

PII: S0031-9422(97)00306-3

FLAVONOIDS FROM IRYANTHERA SAGOTIANA

Dulce H. S. Silva,* Massayoshi Yoshida*†‡ and Massuo J. Kato*

* Instituto de Química, Universidade de São Paulo, C.P. 26077, CEP 05599-970, São Paulo-S.P. Brazil; † Instituto de Química, Universidade Estadual Paulista, C.P. 355, CEP 14800-900, Araraquara-S.P., Brazil

(Received 3 January 1997)

Key Word Index—Iryanthera sagotiana; Myristicaceae; dihydrochalcones; flavonols; flavanonols.

Abstract—Leaves and inflorescences of *Iryanthera sagotiana* were found to contain three known dihydrochalcones, two flavonol rhamnosides, four flavanonol rhamnosides, one dihydrocoumaric acid, besides the new 3,'3'''-bis-2',4',6'-trihydroxy-4-methoxydihydrochalcone and 4',6'-dihydroxy-4-methoxydihydrochalcone-2'-0- β -D-glucopyranoside. © 1997 Elsevier Science Ltd

INTRODUCTION

There have been very few chemical studies of neotropical members of the Myristicaceae. Lignans, neolignans and flavones have been reported from Virola surinamensis Warb. [1] but most Virola species contain only lignans and neolignans in their leaf tissue. However, inflorescences of the neotropical tree V. venosa Warb. were found to produce only flavones [2]. The bark of Iryanthera sagotiana (Benth.) Warb., another member of the Myristicaceae collected at Belém was reported to contain dihydrochalcones 1 and 4[3]. The present work describes the isolation and identification of four dihydrochalcones (1–3 and 5), two flavonol 3-rhamnosides (10, 11), four flavanonol 3-rhamnosides (12-15) and dihydro-p-coumaric acid (7) from the inflorescence of *I. sagotiana*. Leaves of *I.* sagotiana afforded 1, 3, 6, 10-13. One dihydrochalcone glycoside (5) and a dihydrochalcone dimer (6) are new compounds.

RESULTS AND DISCUSSION

Dihydrochalcones 1–3 and dihydro-*p*-coumaric acid (7) were identified by comparison of ¹H and ¹³C NMR data reported in the literature [1, 8, 9]. The location of hydroxyl and methoxyl groups of 1–3 was evidenced additionally through analysis of the MS ions.

Structural elucidation of **5** was based on ¹H and ¹³C NMR and EIMS spectral data. Its ¹H NMR spectrum showed two triplets at 2.79 δ (2H, J = 7.4 Hz) and 3.24 δ (2H, J = 7.4 Hz), and two doublets at 6.78 δ

(2H, J = 8.5 Hz) and 7.14 δ (2H, J = 8.5 Hz) of a dihydrochalcone with a p-substituted B-ring. A doublet at 4.87 δ (1H, J = 7 Hz) in addition to multiplets between 3.0 and 4.0 δ suggested the presence of a β -O-glucosyl unit linked to the dihydrochalcone. This was confirmed by PND and DEPT 135° 13C NMR spectra which showed one signal for a methylene carbon (61.0 δ), four signals around 70 δ and one signal at 100.9 δ for an anomeric carbon. The mass spectrum showed peaks with m/z 121 (983) (8) and 134 (20) (9) which placed the methoxyl group in ring B. The ¹H NMR data also disclosed an unsymmetrical A ring $(\delta_{\rm H3} = 5.89 \text{ and } \delta_{\rm H5} = 5.66)$ which sited the glucosyl unit at C-2'. Thus, 5 is identified as 4',6'-dihydroxy-4methoxydihydrochalcone 2'-O-β-D-glucoside, a new compound.

