5	-C=O	СН≕		
	27.4	27.5	OAc			
	20.4	20.5	-C=O	H3, CH ₃		
OAc	171.0	170.5				
	21.0	21.0				

^{*} Assignments based on HMQC, HMBC and COSY spectroscopy.

37.5 in 1 to move to δ 39.3 in 2. The trivial name deoxyazadirachtolide is suggested for 2.

EXPERIMENTAL

General. IR; KBr pellets NMR; CDCl₃ sols on a 300 MHz NMR spectrometer. Silica gel 60 (70-230 mesh); CC plastic backed plates coated with silica gel F₂₅₄ TLC. Plates were visualized by spraying with vanillin-H₂SO₄ and warming.

Plant material and extraction. Azadirachta indica was collected at the Pampanga Agricultural College, Magalang, Pampanga in June. The air-dried leaves (200 g) were extracted with CHCl₃ (2 l) to afford a crude extract (10 g). The crude extract (10 g) was chromatographed in a column of silica gel (70-230 mesh) using Me₂CO in CHCl₃ (10% increments) as eluent. The 20% Me₂CO in CHCl₃ fr. afforded 1 [crystals, mp 269°, $\alpha_D = -48^{\circ}$ (CHCl₃, c = 4.25), 16.5 mg] after rechromatography (twice) in 20% Me₂CO in CHCl₃. The 30% Me₂CO in CHCl₃ fr. afforded 2

Table 4. NOESY correlation data of compound 1 in CDCl₃

Н	NOESY correlation			
3	H1, H2, H29			
6	H7, H19, H29, H30			
7	H6, H15, H30			
18	H12', H20, H21'			
19	H1, H2, H3, H6, H29			
29	H2, H3, H6, H19			
30	H7, H11, H29, H29			

(crystals, mp 118-120°, 10.5 mg) after rechromatography (twice) in 25% Me₂CO in CHCl₃.

Acknowledgements-The authors would like to acknowledge the receipt of a research grant from the University Research Coordination Office of De La Salle University.

REFERENCES

1. Burkill, I. H. and M. A. F. L. S., A Dictionary of the Economic Products of the Malay Peninsula,

- Vol. II. Crown Agents for the Colonies Millbank, London 1935, p. 1441.
- Hesslop-Harrison, J., *Plant Taxonomy*, ed. T. Swan. Academic Press, London, 1963, p. 17.
- Siddiqui, S., Siddiqui, B. S. and Faizi, S., *Planta Medica*, 1985, 54(6), 478.
- Mitra, C. R., Garg, H. S. and G. N. Pandey., Phytochemistry, 1971, 10(4), 857.
- Mahato, S. B., Sahu, N. P. and Podder, G., Science Culture, 1987, 53(5, suppl.).
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Ghiasuddin, *Journal of Natural Products*, 1992, 55(3), 303
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Ghiasuddin, Pakistan Journal of Science, Independent Research, 1990, 33(9), 359.
- Van der Silva, W. G., 'tHart, L. A., Van Dijk, H., de Silva, K. T. D. and Labadie, R. P., *Planta Medica*, 1991, 57(1), 65.
- Ramakrishna, N. and Pattabiraman, T. N., Indian Journal of Biochemistry and Biophysics, 1981, 18(3), 202.
- Ali, M. and Qadry, J. S., Current Science, 1988, 57(10), 550.
- Siddiqui, S., Faizi, S., Siddiqui, B. S., and Ghiasuddin, *Pakistan Journal of Science*, *Independent Research*, 1991, 34(1), 3.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., Pakistan Journal of Science, Independent Research, 1985, 28(1), 1.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Phytochemistry*, 1984, 23(12), 2899.

- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., Studies in Organic Chemistry, (Amsterdam), 1986, 26, 435.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Journal of Natural Products*, 1986, 49(6), 1068.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Heterocycles*, 1986, 24(11), 3163.
- 17. Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Journal of the Chemical Society*, *Perkin Transactions* 1, 1987, 7, 1429.
- 18. Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Journal of Natural Products*, 1988, **51**(1), 3.
- 19. Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Heterocycles*, 1987, **26**(7), 1827.
- 20. Siddiqui, S., Faizi, S., Siddiqui, B. S. and Mahmood, T., *Heterocycles*, 1989, **29**(1), 87.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Ghiasuddin, *Journal of Natural Products*, 1992, 55(3), 303.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Ghiasuddin, *Journal of Natural Products*, 1991, 54(2), 408.
- Siddiqui, S., Faizi, S., Siddiqui, B. S. and Ghiasuddin, *Phytochemistry*, 1991, 30(5), 1615.
- Siddiqui, S. Faizi, S., Siddiqui, B. S., and Ghiasuddin, *Pakistan Journal of Science*, *Independent Research*, 1989, 32(7), 435.
- Ogihara, K., Munesada, K. and Suga, T., Phytochemistry, 1989, 28(11), 3085.