

PII: S0031-9422(97)00533-S

INDOLE ALKALOIDS FROM AERIAL PARTS OF VINCA SARDOA

M. NICOLETTI, M. SERAFINI, E. FEDERICI*, C. GALEFFI*,† and F. POLI‡

Dipartimento di Biologia Vegetale, Università 'La Sapienza', P.le A. Moro, 5 I-00185 Roma, Italy; *Istituto Superiore di Sanità, V.le Regina Elena, 299 I-00161 Roma, Italy; ‡Istituto di Botanica ed Orto Botanico, Università di Cagliari, I-09100 Cagliari, Italy

(Received in revised form 23 May 1997)

Key Word Index—*Vinca sardoa*; Apocynaceae; plumerane alkaloids; indole alkaloids; ¹³C NMR.

Abstract—From the aerial parts of *Vinca sardoa*, seven indole alkaloids were isolated, conoflorine and six plumerane-type indolines, N(1)-methyl-14,15-didehydro-12-hydroxyaspidofractinine, N(1)-methyl-14,15-didehydro-12-methoxyaspidofractinine, N(1)-formyl-14,15-didehydroaspidofractinine, N(1)-formyl-14,15-didehydroaspidofractinine and the known, venalstonine and N(1)-methyl-14,15-didehydroaspidofractinine. © 1997 Elsevier Science Ltd

INTRODUCTION

Vinca sardoa (Stearn) Pign. (= V. difformis Pourret ssp. sardoa) is a herbal plant native of Sardinia [1]. From its roots, 10 alkaloids were isolated, the known norfluorocurarine, akuammigine, carapanaubine, majdine, isomajdine, rauvoxinine and four new N-methylindolines, vis., ent-N(1)-methyl-14,15-didehydroaspidospermidine, N(1)-methyl-14,15-didehydroaspidofractinine, N(1)-methyl-14,15-didehydrotuboxenine [2].

The isolation and identification of four new 14,15-didehydroaspidofractinine derivatives, 2-5, besides 1, conoflorine [3] and venalstonine 6 [4] from the aerial parts of V. sardoa are reported here.

RESULTS AND DISCUSSION

The basic extract of the aerial parts of *V. sardoa* (0.22%) was submitted to counter-current distribution (CCD) between dichloromethane and buffer at discontinuously decreasing pH. Seven alkaloids, 1–6 and conoflorine, were isolated.

The most polar compound, **2**, $C_{20}H_{24}N_2O$, is a hydroxy derivative at the aromatic ring of **1**. The ¹H and ¹³C NMR data (see Table 1) of the aliphatic moiety of **1** [2] and **2** showed a close similarity, whereas for **2** the mass spectral peaks including the aromatic moiety $(m/z \ 308 \ [M]^+$, 280, 188 and 174) showed an increase of 16 mu with respect to **1**. The absence in the ¹³C NMR spectrum of **2** of the signal of C(12) (δ 107.6 in

1) suggested this position for the hydroxyl group, also in agreement with the upfield shifts of *ortho*- and *paracarbons* to C(12) with respect to 1.

In the CD curve of 2, the strong positive Cotton effect at 259 nm due to $\pi \to \pi^*$ transition of the indolinic chromophore accounted for the absolute configuration 7S, typical of the normal series and not of the *ent*-series of aspidospermidine [5]; 2 is therefore unambiguously N(1)-methyl-14,15-didehydro-12-hydroxyaspidofractinine. The other alkaloids of the CCD separation are in order of decreasing polarity, 6 identified as venalstonine [4], 3, 1, identified as N(1)-methyl-14,15-didehydroaspidofractinine [2], 4, conoflorine [3] and 5.

The ${}^{1}H$ and ${}^{13}C$ NMR signals of 3, $C_{21}H_{26}N_{2}O$, $[M+1]^{+}$ at m/z 323, showed a close similarity to those

[†] Author to whom correspondence should be addressed.

Table 1. 13C NMR data of compounds 1-5

Carbon					
	1	2	3	4	5
Position					
2	68.5	68.5	68.5	66.3	67.2
3	49.5	49.4	49.5	48.9	49.0
5	50.5	50.9	50.5	50.4	50.3
6	36.2	36.1	36.2	36.5	36.1
7	55.4	55.7	55.4	56.0	56.3
8	139.2	138.0	139.2	140.0	135.1
9	120.8	116.2	111.8	117.5	112.8
10	117.9	119.6	120.8	121.5	117.4
11	126.9	114.0	107.6	124.5	113.0
12	107.6	142.4	146.8	124.4	155.2
13	151.7	143.0	141.5	141.0	n.o.
14	126.2	126.0	126.9	127.3	128.3
15	134.0	133.9	133.9	132.7	132.6
16	22.6	23.3	22.6	25.4	25.6
17	24.4	24.0	24.0	25.2	26.8
18	29.0	29.1	28.9	29.0	28.7
19	30.1	30.3	29.9	30.0	29.7
20	34.3	34.1	34.2	34.6	34.6
21	67.3	67.8	67.3	66.4	66.2
N-Me	29.4	32.1	31.9		
O-Me			56.1		
N-CHO				158.0	157.8

n.o. = not observed.

