

PII: S0031-9422(97)00727-9

BIOSYNTHESIS OF ANTIOXIDANT LIGNANS IN SESAMUM INDICUM SEEDS

MASSUO J. KATO* ALEX CHU, LAURENCE B. DAVIN and NORMAN G. LEWIS†

Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A.

(Received 23 June 1997)

Key Word Index—Sesamum indicum; Pedaliaceae; seeds; biosynthesis; lignans; pinoresinol; piperitol; sesamin; sesamolin; antioxidants.

Abstract—Sesame lignans, whose biosynthetic pathway is the subject of this study, have well-established antioxidant and health protecting properties. Using a combination of radio- and stable-isotopically labelled precursor administration experiments, it was demonstrated that *E*-coniferyl alcohol undergoes stereoselective coupling to afford (+)-pinoresinol in *Sesamum indicum* seeds. Only this enantiomer, and not its (-)-antipode, is metabolized further in maturing seeds to afford (+)-piperitol, (+)-sesamin, and (+)-sesamolin. Introduction of the methylene dioxy bridges occurs sequentially with piperitol first being formed, this being subsequently modified to afford sesamin. Copyright © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The potent antioxidant properties of seed extracts from *Sesamum indicum* and sesame oil are attributed mainly to the presence of the lignans, sesamin 1, sesamolinol 2, and sesaminol 3 [1-3]. The first two are natural products, whereas sesaminol 3 results from acid-catalyzed rearrangement of sesamolin 4 during industrial bleaching [4] (Fig. 1). Sesame lignans also have various biological activities, which include: synergistic effects with pyrethrum insecticides [5-7], and inhibitors of Δ -5 desaturases [8] in mammals. Sesame lignans, when provided in the diet, can also protect against ethanol and carbon tetrachloride induced liver damage [9], reduce serum cholesterol level [10] as well as increase vitamin E activities [11, 12] and the availability of γ -tocopherol *in vivo* [13].

Little is known about the biosynthetic pathways leading to the sesame lignans, except for one very preliminary study [14] which claimed that [D,L]-[1-14C]tyrosine was incorporated into sesamin 1 when administered to cell suspension cultures of *S. indicum*. This is a surprising result, since all other studies have implicated phenylalanine [15, 16] as the precursor amino acid of the lignin–lignan metabolites, except for the grasses which can also utilize tyrosine [17]. Subsequent phenylpropanoid metabolism into the sesame lignan branch proper can be proposed to involve

If (+)-pinoresinol 6a is formed in an analogous manner in S. indicum, then its resulting metabolism into the "oxygen-inserted" lignan (+)-sesamolin 4, as well as into (+)-sesamin 1, could be envisaged as occurring via either of the routes shown in Scheme 1. Clearly in the absence of metabolite turnover/time course data, it is not possible to distinguish between these possible pathways. In this investigation, we therefore sought to first establish if (+)-pinoresinol 6a served as a precursor of the sesame lignans 1, 2, and 4, and if possible to determine whether the oxygen insertion reaction preceded piperonyl group (aryl methylenedioxy) formation. To our knowledge, no description of piperonyl group formation in the lignans has been described, although there are two reports of cytochrome P-450/NADPH dependent microsomal preparations able to catalyse aryl methylenedioxy formation in the benzophenanthridine alkaloids [22, 23] and isoflavonoids [24], respectively.

RESULTS AND DISCUSSION

Mature seeds of *S. indicum* were first examined for their lignan contents and composition, as well as pro-

stereoselective coupling of two achiral molecules of *E*-coniferyl alcohol **5** to give (+)-pinoresinol **6a**, as previously established for lignan formation in *Forsythia sp.* [18–20]. In the latter case, a "dirigent" (Latin: to guide or align) protein was discovered as responsible for controlling this first example of bimolecular phenoxy radical coupling [20]. It has been purified to apparent homogeneity [20] and the encoding gene cloned [21].

^{*}Current address: Instituto de Química, Universidade de São Paulo, 26.077, 05599-970 São Paulo SP, Brazil.

[†]Author to whom correspondence should be addressed.

Fig. 1. Lignans from Sesamum indicum and Sesaminol 3.

viding a source of authentic lignans. Thus, following extraction and multiple chromatographic steps [25], the known sesame lignans, (+)-sesamolin 4 [26, 27], (+)-sesamin 1 [27], (+)-pinoresinol 6a [28], (+)-piperitol 7a [1, 29], (+)-kobusin 8 [30], and (+)-episesamin 9 [31] were isolated, together with ferulic acid.

It was instructive to ascertain whether active sesame

lignan biosynthesis occurred in developing seeds, pods, seeds and pods together or in some other tissue. Thus, [U-14C]Phe (19.6 kBq, 102.4 kBq μ mol⁻¹) was first administered to intact seed-containing pods and seeds of *S. indicum*, under aseptic conditions, for 48 hr. As can be seen from Table 1, when [U-14C]Phe was administered to the pods, this resulted in its small but

Table 1. Summary of results of administration of various putative precursors to Sesamum indicum

Precursor*	Total radioactivity administered (kBq)	-		Total incorporation (%) Pinoresinol Piperitol Sesamin Sesamolin			
				6	7	1	4
[U-14C]Phe	19.60	102.4	48	n.d.	n.d.	0.11	0.16
E-[8-14C] Coniferyl alcohol 5	1.76	3.39	12	3.18	2.26	1.42	0.72
(\pm) -[3,3'-O ¹⁴ CH ₃] Pinoresinols 6a/6b	9.70	48.1	12	n.d.	6.96	10.58	2.13
(\pm) -[3-O ¹⁴ CH ₃]Piperitols 7a/7b	1.25	1.15	8	n.d.	n.d.	5.22	0.87

^{*[}U-14C] Phe was administered to pods, whereas all other precursors were administered to seeds. n.d. = not detected.

