

PII: S0031-9422(97)00684-5

GIBBERELLINS IN INTERNODES AND EARS OF WHEAT CONTAINING DIFFERENT DWARFING ALLELES

SARAH E. WEBB, NIGEL E. J. APPLEFORD, PAUL GASKIN and JOHN R. LENTON

IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS18 9AF, U.K.

(Received 6 May 1997)

Key Word Index—*Triticum aestivum*; Gramineae; wheat; gibberellins; internodes; ears; quantification; *Rht* dwarfing genes.

Abstract—Gibberellins (GAs) belonging to the main early 13-hydroxylation GA pathway (GA₁, GA₃, GA₈, GA₁₇, GA₂₉, GA₂₉, GA₄₄ and GA₅₃) were identified by full-scan GC-mass spectrometry in rapidly expanding stem internodes and young ears of wheat. In addition, GA₉₇ (2β-hydroxy GA₅₃) and GA₉₈ (2βhydroxy GA₄₄) were detected in reproductive, but not vegetative, tissues. Conversely, some members of the non-13-hydroxylation GA pathway (GA₄, GA₉ and GA₃₄) were present in stem internodes but not in young ears. Later members of the main GA pathway $(GA_{19} \rightarrow GA_{20} \rightarrow GA_{1} \rightarrow GA_{8})$ were quantified by GC-selected ion monitoring in stem internodes and ears. In the rht (tall) line, $GA_{19} > > GA_{20} \approx GA_1 \ll GA_8$ during the main phase of expansion growth of both stem internodes and ears, suggesting that the conversion of GA₁₉ to GA20 is a rate-limiting step on the GA pathway. In vegetative stem internodes, GA1 concentration increased in proportion to the severity of the Rht1 (semi-dwarf) and Rht3 (dwarf) phenotypes but, at certain stages of Rht3 internode development, the expected decrease in GA₁₉ content, relative to the GA-responsive, rht (tall) line, did not occur and both GA19 and GA1 accumulated. In very young ears of both tall and dwarf lines, the concentrations of GA20 and GA8 were high, suggesting low 3\(\textit{G}\)(GA20 to GA1) and high 2\(\textit{G}\)(GA1 to GA8) hydroxylase activities prior to the period of rachis elongation. The Rht alleles had no effect on either GA content or rates of ear rachis elongation during the main phase of ear growth, providing indirect evidence that Rht genes are not expressed in expanding wheat ears. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Reduced height (Rht) semi-dwarfing genes have been incorporated into most high-yielding modern wheat varieties that formed the basis of the so-called "green revolution" [1]. Wild type, rht1 = rht3 (tall), Rht1(semi-dwarf) and Rht3 (dwarf) genes are alternative alleles at the same locus on chromosome 4BS of wheat [1] and the degree of dwarfism conferred by these and certain other Rht alleles is associated with an increasing unresponsiveness of vegetative shoot tissues to the growth-promoting hormone, gibberellic acid (GA₃) [2]. The primary effect of these Rht alleles on shoot stature is to decrease the rate of expansion and final lengths of leaves and associated stem internodes [3, 4] by constraining wall extensibility of cells in the distal region of the expansion zone [5, 6]. Whereas the Rht gene product affects cells derived from the activity of intercalary meristems, there is less evidence that Rht genes are expressed in the shoot apical meristem.

The shoot apex of winter wheat undergoes a transition from the vegetative to the floral state following

a period of low temperature (vernalisation) and increasing day-lengths. Outgrowth of foliar primordial ridges becomes arrested and the upper cauline ridges develop into the spikelets of the ear [7]. The presence of different Rht alleles has no effect on the rates of initiation or final numbers of leaves and spikelets produced in near-isogenic lines grown under natural conditions [8]. Since applied GAs can hasten, and inhibitors of GA biosynthesis delay, flower initiation in both tall and semi-dwarf wheats [7, 9], these observations suggest that, if changes in endogenous GAs or GA-responsiveness are part of the natural flower initiation process in wheat, the apical meristem of Rht genotypes is as sensitive to GA as rht (tall) lines. In addition, unlike the situation with vegetative stem internodes, the Rht alleles have no effect on the growth of the rachis internodes during the phase of rapid ear expansion, so that final ear lengths are similar in both rht and Rht genotypes [4].