of 2, except for the presence of an additional methyl group, $\delta(H)$ 3.74(s) and $\delta(^{13}C)$ 56.1, linked at the downfield aromatic C(O), δ 146.8, C(12). This substitution is in agreement with the upfield shifts of *ortho* C(11) and *para* C(9) (δ 107.6 and 111.8, respectively, compared with δ 114.0 and 116.2 in 2). Alkaloid 3 is therefore N(1)-14,15-didehydro-12-methoxyaspidofractinine.

Compound 4 corresponds to the empirical formula $C_{20}H_{22}N_2O$, $[M+1]^+$ at m/z 307. Differently from 2 and 3, its aromatic moiety is not substituted and its 1H and ^{13}C NMR signals are different from the corresponding ones of 1. In particular, in 4, H-12 is shifted markedly downfield (δ 8.0, d, J = 8.1 and 2.0 Hz) and this can be related to the replacement at N(1) of the methyl by a formyl (δ (H) 8.30(s); δ (^{13}C) 158.0). The carbonyl substituent in the cis conformation deshields the peri H-12. The positive Cotton effect in 4 at 260 nm assigned a 7S configuration to this N-acylindoline. The close similarity of the non-aromatic ^{13}C NMR signals of 1 and 4 (Table 1) suggested therefore the structure N(1)-formyl-14,15-didehydroaspido-fractinine for 4.

Akaloid 5, $C_{20}H_{22}N_2O_2$, $[M+1]^+$ at m/z 323, is the 12-hydroxy derivative of 4. Their aliphatic NMR signals are similar, whereas the deshielded H-12 of 4 is lacking and it is replaced in 5 by a hydroxyl group, $\delta(H)$ 10.59 (s); δ ¹³C(12) 155.2.

EXPERIMENTAL

A Craig Post apparatus (200 stages, 10:10 ml, upper and lower phase) was used for sepns by CCD. NMR spectra were recorded in CDCl₃ at 500 and 125 MHz, respectively, for ¹H and ¹³C using TMS as int. standard.

Plant material, extraction and separation. Vinca sardoa collected in Iglesias (Sardinia) was identified by F. Poli and a voucher sample is deposited at the Herbarium of Orto Botanico, Cagliari. Aerial parts (1.2 kg) coarsely minced were submitted to repeated extraction with 2% aq. HOAc. The combined solns were made alkaline with NaHCO3 and exhaustively extracted with CH2Cl2. The residue of the organic solvent (2.6 g, 0.22%) was submitted to CCD using CH₂Cl₂ as stationary phase and phosphate-citric acid buffer at discontinuously decreasing pH as mobile phase. At pH 5.4, N(1)-methyl-14,15-didehydro-12hydroxyaspidofractinine, $(K_r \cdot K_b = 1.5 \times 10^{-9}, 56)$ mg) was eluted and then at pH 3.4, in the order, venalstonine, **6** ($K_r \cdot K_b = 10^{-11}$, 87 mg), N(1)-methyl-14,15-didehydro-12-methoxyaspidofractinine, 3 (K_r· $K_b = 6 \times 10^{-12}$, 215 mg) and N(1)-methyl-14,15didehydroaspidofractinine, 1 ($K_r \cdot K_b = 4 \times 10^{-12}$, 26 mg). Finally, at pH 2.8 N(1)-formyl-14,15-didehydroaspidofractinine, 4 $(K_r \cdot K_b = 2 \times 10^{-12}, 108)$ mg), conoflorine ($K_r \cdot K_b = 10^{-12}$, 72 mg) and N(1)formyl-14,15-didehydro-12-hydroxyaspidofractinine, 5 ($K_r \cdot K_b = 8 \times 10^{-13}$, 43 mg) were eluted consecutively. Venalstonine [14] 6, and conoflorine [3] were identified by their spectroscopic data and by comparison with lit.

N(1)-Methyl-14,15-didehydro-12-hydroxyaspidofractinine (2). Amorphous. EI-MS, m/z (rel. int.): 308, ([M]⁺, C₂₀H₂₄N₂O, 12), 280 ([M - C₂H₄]⁺, 9), 188(100), 174(21), 135(44), 122(19), 107(52). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 214(4.30), 253(3.76), 292(3.46); [α]_D²³ = +98.4°C (MeOH, c 0.23). ¹H NMR: δ 3.51 (dt, J = 16.5 and 2.3 Hz, H_a-3), 3.39 (ddd, J = 16.5, 4.0 and 2.3 Hz, H_b-3), 6.74, (dd, J = 8.0 and 2.1 Hz, H-9), 6.5–6.6 (H-10, H-11, overlapped), 5.65 (ddd, J = 10.1, 4.0 and 2.3 Hz, H-14), 5.50 (dt, J = 10.1 and 2.3 Hz, H-15), 2.83 (s, N-Me). CD: [Θ], MeOH: +15.6 × 10³ (259 nm).