Scheme 1. Possible Biosynthetic Routes to the Sesame Lignans, (+)-Sesamin 1 and (+)-Sesamolin 4 from (+)-Pinoresinol 6a.

significant metabolism into the lignans, (+)-sesamolin 4 and (+)-sesamin 1 (0.16 and 0.11%, respectively). On the other hand, it was not incorporated into these same metabolites when directly administered to seeds. In contrast, E-[8- 14 C]coniferyl alcohol 5 (1.76 kBq, 3.39 kBq μ mol $^{-1}$) was metabolized into pinoresinol 6 (3.18%), piperitol 7 (2.26%), sesamin 1 (1.42%) and sesamolin 4 (0.72%) when administered to seeds, but was not when supplied to the pods (Table 1). Formation of pinoresinol 6 was of particular interest, since this finding was in general agreement with our previous observations using *Forsythia* sp. that catalytic entry into the furanofuran lignans and derivatives thereof resulted from stereoselective coupling of *E*-coniferyl alcohol 5 [20, 32, 33].

Having defined the location of sesame lignan biosynthesis, attention was next directed to the sequence and enantiospecificity of their lignan biosynthetic transformations. This in turn necessitated synthesis of the racemic radiolabelled putative precursors, (\pm) -[3,3'-O\delta'CH3]pinoresinols **6a/6b** and (\pm) -[3-O\delta'CH3]piperitols **7a/7b**, as well as (+)-[7,7'-\delta'H2] sesamin 1. These were synthesized via modification of known strategies [34-36], i.e., (\pm) -[3,3'-O\delta'CH3] pinoresinols **6a/6b** were obtained from the protected benzaldehyde **14**, its 1,3 dithiane **16** and butenolide as shown to generate **17** (Fig. 2). The synthon **17** was subsequently hydrolyzed to give **18**, then sequentially reduced to give **19** and **20**, with cyclization of the

latter affording the required furofuran 21. Next, *O*-methylation with $^{14}\text{CH}_3\text{I}$ and subsequent debenzylation of the resulting product afforded the required (\pm)-[3,3'- $^{O}^{14}\text{CH}_3$]pinoresinols 6a/6b (156 mg, 48.1 kBq μ mol $^{-1}$). In an analogous manner, synthesis of (\pm)-[3- $^{O}^{14}\text{CH}_3$]piperitols 7a/7b (52 mg, 1.15 kBq μ mol $^{-1}$) followed an identical strategy, except that the piperonyl analogue 22 was employed. The third putative precursor, (+)-[7,7'- $^{3}\text{H}_2$]-sesamin 1 (96 mg, 64.01 kBq μ mol $^{-1}$) was obtained from naturally occurring (+)-sesamin 1, via generation of its dianion with *n*-BuLi, and subsequent quenching with tritiated water

With the potential precursors in hand, we next sought to ascertain whether (+)- and (-)-[3,3'-O¹⁴CH₃] pinoresinols **6a/6b** served as precursors of piperitol 7, sesamin 1 and sesamolin 4. To address this question, racemic (\pm)-[3,3'-O¹⁴CH₃]pinoresinols **6a/6b** (9.71 kBq, 48.1 kBq μ mol⁻¹) were administered to the maturing pods and seeds, respectively. As previously noted for E-[8-14C]coniferyl alcohol 5, only metabolism into the lignans of interest occurred when the radiolabelled pinoresinols were administered to the seeds, and not to the pods. As shown in Table 1, its metabolism resulted in a significant conversion over a 24 hr period into piperitol 7 (6.96%), sesamin 1 (10.58%), and sesamolin 4 (2.13%). A subsequent time-course of metabolism of (\pm) -[3,3'-O¹⁴CH₃] pinoresinols 6a/6b in seeds at approximately the same

Fig. 2. Synthesis of (\pm) -[3,3'-O¹⁴CH₃]pinoresinols **6a/6b** and (\pm) -[3-O¹⁴CH₃]piperitols **7a/7b**. A. Formation of synthons **14** and **16**; B. Subsequent synthetic steps to **6a/6b** and **7a/7b**. Legend: (i): K_2CO_3 , BnBr, DMF; (ii): HS-(CH₂)₃-SH, HCl, ZnCl₂, dioxane; (iii) and (iv): DHP, pTSA, CH₂Cl₂; (v): LDA, THF; (vi): HgO, BF₃-Et₂O, THF/H₂O; (vii): NaBH₄, THF/MeOH; (viii): LiAlH₄, THF; (ix): TMSBr, CH₂Cl₂; (x): ¹⁴CH₃I/CH₃I, K_2CO_3 , DMF then H₂, Pd/C, EtOAc. For compound **17**: Ar = Ar₁ = 4-OBn-3-OTHP-phenyl; for compound **23**: Ar = 4-OBn-3-OTHP-phenyl, Ar₁ = 3,4-methylenedioxyphenyl; for compound **27**: Ar = 4-OBn-3-OH-phenyl, Ar₁ = 3,4-methylenedioxyphenyl; for compound **27**: Ar = 4-OH-3-OCH₃-phenyl; for compound **29**: Ar = 4-OH-3-OCH₃-phenyl; for compound **39**: Ar = 4-OH-3-OCH₃-phenyl; for compound **49**: Ar = 4-OH-3-OCH₃-phenyl; for compound **59**: Ar = 4-OH-3-OCH₃

stage of maturation (Figure 3) revealed that all three lignans, piperitol 7, sesamin 1, and sesamolin 4 were initially rapidly formed over a 10-15 hr period, with piperitol 7 being subsequently metabolized down to near background levels over 50 hr. On the other hand, the amounts of both sesamin 1 and sesamolin 4 gradually increased, reaching a near plateau level over this same time frame. Chiral column HPLC analysis of the remaining (unmetabolized) radiolabelled pinoresinol established that the (+)-antipode 6a was being progressively depleted, relative to the (-) form 6b which was not metabolized further into these products (data not shown). Accordingly, only (+)-piperitol 7a, (+)-sesamin 1, and (+)-sesamolin 4 were being biosynthesized.