The ¹H NMR spectrum of 6 showed two triplets at 2.8 and 3.5 δ , which are typical of a dihydrochalcone moiety. It also showed two doublets at 6.70 and 7.05 δ of a p-substituted aromatic ring and a singlet at 5.79 δ integrating for only one proton, which suggested the presence of two dihydrochalcone units linked through C-3'. This was confirmed by the ¹³C NMR spectrum which showed only one signal around 90 δ for an aromatic carbon bearing one proton, which could be assigned to C-5' (94.5 δ). The signal due to C-3' was shifted downfield (115.0 δ) when compared to the dihydrochalcone monomer and appeared as a quaternary carbon as evidenced by a DEPT 135° experiment. These findings, allied to MS data, which established the methoxyl group position through observation of peaks with m/z 121 (100) and m/z 134 (40) for fragments 8 and 9, respectively, confirmed the proposed structure for the new dihydrochalcone dimer as 6. Measurement of specific rotation $([\alpha_D^{21}] = -8^\circ)$ led to the assumption of a non-planar

[‡] Author to whom correspondence should be addressed.

and hence chiral molecule, probably due to the sterical crowding caused by the pentasubstituted aromatic rings that bear the 3',3''' linkage between the two dihydrochalcone moieties that form this dimer. The first example of a dimeric dihydrochalcone was described by Drews and Hudson from *Brackenridgea zanguebarica* (Ochnaceae) [10] and is composed of two C_x — C_z linked davidigenin units. Compound 6 is the second example of a dimeric dihydrochalcone and the first example of a biflavonoid in the Myristicaceae.

Compounds 10 (afzelin) and 11 (quercitrin) were identified through comparison of their ¹H and ¹³C NMR spectra with literature data. The observed deshielding of C-2 (10.5 ppm for 10 and 10.0 ppm for 11) and C-4 (1.9 ppm for 10 and 1.4 ppm for 11) and shielding of C-3 (1.2 ppm for 10 and 1.4 ppm for 11) of afzelin and quercitrin when compared with their

aglycone moieties, kaempferol and quercetin, respectively, are in agreement with literature data [11].

Identification of the dihydroflavonol 3-O-x-L-rhamnosides: 12 (engeletin), 13 (astilbin), 14 (isoengeletin) and 15 (isoastilbin), including the chirality of the aglycones was made by comparison of their ¹H NMR shifts and coupling constants of H-2 and H-3 of the aglycone and H-1" and H-6" of the rhamnosyl moiety with literature data [4, 7]. Compounds 14 and 15 could not be isolated probably due to isomerization reactions taking place in the slightly acidic media used in HPLC isolation procedures followed by heating on a vacuum rota-evaporator [4]. However identification was possible from the chemical shifts obtained by spectra subtraction using spectral data for mixtures of 12 plus 14 and 13 plus 15 and that for pure 12 and 13. The observed relative deshielding of C-3 (2.6 ppm)

and shielding of C-2 (3.2 ppm), C-4 (3.4 ppm) and C-1' (2.6 ppm) of engeletin when compared to the aglycone moiety aromadendrin are in agreement with literature data [11].

It is of interest to note that the inflorescences of *I. sagotiana* have been found to contain only flavonoids, compounds, which absorb and emit strongly in the UV/VIS region of the electromagnetic spectrum and could possibly play an ecological role in the attraction of pollinators to the flowers.

EXPERIMENTAL

General. CC was carried out on Amberlite XAD-2 (100–250 μm) (Aldrich) and Sephadex LH-20 (25–100 μm) (Pharmacia). Flash chromatography was carried out on silica gel 60 (40–63 μm) (Merck). The 1 H NMR (200 MHz) and 13 C NMR (50 MHz) spectra were recorded on a Bruker-AC 200 in CDCl₃ and/or DMSO- d_6 with TMS as int. standard. EIMS was obtained at 70 eV on HP 5988-A.