Qualitative analyses of GAs in tissues of wheat seedlings have provided evidence for the identity of all members of the main early 13-hydroxylation GA 672 S. E. Webb et al.

pathway $(GA_{53} \rightarrow GA_{44} \rightarrow GA_{19} \rightarrow GA_{20} \rightarrow GA_{1} \rightarrow GA_{8})$ [3, 10–12]. Based on the relatively high abundance of GA_{19} , compared with GA_{20} , it was proposed that the conversion of GA_{19} to GA_{20} was a rate-limiting step on the pathway to bioactive GA_{1} in seedlings grown under vernalisation conditions [10, 12]. As well as decreased shoot growth and GA-responsiveness, GA_{1} has been shoot to accumulate in vegetative tissues of several Rht genotypes [2, 13, 14]. In leaves of near-isogenic seedlings, the pool-sizes of GA_{8} were $GA_{19} \gg GA_{20} = GA_{1}$ in rht (tall) lines, whereas $GA_{19} \approx GA_{20} \ll GA_{1}$ in the Rht3 (dwarf) line [3]. These data supported the suggestion that the GA_{19} to GA_{20} step may be down-regulated in normal, GA_{19} responsive lines as a consequence of GA action [3, 15].

The objectives of the present work were to identify GAs present in rapidly expanding stem internodes and young, developing ears of wheat, and to compare changes in GAs during vegetative internode and ear growth in lines containing different dwarfing alleles. In addition to examining the relationship between GA status and elongation growth of stem and rachis internodes, such an approach may lead to the identification of GAs with potential florigenic activity and may provide further evidence concerning the expression of *Rht* genes in developing wheat ears.

RESULTS AND DISCUSSION

Gibberellins were identified in young, developing ears at the start of the phase of rapid rachis elongation and in subtending vegetative stem internodes by fullscan GC-mass spectrometry as their methyl ester TMSi ether derivatives and comparison with library data [16]. Most GAs belonging to the early 13-hydroxylation GA pathway (GA_{53} , GA_{44} , GA_{19} , GA_{17} , GA_{20} , GA₂₉, GA₁, GA₈ and GA₃) were identified in rapidly expanding vegetative stem internodes (Table 1). The occurrence of 3-epi GA₁ in the presence of large amounts of GA₁ in these Rht3 internodes may have been an artefact of work-up and GC analysis [17], since it was not detected during routine quantitative analysis using a different instrument. The identification of GA₉, GA₄ and GA₃₄ in internodes suggests that the early non-hydroxylation GA pathway may also be operative in wheat shoots. These observations confirm and extend the range of GAs identified previously in wheat seedlings by full-scan GC-mass spectrometry [3, 11] and GC-selected ion monitoring [10-12]. We were unable to confirm the identification of GA₇ in wheat [11] and could find no evidence for the occurrence of GA5, a potential biosynthetic intermediate between GA20 and GA3, as already established in maize [18] and rice [19].

GAs belonging to the early 13-hydroxylation GA pathway were also identified in young, developing ears, although, in some cases, low abundance and the presence of interfering ions gave a poorer library fit than with the internode samples (Table 1). For example, GA₃ co-chromatographed with GA₉₇ on a non-

polar stationary phase but was resolved on a semipolar one [15], although only the ions at m/z 504, 475, 387, 370 and 207 were of the expected intensities, compared with the standard. The identification of GA_{53} and GA_{44} in developing ears was strengthened by the occurrence of the corresponding 2β -hydroxylated compounds, GA_{97} and GA_{98} [20]. Interestingly, there was no evidence of members of the non-13hydroxylation GA pathway at this stage of ear development, although they may occur later during anther formation, as in rice [21]. No novel GA_{58} that may have been associated with spikelet and floret development were detected in young wheat ears. However, the growth promoters, GA_{1} and GA_{3} , are also known to induce flowering in wheat [7, 9].