Further support for these enzymatic trans-

formations was established using (\pm) - $[7,7'-{}^{2}H_{2}]$ pinoresinols 6a/6b (mol. wt. 360, M++2) as precursor [32], this being administered to immature S. indicum seeds over various time intervals (1 and 48 hr). The piperitol 7 so formed was purified from the seeds following 1 hr metabolism, whereas both sesamin 1 and sesamolin 4 were isolated after 48 hr. The mass spectrum of piperitol 7 had a $[M^+]$ at m/z 358 $[M+2]^+$ (78%), $357 [M+1]^{-} (10\%)$, $356 [M]^{+} (6\%)$ indicating that (+)- $[7,7'-{}^{2}H_{2}]$ pinoresinol **6a** had been intactly incorporated (data not shown). A somewhat analogous situation was observed for sesamin 1, whose mass spectrum revealed an ion cluster at m/z 356 $[M+2]^+$ (30%), 355 $[M+1]^+$ (32%), and 354 $[M]^+$ (38%). In the case of sesamolin 4, however, no detectable deuterium incorporation was observed in its mass

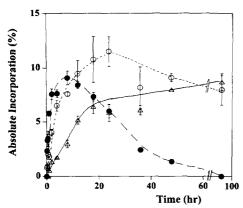


Fig. 3. Metabolism of (\pm) -[3,3'-O\delta']Pinoresinols **6a/6b** into (+)-Piperitol **7a**, (+)-Sesamin **1** and (+)-Sesamolin **4**.

spectrum, a presumed consequence of the high endogenous levels of sesamolin 4 present in the seeds.

Lastly, the metabolism of (\pm) -[3-O¹⁴CH₃]piperitols **7a/7b** (1.25 kBq, 1.15 kBq μ mol⁻¹) and [7,7'-³H₂]-sesamin **1** in *S. indicum* seeds was examined over a 8 and 24 hr period, respectively. Under these conditions, the radiolabelled (+)-piperitol **7a** was metabolized into (+)-sesamin **1** (5.22% incorporation) and sesamolin **4** (0.87% incorporation), respectively, whereas on the other hand (+)-[7,7'-³H₂]sesamin **1** was apparently not converted any further.

Concluding Remarks

The sesame lignans have significant plant protective properties as antioxidants, as well as having important roles in health protection. In this study, it was established that sesame lignan formation, i.e., to afford (+)-piperitol 7a, (+)-sesamin 1, and (+)-sesamolin 4 occurs during seed maturation and ripening. Using both radio- and stable-isotopically labelled (\pm)-pinoresinols 6a/6b, it was also demonstrated that (+)pinoresinol 6a was employed as precursor, with sequential stages of methylenedioxy group formation occurring to first give (+)-piperitol 7a and then (+)sesamin 1. Future studies will be directed towards characterizing the proteins involved in sesame lignan formation, with particular emphasis being placed upon methylenedioxy bridge formation and the unusual oxygen insertion step, affording (+)-sesamolin 4.

EXPERIMENTAL

Plant material. Sesamum indicum plants were grown in Washington State University greenhouse facilities. Reagents. [14Cl-Methyl iodide (1.99 GBq mmol⁻¹),

Reagents. [18C]-Methyl iodide (1.99 GBq mmol 1), 3H₂O (74 MBq mmol 1), [2-14C]malonic acid (17.5 GBq mmol 1), and L-[U-14C]phenylalanine (175 MBq mmol 1) were purchased from Amersham.

Instrumentation and chromatographic materials. Sil-

ica gel TLC and CC were performed on Kieselgel 60 F₂₅₄ (Merck, 20x20 cm, 2 mm) and silica gel-60 (EM Science, 230-400 mesh ASTM), respectively. All solvents and chemicals used were reagent or HPLC grade, unless otherwise stated. THF was distilled over potassium benzophenone ketyl immediately prior to use. Mps are uncorrected. Infrared and UV/VIS spectra were recorded on Perkin Elmer 1720-AFT-IR and Lambda UV/VIS spectrometers. ¹H NMR and ¹³C NMR (300 MHz) spectra were recorded on a Brüker AMX spectrometer, using CDCl₃ as a solvent with chemical shifts (δ) reported downfield from TMS (internal standard). Mass spectra were performed on a VG 7070E (70 eV) spectrometer. Radioactive samples were analyzed in Ecolume (ICN Biomedicals) and measured using a liquid scintillation counter (Packard 2000 CA Tri-carb). HPLC instrumentation was as previously described [33]. HPLC separations were carried out using either reversed-phase (Waters, Novapak, 150×3.9 mm i.d., $5 \mu m$) or chiral (Chiral Technologies, Chiralcel OD, 250 × 4.6 mm i.d.) columns with detection at 280 nm. For reversed phase HPLC, lignans were sepd at a flow rate of 0.9 ml min⁻¹ using a linear gradient system: MeOH- H_2O (65:35) at t = 0 min to (30.70) at t = 40 min. For chiral HPLC sepns, the EtOH used was denatured with 2-PrOH (HPLC grade, Aldrich) and *n*-hexane was > 95% pure (HPLC grade, Baker). Separation of (+)- and (-)-pinoresinols 6a/6b employed EtOH-hexanes (1:1) at a flow rate of 0.8 ml min^{-1} , whereas (+)- and (-)-piperitols 7a/7b used EtOH-hexanes (1:9) at a flow rate of 0.5 ml min⁻¹. All HPLC samples were filtered (ACRO LC3S disposable filter, 0.45 μ m, Gelman Science) prior to analysis.