N(1)-Methyl-14,15-didehydro-12-methoxyaspido-fractinine (3). Mp 138–140°C (EtOAc-cyclohexane). C1-MS, m/z (rel. int.): 323 ([M+1]⁺, $C_{21}H_{26}N_2O$, 100), 293 ([M+1]⁺-OCH₂, 14), 202(12), 135(9). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε); 211(4.35), 257(3.96), 295(3.56). [α] $_{c}^{23}$ = +159° (MeOH, c 0.13), $_{c}^{1}$ H NMR: δ 3.49 (dt, J = 16.5 and 2.1 Hz, $_{d}^{4}$ -3), 3.39 (ddd, J = 16.5, 4.1 and 2.1 Hz, $_{d}^{4}$ -3), 6.71 (dd, J = 8.0 and 2.1 Hz, $_{d}^{4}$ -9), 6.70 (t, J = 8.0 Hz, H-10), 6.79 (dd, J = 8.0 and 2.1 Hz, H-11), 5.64 (ddd, J = 10.1, 4.1 and 2.1 Hz, H-14), 5.50 (dt, J = 10.1 and 2.1 Hz, H-15), 2.86 (s, N-Me), 3.74 (s, O-Me). CD: [Θ], MeOH: $_{d}^{4}$ +29 × 10³ (262 nm).

N(1)-Formyl-14,15-didehydroaspidofractinine (4). Mp 138–140° (cyclohexane). CI-MS, m/z (rel. int.): 307 ([M+1]⁺, C₂₀H₂₂N₂O, 100), 281(14). UV $\lambda_{\text{max}}^{\text{MoOH}}$

nm (log ε): 211 (4.34), 254 (4.13), 278 (3.76), 287 (3.70). [α]₀²³ = +55.8° (MeOH, c 0.5). ¹H NMR: δ 3.51 (dt, J = 16.1 and 2.3 Hz, H_a-3), 3.39 (ddd, J = 16.1, 4.0 and 2.3 Hz, H_b-3), 7.0–7.2 (H-9, H-10, H-11), 8.00 (dd, J = 8.1 and 2.0 Hz, H-12), 5.66 (ddd, J = 10.1, 4.0 and 2.3 Hz, H-14), 5.49 (dt, J = 10.1 and 2.3 Hz, H-15), 8.30 (s, CHO). CD: [Θ], MeOH: +28×10³ (260 nm).

N(1)-Formyl-14,15-didehydro-12-hydroxyaspido-fractinine (5). Mp 165° (dec.) (cyclohexane). CI-MS, m/z (rel. int.): 323 ([M+1]+, $C_{20}H_{22}N_2O_2$, 100), 305 (7), 253 (11), 161 (11). UV $\lambda_{\rm max}^{\rm MeOH}$ mm (log ε): 216 (4.41), 256 (3.94), 286 (3.69). [α] $_D^{20} = -39^\circ$ (MeOH, c 0.3). $_D^{1}H$ NMR: δ 3.47 (dt, J = 16.1 and 2.3 Hz, H_a -3), 3.39 (ddd, J = 16.1, 4.0 and 2.3 Hz, H_b -3), 6.80 (dd, J = 8.0 and 2.1 Hz, H-9), 7.04 (t, J = 8.0 Hz, H-10), 6.71 (dd, J = 8.0 and 2.1 Hz, H-11), 5.67 (ddd, J = 10.1, 4.0 and 2.3 Hz, H-14), 5.48 (dt, J = 10.1 and 2.3 Hz, H-15), 8.06 (s, CHO), 10.59 (s, OH).

REFERENCES

- 1. Atzei, A. D. and Picci, V., Archivio Botanico e Biogeografico Italiano, 1975, 20, 157.
- Crippa, S., Danieli, B., Lesma, G., Palmisano, G., Passarella, D. and Vecchietti, V., *Heterocycles*, 1990, 31, 1663.
- 3. Dugan, J. J., Hesse, M., Renner, U. and Schmid, H. Helvetica Chimica Acta, 1967, 50, 60.
- Ahond, A., Janot, M. M., Langlois, N., Lukacs, G., Potier, P., Rasoanaivo, P., Sangarè, M., Neuss, N., Plat, M., Le Men, J., Hagaman, E. W. and Wenkert, E., Journal of the American Chemical Society, 1974, 96, 633.
- Klyne, W., Swan, R. J., Gorman, A. A., Guggisberg, A. and Schmid, H., Helvetica Chimica Acta, 1968, 51, 1168.