Isolation of constituents. Inflorescences of I. sagotiana (Benth.) Warb. were collected near Belém, Pará State and identified by Dr William Rodrigues (voucher 133693, Herbarium João Murça Pires, Museu Paraense Emílio Goeldi, Belém, PA). They were dried, powdered and extracted with hexane and then EtOH. The ethanolic extract (8 g) was dissolved in 10% MeOH-H2O and extracted successively with hexane, CHCl₃ and EtOAc. The CHCl₃ phase extract (5 g) was passed through an Amberlite XAD-2 column and eluted first with H₂O followed by MeOH-H₂O sols containing 20, 40, 60, 80 and finally 100% MeOH in order to remove sugars and other very polar compounds. Frs containing glycosylated flavonoids were submitted to flash chromatography over silica gel (CHCl₃-MeOH-H₂O, 79:18:3) followed by Sephadex LH-20 affording pure 7 (3 mg), 10 (30 mg) and 11 (38 mg) and two mixts of diastereoisomeric glycosylated dihydroflavonols: 12+14 and 13+15. These mixts were purified by HPLC (RP-18 column 250×22 mm, $10 \,\mu\text{m}$ Perkin-Elmer; MeOH (HOAc 3%)-H₂O 53:47) to yield 12 (8 mg) and 13 (6 mg). Less polar frs from an XAD-2 column submitted to flash chromatography over silica gel (hexane-CHCl₃-MeOH, gradient) gave 1 (90 mg). Remaining frs submitted to HPLC (RP-18 column, 250×22 mm, $10 \mu m$ Perkin-Elmer; MeOH (HOAc 2%)-H₂O 65:35) gave 2 (92 mg) and 3 (3 mg) while a polar fr. submitted to HPLC (RP-18 column, 250×22 mm, $10 \mu m$ Perkin-Elmer; MeOH (HOAc 2%)- H_2O 6:4) gave 5 (3 mg).

Air-dried powdered leaves of *I. sagotiana* (220 g), collected from the same specimen, were submitted to the same procedure as described for inflorescences and yielded 1, 3 and 10–13. Fractionation through flash chromatography over silica gel (hexane–CHCl₃–MeOH, gradient) followed by purification by HPLC (RP-18 column, 250×22 mm, 10μ m Perkin-Elmer; MeOH (HOAc 2%)–H₂O 6:4) of a semi-polar fr. gave 6 (3 mg).

4',6'-Dihydroxy-4-methoxydihydrochalcone 2'-O-β-D-glucopyranoside (5). ¹H NMR (200 MHz, DMSO- d_6): δ 7.14 (2H, d, J = 8.5 Hz, H-2 and H-6), 6.78 (2H, d, J = 8.5 Hz, H-3 and H-5), 5.89 (1H, sl, H-3'), 5.66 (1H, sl, H-5'), 4.87 (2H, d, 7.0 Hz, H-1"), 3.8–3.0 (5H, m), 3.24 (2H-α, m), 2.79 (2 H-β, m). ¹³C NMR (50 MHz, DMSO- d_6): δ 134.1 (C-1), 129.7 (C-2, C-6), 114.0 (C-3, C-5), 158.0 (C-4'), 104.0 (C-1'), 161.2 (C-2'), 98.0 (C-3'), 166.3 (C-4'), 96.2 (C-5'), 157.0 (C-6'), 44.8 (C-a), 29.7 (C-b), 100.9 (C-1"), 69.9, 73.7, 77.2, 77.5 (C-2", C-3", C-4", C-5"), 61.0 (C-6"). EIMS (70 eV) m/z (rel. int.): [M]⁺-Glc+1 288 (100%), [M]⁺-Glc-1 286 (33), 270 (19), 256 (21), 180 (17), 153 (5), 134 (19), 121 (93).