Chemical syntheses. E-[8-¹⁴C]Coniferyl alcohol **5** (3.39 kBq μ mol⁻¹) was prepared exactly as described [37]. (\pm)-[3,3'-O¹⁴CH₃] pinoresinols **6a/6b** were synthesized using the strategy of Ziegler and Schwartz [34], as modified by Fujimoto *et al.* [35], and Katayama *et al.* [36] with additional modifications as described below.

4-Benzyloxy-3-hydroxybenzaldehyde 13. 3,4-Dihydroxybenzaldehyde 12 (5.76 g, 41.7 mmol) in N,N'dimethylformamide (40 ml), K₂CO₃ (5.52 g, 40 mmol) and benzylbromide (5.35 ml, 45 mmol) were stirred overnight under N2 at room temp. The resulting suspension was next partitioned between H₂O (150 ml) and Et₂O (3 x 150 ml). The organic solubles were combined, washed with satd NaCl soln (2 x 80 ml), then dried (Na₂SO₄) and evapd in vacuo to dryness to give a solid (7.8 g), which was subsequently applied to a silica gel column eluted with CH2Cl2. Fractions containing the product were pooled and evapd to dryness in vacuo to afford the required aldehyde 13 (5.33) g, 56.1%). ¹H NMR (CDCl₃): δ 5.20 (2H, s, OCH₂), 6.10 (1H, br s, OH), 7.02 (1H, d, J = 8.2 Hz, H-5), 7.34-7.44 (7H, m, H-6, H-2, Ar-H), 9.82 (1H, s, CHO); EIMS m/z (rel. int.): 228 [M]⁺ (9), 137 (3), 136 (1), 109 (5), 92 (24), 91 (100).

4-Benzyloxy-3-(tetrahydropyran-2'-yloxy)-benzal

588 M. J. Kato *et al.*

dehyde 14. To a soln of 4-benzyloxy-3-hydroxybenzaldehyde 13 (1.52 g, 6.7 mmol) in CH₂Cl₂ (30 ml) were added dihydropyran (3 ml, 5 eq) and p-TsOH (13 mg) under N_2 at 0° . After 40 min, the soln was neutralized with triethylamine and partitioned between CH₂Cl₂ and H₂O. The organic phase was next washed with satd NaClsoln, dried (Na2SO4) and concd in vacuo to afford the protected aldehyde 14. (1.89 g, 90.4%). ¹H NMR (CDCl₃): δ 1.43-2.08 (7H, m, H-5'-H-3', H-5), 2.11 (1H, $m, H\beta-5$ or H\alpha-5), 2.86 $(2H, m, H\beta-4, H\alpha-6), 3.02 (2H, m, H\alpha-4, H\beta-6), 5.08$ (2H, s, H-7'), 5.46 (1H, t, J = 2.9 Hz, H-2'), 6.88 (1H, t, J = 2.9 Hz, H-2')d, J = 8.4 Hz, H-5), 7.05 (1H, dd, J = 2.2, 8.4 Hz, H-6), 7.23 (1H, d, J = 2.2 Hz, H-2), 7.28-7.43 (5H, m, Ar-H); EIMS m/z (rel. int.): 312 [M]⁺ (2), 229 (6), 228 (9), 137 (6), 109 (7), 92 (34), 91 (100), 85 (100).

2-(3-Hydroxy-4-benzyloxyphenyl)-1,3-dithian 15. To a soln of 13 (2.47 g, 10.83 mmol) in dioxane (25 ml) was added ZnCl₂ (387 mg, 2.8 mmol) and concd HCl (2.3 ml). The resulting suspension was cooled to 0°, following which 1,3-propanedithiol (1.1 ml, 11 mmol) was added. The suspension was stirred for an additional 20 min, then partitioned between H₂O and EtOAc. The organic solubles were washed with satd NaHCO₃, 1N NaOH, and satd NaCl soln, respectively, then dried (Na₂SO₄), and evapd *in vacuo* to give the dithian 15 which was crystallized from hexanes-EtOAc (3.20 g, 93%).

2-(3'-Dihydropyran-2'-yloxy-4'-benzyloxyphenyl)-1,3-dithian **16**. To a soln of dithian **15** (3.19 g, 10.03 mmol) in CH₂Cl₂ (30 ml), was added dihydropyran (4.57 ml, 50.15 mmol, 5 eq) and p-TsOH (30 mg, 0.16 mmol). After stirring under N₂ at 0° for 1 hr, triethylamine was added until the mixt. was neutralized, with the resulting soln then partitioned between H₂O and EtOAc. The organic layer was washed with satd NaCl soln, dried (Na₂SO₄) and evapd *in vacuo* to give, following recrystallization from Et₂O-hexanes, the protected 1,3-dithian **16** (3.12 g, 77.4%).

 (\pm) -4,4'-Dibenzyloxy-3,3'-bisdihydropyran-7'-hydroxy-7\alpha,7\beta-propanedithio-3,3'-bis-demethylmatairesinols 17. To a stirred soln of dithian 16 (1.93 g, 4.80 mmol) in dry THF (35 ml), at -78° under Ar, was slowly added n-BuLi (3.3 ml of 1.6 M in hexanes, 1.1 eq) over 40 min. Following stirring for an additional 1 hr, butenolide (340 μ l, 4.80 mmol, 1 eq) in dry THF (20 ml) was slowly added with the whole then stirred for a further 1 hr. A soln of the protected benzaldehyde 14 (1.47 g, 4.71 mmol) in dry THF (25 ml) was next added over 40 min, with stirring being maintained for an additional 1 hr, following which the temp, of the reaction was allowed to rise to room temp. The reaction mixt, was partitioned between EtOAc and satd NaCl soln, with the organic phase washed with satd NaCl soln until neutral. The resulting organic solubles were dried (Na2SO4) and evapd in vacuo to give a pale viscous oil (4.18 g). Following silica gel chromatography, via elution with a gradient of hexanes-EtOAc, fractions containing a mixt. of the epimeric alcohols 17 (1.94 g, 50.6%) were combined and used without further purification.

(\pm)-4,4'-Dibenzyloxy-7'-hydroxy-7-oxo-3,3'-bisdemethylmatairesinols **18.** To a stirred soln of epimeric alcohols **17** (1.94 g, 2.43 mmol) in 15% aqueous THF (50 ml), under N₂ at room temp., were added HgO (1.58 g, 7.29 mmol, 3 eq) and BF₃-Et₂O (1 ml, 7.89 mmol). After stirring for 1 hr, the reaction mixt, was extracted with CH₂Cl₂. The CH₂Cl₂ solubles were combined, successively washed with satd Na₂CO₃ and NaCl solns, then dried (Na₂SO₄), and evapd *in vacuo* to afford a mixt, of epimeric alcohols **18** (1.65 g, 96%) that were used without further purification.

(±)-4.4'-Dibenzyloxy-7,7'-dihydroxy-3,3'-bisdemethylmatairesinols 19. To a stirred soln of epimeric alcohols 18 (1.65 g, 2.33 mmol) in THF-MeOH (1:5, 130 ml), at 0° under Ar, was added NaBH₄ (89 mg, 2.35 mmol). After 20 min, the reaction mixt. was partitioned between EtOAc and satd NaCl soln. The resulting organic solubles were dried (Na₂SO₄), and evapd *in vacuo* to afford the mixt. of diols 19 (1.53 g, 92.5%), which were used without further purification.

(\pm)-4,4'-Dibenzyloxy-7,7'-dihydroxy-3,3'-bisdemethylsecoisolariciresinols **20**. To a stirred suspension of LiAlH₄ (231 mg, 5.78 mmol, purity: 95%) in dry THF (40 ml), at 50° under Ar, was added dropwise the epimeric mixt. of diols **19** (1.51 g, 2.13 mmol) in dry THF (20 ml) over 30 min. The temp. was then reduced to 0°, following which excess LiAlH₄ was destroyed by addition of aqueous THF. The reaction mixt. was then partitioned between EtOAc and satd NaCl soln, with the resulting organic solubles dried (Na₂SO₄) and evapd *in vacuo* to afford the mixt. of tetraols **20** (1.34 g, 1.88 mmol, 88.3%).

 (\pm) -4,4'-Dibenzyloxy-3,3'-bisdemethylpinoresinols 21. To a stirred soln of the tetraols 20 (1.34 g, 1.87) mmol) in CH₂Cl₂ (40 ml), under Ar at room temp., was added Me₃SiBr (497 μ l, 3.77 mmol, 2 eq). After 15 min, the soln was partitioned between 10% NaHCO₃ soln and CH₂Cl₂. The organic phase was next washed with satd NaCl soln, dried (Na₂SO₄) and concd in vacuo to yield crude material (0.95 g) which was further purified by silica gel chromatography eluted with CH₂Cl₂-Me₂CO (95:5). Fractions containing the desired product were combined and evapd to dryness in vacuo to afford 21 (449 mg, 47%); ¹H NMR (CDCl₃): δ 3.05 (2H, m, H-8, H-8'), 3.85 (2H, dd, J = 3.7, 9.2 Hz, $H\alpha-9$, $H\alpha-9'$), 4.22 (2H, dd, J =7.0, 9.2 Hz, H β -9, H β -9'), 4.70 (2H, d, J = 4.3 Hz, H-7, H-7'), 5.67 (4H, s, $2 \times OCH_2$), 6.79 (2H, dd, J = 2.6, 8.3 Hz, H-6, H-6'), 6.87 (2H, d, J = 8.3 Hz, H-5, H-5'), 6.92 (2H, d, J = 2.6 Hz, H-2, H-2'), 7.34-7.40 (10) H, m, Ar-H); EI MS m/z (rel. int.): 510 [M]⁺ (12), 419 (11), 290 (10), 220 (100), 190 (21), 149 (12), 121 (22).

(\pm)-[3,3'- $O^{14}CH_3$]pinoresinols **6a/6b**. To a soln of **21** (330 mg, 0.65 mmol) in dry DMF (10 ml) were added K₂CO₃ (350 mg, 2.54 mmol) and ¹⁴CH₃I (28.7 MBq, 1.99 GBq mmol⁻¹). The resulting suspension was stirred for 12 hr under Ar at room temp. following which CH₃I (80.56 μ l, 1.29 mmol) was added. After

stirring overnight, the whole was then partitioned between EtOAc and satd NaCl soln, with the resulting organic solubles dried (Na₂SO₄), and concd in vacuo to give the crude product (332 mg) which was used without further purification. This was then reconstituted in EtOAc-MeOH (7:3, 40 ml) to which (10%) Pd/C (150 mg) was next added. The resulting suspension was stirred for 1.5 hr under H₂ at room temp., following which EtOAc (20 ml) was added, with the whole then filtered through Celite (14 g). The EtOAc solubles were next evapd to dryness in vacuo, then reconstituted in a minimum amount of EtOAc and applied to a silica gel column eluted with EtOAchexanes (1:4). Fractions containing the desired racemic product were combined and evapd to dryness in vacuo. Recrystallization from Et₂O-hexanes afforded (\pm) -[3,3'-O¹⁴CH₃]pinoresinols **6a/6b** (156 mg, 67%, $48.1 \text{ kBq } \mu\text{mol}^{-1}$).