3',3'''-bis-2',4',6'-Trihydroxy-4-methoxydihydrochalcone (6) [α]_D²¹ = -8° (MeOH, c = 0.16). ¹H NMR (200 MHz, DMSO- d_6): δ 7.05 (2H, d, J = 8.4 Hz, H-2 and H-6), 6.70 (2H, d, J = 8.4 Hz, H-3 and H-5), 5.79 (s, H-5), 3.5–3.6 (2H- α , m), 2.9–2.7 (2H- β , m). ¹³C NMR (50 MHz, DMSO- d_6): δ 133.4 (C-1), 128.8 (C-2, C-6), 113.1 (C-3, C-5), 157.1 (C-4), 103.7 (C-1'), 163.9 (C-2'), 115.0 (C-3'), 164.0 (C-4'), 94.5 (C-5'), 163.9 (C-6'), 45.0 (C- α), 29.2 (C- β), 203.9 (C=O), 54.6 (CH₃O). EIMS (70 eV) m/z (rel. int.): 180 (10), 163 (14), 153 (8), 135 (18), 134 (40), 121 (100). FAB MS: [M]⁺ + 1 575 (14%).

Engeletin (10). ¹³C NMR (50 MHz, DMSO-*d*₀): δ 81.8 (C-2), 76.3 (C-3), 195.4 (C-4), 163.7 (C-5), 96.4 (C-6), 167.4 (C-7), 95.4 (C-8), 162.5 (C-9), 101.3 (C-10), 126.8 (C-1'), 129.4 (C-2', C-6'), 115.5 (C-3', C-5'), 158.2 (C-4'), 100.6 (C-1"), 69.3, 70.4, 70.7, 71.9 (C-2", C-3", C-4", C-5"), 18.0 (C-6").

Isoengeletin (12). ¹³C NMR (50 MHz, DMSO-*d*₆): δ 80.3 (C-2), 75.6 (C-3), 193.0 (C-4), 164.3 (C-5), 96.6 (C-6), 167.7 (C-7), 95.5 (C-8), 162.9 (C-9), 100.4 (C-10), 126.1 (C-1′), 128.1 (C-2′, C-6′), 115.1 (C-3′, C-5′), 157.5 (C-4′), 98.8 (C-1″), 70.4, 70.5, 71.4, 73.4 (C-2″, C-3″, C-4″, C-5″), 17.8 (C-6″).

Acknowledgements—The authors are grateful to Mrs M. Greuter from Ludwigs-Maximilians Universität (München) for the FAB-MS spectrum. This work was supported by CNP_q, CAPES, PADCT and FAPESP.

REFERENCES

- Paulo, M. Q., Dissertação de Mestrado, Instituto de Química/UNICAMP, Campinas, 1983.
- Kato, M. J., Yoshida, M. and Gottlieb, O. R., *Phytochemistry*, 1992, 31, 283.
- Kawanishi, K., Takagaki, T. and Hashimoto, Y., Phytochemistry, 1990, 29, 2735.
- 4. Gaffield, W. and Waiss Jr, A. C., Journal of Organic Chemistry, 1975, 40, 1057.
- 5. Tschesche, R., Delhvi, S., Sepulveda, S. and Breitmeier E., *Phytochemistry*, 1979, **18**, 867.
- Kasai, R., Hirono, S., Chou, W. H., Tanaka, O. and Chen, F. H., Chemical and Pharmaceutical Bulletin, 1988, 36, 4167.
- 7. De Britto, J., Manickam, V. S., Gopalakrishnan,

- S., Ushioda, T. and Tanaka, N., Chemical and Pharmaceutical Bulletin, 1995, 43, 338.
- 8. Braz Filho, R., Silva, M. S., Gottlieb, O. R., *Phytochemistry*, 1980, **19**, 1195.
- 9. Garzon, N. L., Cuca, S. L. E., Martinez, V. J. C., Yoshida, M., Gottlieb, O. R., *Phytochemistry*, 1987, **26**, 2835.
- Drewes, S. and Hudson, N. A., *Phytochemistry*, 1983, 22, 2823.
- Agrawal, P. K. and Bansal, M. C., Flavonoid Glycosides in Carbon-13 NMR of Flavonoids, ed. P. K. Agrawal. Elsevier, Amsterdam, 1989, p. 293, 292.