 (\pm) -4-Benzyloxy-3-dihydropyran-7'-hydroxy-7 α , 7β -propanedithio-3,4-bisdemethyl-bursehernin **23**. To a stirred soln of dithian 16 (5.25 g, 13.06 mmol) in dry THF (75 ml) under Ar at -78° was added n-BuLi (8.8 ml of 1.6 M in hexanes, 14.14 mmol, 1.1 eq) over 40 min. Following stirring for an additional 1 hr, butenolide (955 μ l, 13.46 mmol) in dry THF (12 ml) was slowly added to the reaction mixt, over 1 hr at the same temp. Then a soln of aldehyde 22 (2.15 g, 14.34 mmol) in dry THF (15 ml) was added over 40 min. Stirring was continued for an additional 12 hr, following which the temp, was allowed to rise to room temp. The reaction mixt, was next partitioned between EtOAc and satd NaCl soln, with the organic solubles washed with satd NaCl soln until neutralization, then dried (Na₂SO₄) and evapd in vacuo to give a pale viscous oil (9.81 g). This was next submitted to silica gel chromatography, eluted with EtOAc-hexanes, with fractions containing the desired 7' epimeric alcohols 23 (6.52 g, 78.4%) combined and used without further purification.

(±)-4-Benzyloxy-7'-hydroxy-7-oxo-3,4-bisdemethyl-bursehernin **24**. To a stirred soln of **23** (2.51 g, 3.95 mmol) in 15% aqueous THF (70 ml) under N₂ at room temp. was added H₂O (2.56 g, 11.82 mmol) and BF₃-Et₂O (1.5 ml, 11.84 mmol). After stirring for 1 hr, the reaction mixt. was extracted with CH₂Cl₂. The CH₂Cl₂ solubles were combined, washed with satd Na₂CO₃ and satd NaCl soln, dried (Na₂SO₄), and evapd *in vacuo* to afford a mixt. of the epimeric alcohols **24** (1.6 g, 88%) that were used without further purification.

 (\pm) -4-Benzyloxy-7,7'-dihydroxy-3,4-bisdemethylbursehernin **25**. To a stirred soln of **24** (2.09 g, 4.52 mmol) in THF-MeOH (1:5, 100 ml) was added NaBH₄ (189 mg, 4.97 mmol). After 20 min, the reaction mixt. was partitioned between EtOAc and satd NaCl soln. The combined organic solubles were subsequently dried (Na₂SO₄) and evapd *in vacuo* to afford a mixt. of diols **25** (1.98 g, 94.4%), which were used without further purification.

 (\pm) -4-Benzyloxy-7,7'-dihydroxy-3-demethyltetra-

hydropiperitols **26**. To a stirred soln of LiAlH₄ (215 mg, 5.4 mmol) suspended in dry THF (60 ml) at 50° under Ar was added dropwise the soln of epimeric alcohols **25** (1.98 g, 4.26 mmol) in dry THF (25 ml). After decomposition of excess hydride by addition of aqueous THF at 0°, the reaction mixt. was partitioned between EtOAc and satd NaCl soln. The combined organic layer was dried (Na₂SO₄) and evapd *in vacuo* to afford a mixt. of the tetraols **26** (1.88 g, 94%) which were used without further purification.

 (\pm) -4-O-Benzyloxy-3-demethylpiperitols 27. To a stirred soln of 26 (1.88 g, 4.00 mmol) in CH₂Cl₂ (70 ml) under Ar at room temp, was added Me₃SiBr (1.05 ml, 8.00 mmol, 2 eq). After 15 min, the soln was partitioned between satd NaHCO₃ soln and CH₂Cl₂. The organic solubles were next washed with satd NaCl soln, dried (Na₂SO₄) and concd in vacuo to give the crude product (1.85 g) which was further purified by Si-gel chromatography eluted with EtOAc-hexanes (1:4). Fractions containing the product were combined and evapd to dryness in vacuo to afford pure 27 (670 mg, 37.5%); ¹H NMR (CDCl₃): δ 3.04 (2H, m H-8, H-8'), 3.83 (1H, dd, J = 2.0, 4.1 Hz, H α -9'), 3.86 $(1H, dd, J = 1.9, 4.3 \text{ Hz}, H\alpha-9), 4.20 (1H, dd, J = 6.6)$ 9.1 Hz, H β -9 or H β -9'), 4.23 (1H, dd J = 6.8, 9.1 Hz, $H\beta$ -9 or $H\beta$ -9'), 4.68 (1H, d, J = 5.0 Hz, H-7'), 4.72 $(1H, d, J = 4.7 \text{ Hz}, H-7), 5.08 (2H, s, OCH_2), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.7 \text{ Hz}, H-7), 5.74 (1H, d, J = 4.$ s, OH), 5.93 (2H, s, OCH₂O), 6.80 (2H, dd, J = 2.0, 8.3Hz, H-6, H-6'), 6.88 (2H, d, J = 8.3 Hz, H-5, H-5'), 6.93 (2H, d, J = 2.0 Hz, H-2, H-2'), 7.34-7.41 (10 H, m, Ar-H).

 (\pm) -Piperitols **7a/7b.** To a soln. of **27** (28 mg, 0.063) mmol) in dry DMF (5 ml) were added K₂CO₃ (11 mg, 0.08 mmol) and CH₃I (436 μ l, 0.07 mmol). The reaction mixt. was stirred for 12 hr under Ar at room temp. The resulting suspension was next partitioned between EtOAc and satd NaCl soln, with the organic solubles dried (Na₂SO₄) and concd in vacuo to afford crude O-benzyl piperitol (27 mg). This was then redissolved in MeOH (10 ml), to which was added 10% Pd-C (15 mg) with the resulting suspension stirred for 2 hr at room temp, under H₂. The reaction mixt, was diluted with EtOAc (20 ml), filtered (Celite, 7g), with the EtOAc solubles evapd to dryness in vacuo, then reconstituted in a minimum amount of EtOAc and applied to a preparative TLC silica gel plate eluted with EtOAc-hexanes (1:4). Fractions containing the desired lignan were combined and evapd to dryness in vacuo to afford (\pm) -piperitols 7a/7b (15 mg, 67%).

(\pm)-[3- $O^{14}CH_3$]Piperitols 7a/7b. To a soln of 27 (103 mg, 0.23 mmol) in dry DMF (7 ml) were added K_2CO_3 (0.72 mmol) and $^{14}CH_3I$ (8.3 MBq, 1.99 GBq mmol⁻¹). The reaction mixt. was stirred for 12 hr under Ar at room temp. following which CH₃I (25 μ I, 0.24 mmol) was added and the whole was stirred overnight. The resulting suspension was partitioned between EtOAc and satd NaCl soln, with the organic solubles then dried (Na₂SO₄) and concd *in vacuo* and purified as before to afford the crude *O*-benzylated product (85 mg). This was redissolved in MeOH (10

ml), to which was added 10% Pd-C (45 mg), with the resulting suspension stirred for 2 hr at room temp. under H_2 . The resulting suspension was diluted with EtOAc (20 ml), filtered (Celite, 9 g), with the EtOAc solubles evapd to dryness *in vacuo*, then reconstituted in a minimum amount of EtOAc and applied to prep-TLC silica gel plates eluted with EtOAc-hexanes (1:4). Fractions containing the required lignan were combined and evapd to dryness *in vacuo* to afford (\pm)-[3-O¹⁴CH₃]piperitols 7a/7b (52 mg, 63.5%, 1.15 kBq μ mol⁻¹).

(+)-[7,7'- 3H_2]Sesamin 1. To a soln of (+)-sesamin 1 (156 mg, 0.44 mmol) in dry THF (30 ml) was added n-BuLi (1.5 ml) at -75° , under Ar, and the suspension was allowed to stir for 30 min, following which addition of 3H_2O (200 μ l, 74 MBq mmol $^{-1}$) was added over 15 min. The soln was next allowed to rise to room temp. and partitioned between H_2O and EtOAc, then washed with satd NaCl soln, dried (Na₂SO₄) and concd *in vacuo* to dryness. The resulting solid material was suspended in a minimum amount of EtOAc and applied to a silica gel column eluted with CH₂Cl₂–Me₂CO (95:5). Fractions containing the required product were combined, dried and recrystallized to give (+)-[7,7'- 3H_2]sesamin 1 (96 mg, 64.01 kBq μ mol $^{-1}$) as a white solid.

Administration of L- $[U-^{14}C]$ phenylalanine. Freshly harvested, unripe pods of S. indicum were soaked in 200 μl of a soln containing L-[U-14C]phenylalanine $(31.7 \mu g, 19.6 \text{ kBq}, 102.4 \text{ kBq} \mu \text{mol}^{-1})$ for 48 hr at 26° under constant white light. Four replicates were carried out. After absorption of the precursor soln, distilled water was added periodically to prevent dryness. After 48 hr, the pods and seeds were separated and individually freeze-dried. To the ground seeds was added 3,3'-dimethyl-dihydroguaiaretic acid (14 μ g) as an internal standard, and the whole was extracted with CH₂Cl₂-EtOAc (5 ml, 1:1, X3) with aid of a sonicator for 15 min. The resulting organic solubles were taken to dryness in vacuo, then redissolved in hexanes-EtOAc (1.5 ml, 4:1), and chromatographed on silica gel (2.5 x 1 cm) successively eluted with hexanes-EtOAc (9:1, 2 ml) and EtOAc (4 ml). The EtOAc solubles were concd in vacuo to dryness and redissolved in MeOH (100 µl), with a 20% aliquot removed for scintillation counting. The remaining soln was filtered, and subjected to HPLC analysis. Fractions containing pinoresinol 6, piperitol 7, sesamin 1, and sesamolin 4 were individually isolated and subjected to scintillation counting analysis (see Table 1).

Administration of E-[8-¹⁴C]coniferyl alcohol 5 to S. indicum seeds. An aqueous soln of E-[8-¹⁴C]coniferyl alcohol 5 (93 μ g, 1.76 kBq, 3.39 kBq μ mol ⁻¹) was administered to approximately 400 mg of seeds (freshly removed from the pods). After absorption of the precursor, distilled H₂O was added to prevent dryness as above. After 12 hr metabolism, the seeds were harvested, freeze-dried, extracted, and the purified lignans

6, 7, 1, and 4 analyzed as described above (see Table 1).

Administration of (\pm) -[3,3'- $O^{14}CH_3$]pinoresinols **6a/6b** and (\pm) -[3- $O^{14}CH_3$]piperitols **7a/7b** to S. indicum seeds. Aq. solns (5% DMSO, 5% Tween 80) of (\pm) -[3,3'- $O^{14}CH_3$]pinoresinols **6a/6b** (72.3 μ g, 9.71 kBq, 48.1 kBq μ mol⁻¹), and (\pm) -[3- $O^{14}CH_3$] piperitols **7a/7b** (387 μ g, 1.25 kBq, 1.15 kBq μ mol⁻¹) were individually administered to approximately 400 mg of seeds (freshly removed from the pods), for periods of 20 min to 96 hr and 8hr, respectively. After metabolism, the seeds were harvested, freeze-dried, extracted, with the lignans purified and analyzed as described above (see Table 1).

Administration of (\pm) - $[7,7'-{}^{2}H_{2}]$ pinoresinols **6a/6b** to S. indicum seeds. (\pm) -[7,7'- 2 H₂]Pinoresinols 6a/6b (3 mg) in H₂O (1 ml) were administered to S. indicum seeds (10 g) over 2 and 48 hr, respectively. Following metabolism, the resulting lignan extracts were obtained as before and loaded onto silica gel columns (3 x 1 cm). The fractions containing piperitol 7, sesamin 1, and sesamolin 4 were collected and subjected to C-18 reversed-phase HPLC. The individual lignans were then analyzed by MS (EI mode): EI MS m/z(rel. int.): (+)-[7,7'- 2 H₂]piperitol **7a**, 358 [M+2]+ (78) $357 [M+1]^+ (10), 356 [M]^+ (6), 328 (56), 205 (14),$ 182 (13), 162 (10), 153 (22), 152 (87), 136 (31); (+) $[7,7'-{}^{2}H_{2}]$ -sesamin 1: 356 $[M+2]^{+}$ (30), 355 $[M+1]^{+}$ (32), 354 [M]⁺ (38), 323 (56), 219 (6), 204 (8), 203 (20), 162 (15), 161 (35), 151 (12), 150 (29), 149 (100), 137 (17), 136 (41), 122 (22), 121 (16).

Acknowledgments—The authors thank the National Science Foundation (MCB 9631980) and the United States Department of Agriculture (9603622) for generous support of this study, as well as the Arthur M. and Kate Eisig Tode Foundation and FAPESP for a research fellowship and a travel grant to M.J.K., respectively.

REFERENCES

- Fukuda, Y., Osawa, T., Namiki, M. and Ozaki. T., Agricultural and Biological Chemistry, 1985, 49, 301.
- 2. Fukuda, Y., Nagata, M., Osawa, T. and Namiki, M., *Journal of American Oil Chemists Society*, 1986, **63**, 1027.
- 3. Osawa, T., Nagata, M., Namiki, M. and Fukuda, Y., Agricultural and Biological Chemistry, 1985, 49, 3351.
- 4. Fukuda, Y., Isobe, M., Nagata, M., Osawa, T. and Namiki, M., *Heterocycles*, 1986, **24**, 923.
- Haller, H. L., LaForge, F. B. and Sullivan, W. N., Journal of Organic Chemistry, 1942, 7, 185.
- Haller, H. L., McGovran, E. R., Goodhue, L. D. and Sullivan, W. N., *Journal of Organic Chemistry*, 1942, 7, 183.
- Casida, J. E., Journal of Agricultural and Food Chemistry, 1970, 18, 753.

- 8. Shimizu, S., Akimoto, K., Shinmen, Y., Kawashima, H., Sugano, M. and Yamada, H., *Lipids*, 1991, **26**, 512.
- Akimoto, K., Kitagawa, Y., Akamatsu, T., Hirose, N., Sugano, M., Shimizu, S. and Yamada, H., Annals of Nutrition and Metabolism, 1993, 37, 218.
- Hirata, F., Fujita, K., Ishikura, Y., Hosoda, K., Ishikawa, T. and Nakamura, H., Atherosclerosis, 1996, 122, 135.
- Yamashita, K., Nohara, Y., Katayama, K. and Namiki, M., Journal of Nutrition, 1992, 122, 2440.
- Yamashita, K., Iizuka, Y., Imai, T. and Namiki, M., *Lipids*, 1995, 30, 1019.
- 13. Kamal-Eldin, A., Pettersson, D. and Appelqvist, L.-A., *Lipids*, 1995, **30**, 499.
- 14. Jain, S. C. and Khanna, P., *Indian Journal of Experimental Biology*, 1973, 11, 578.
- 15. Koukol, J. and Conn, E. E., Journal of Biological Chemistry, 1961, 236, 2692.
- Davin, L. B. and Lewis, N. G., Recent Advances in Phytochemistry Vol. 26, eds. H. A. Stafford, and R. K. Ibrahim. Plenum Press, New York, NY, 1992, p. 325.
- 17. Jones, D. H., Phytochemistry, 1984, 23, 1349.
- Paré, P. W., Wang, H.-B., Davin, L. B. and Lewis,
 N. G., Tetrahedron Letters, 1994, 35, 4731.
- 19. Davin, L. B. and Lewis, N. G., Anais da Academia Brasileira de Ciências, 1995, 67 (S3), 363.
- Davin, L. B., Wang, H.-B., Crowell, A. L., Bedgar, D. L., Martin, D. M., Sarkanen, S. and Lewis, N. G., Science, 1997, 275, 362.
- Costa, M. A., Gang, D. R., Wang, H.-B., Dinkova-Kostova, A. T., Davin, L. B. and Lewis, N. G., (submitted).

- Bauer, W. and Zenk, M. H., Phytochemistry, 1991, 30, 2953.
- Rueffer, M. and Zenk, M. H., *Phytochemistry*, 1994, 36, 1219.
- Clemens, S. and Barz, W., *Phytochemistry*, 1996, 41, 457.
- 25. Marchand, P. A., Zajicek, J. and Lewis, N. G., Canadian Journal of Chemistry, 1997, 75, 840.
- Kang, S. S., Kim, J. S., Jung, J. H. and Kim, Y. H., Archives of Pharmaceutical Research, 1995, 18, 361.
- 27. Adriani, W., Zeitschrift Untersuchung Lebensmittel, 1928, **56**, 187.
- 28. Nishibe, S., Chiba, M. and Hisada, S., *Yakugaku Zasshi*, 1977, **97**, 1134.
- 29. Brieskorn, C. H. and Huber, H., *Tetrahedron Letters*, 1976, **26**, 2221.
- Iida, T., Nakano, M. and Ito, K., *Phytochemistry*, 1982, 21, 673.
- Pelter, A., Ward, R. S., Rao, E. V. and Sastry, K. V., *Tetrahedron*, 1976, 32, 2783.
- 32. Chu, A., Dinkova, A., Davin, L. B., Bedgar, D. L. and Lewis, N. G., *Journal of Biological Chemistry*, 1993, **268**, 27026.
- Davin, L. B., Bedgar, D. L., Katayama, T. and Lewis, N. G., *Phytochemistry*, 1992, 31, 3869.
- 34. Ziegler, F. E. and Schwartz, J. A., Journal of Organic Chemistry, 1978, 43, 985.
- 35. Fujimoto, H., Nakatsubo, F. and Higuchi, T., Mokuzai Gakkaishi, 1982, 28, 555.
- Katayama, T., Davin, L. B., Chu, A. and Lewis, N. G., *Phytochemistry*, 1993, 33, 581.
- 37. Katayama, T., Davin, L. B. and Lewis, N. G., *Phytochemistry*, 1992, **31**, 3875.