Initial quantification of GAs of the later stages of the main early 13-hydroxylation GA pathway $(GA_{19} \rightarrow GA_{20} \rightarrow GA_1 \rightarrow GA_8)$ included a sample at a similar developmental stage as that used for qualitative analyses (39 days before anthesis). Because of the small size of young ears, material from the two tall lines was combined, as was that from the semidwarf and dwarf lines, whereas the adjacent upper expanding internodes from individual genotypes were examined. Relatively high concentrations of GA₁₉ and GA₈, compared with GA₂₀ and GA₁, were present in upper internodes of the two tall lines (Table 2), as observed previously in the expansion zone of leaves of the same genotype [3]. The presence of the Rht1 (semi-dwarf) and Rht3 (dwarf) alleles resulted in 4fold and ca 20-fold increases, respectively, in GA₁ concentration, compared with the tall lines. However, the Rht3 allele did not cause such a marked decrease in GA₁₉ content, relative to rht (tall) lines, as observed previously in leaves [3], suggesting a change in regulation at an earlier step in the GA biosynthetic path-

The concentrations of GA₂₀ and GA₈ were much higher in very young ears, harvested 46 days before anthesis (Table 3) than in subtending internodes (Table 2), whereas GA₁₉ and GA₁ concentrations were similar in both tissues. Although insufficient internal standard was added to permit reliable quantification of GA₈ at the earliest stage of ear development, the results suggested high 2β -hydroxylase (GA₁ to GA₈) and low 3β -hydroxylase (GA₂₀ to GA₁) activities in very young ears. One week later, 3β -hydroxylase activity appeared to increase (GA₁₉: GA₂₀ ratio higher) and 2β -hydroxylase activity remained high. In marked contrast to the adjacent stem internode (Table 2), mechanisms maintaining relatively low concentrations of bioactive GA₁ appear to be operating in young developing ears of all three genotypes (Table 3). The extent of vascular connections and transport pathways between these organs at this stage of development are largely unknown.

In a more detailed developmental analysis, GAs were measured in the P-I internode (one below the peduncle) and the rachis of the ear, since both tissues were undergoing expansion growth at a similar time

Table 1. Comparison of mass spectra of methyl ester TMSi ether derivatives of authentic gibberellins with those isolated from expanding stem internodes and young ears of *Rht3* wheat plants

Compound	KRI*	R	Relative intensities (% base peak) of characteristic ions m/z						
GA_1		lons 506 [M]+	491	448	447	377	376	313	207
Standard	2668	100	9	18	10	12	14	9	2
Internode	2676	100	18	19	10	14	17	12	38
Ear	2674	100	11	20	10	15	14	10	7
3-epi GA ₁		Ions 506 [M]+	491	459	448	431	376	313	208
Standard	2788	100	6	7	31	8	28	7	20
Internode	2796	100	9	9	31	8	29	9	15
GA_3		Ions 504 [M]~	489	475	445	370	311	238	208
Standard	2692	100	7	12	12	24	14	21	37
Internode	2699	100	9	10	13	18	13	24	54
Ear	2678†	100	_	10		16		_	_
GA_4		Ions 418 [M] ⁺	386	328	289	284	261	233	225
Standard	2503	22	27	25	58	100	28	41	77
Internode	2515	18	19	22	59	100	33	42	86
GA_8	****	Ions 594 [M] ⁺	579	535	448	379	268	238	207
Standard	2818	100	5	6	14	7	5	13	18
Internode	2822	100	6	5	18	12	8	15	20
Ear	2821	100	8	7	18	11	7	17	26
GA ₉ ‡	2202	Ions 330 [M]+	298	286	270	243	227	226	217
Standard	2203	6	100	18	99	52	59	61	32
Internode	2321	6 Inno 402 DAD+	100 460	10 433	88 373	64 293	65	6 208	28 207
GA ₁₇ Standard	2575	Ions 492 [M] ⁺ 43	23	433 26	23	293 14	251 24	100	96
Standard Internode	2575 2582	26	23	23	23	8	18	100	90 81
Internoue Ear	2583	20	18	23	23	11	20	100	92
GA ₁₉	2303	Ions 462 [M]+	434	402	374	345	285	239	208
Standard	2596	7	100	37	64	24	24	33	32
Internode	2607	5	100	36	61	27	24	24	45
Ear	2607	3	100	30	66	32	40		49
GA ₂₀	2007	Ions 418 [M]+	403	375	359	301	235	207	• • •
Standard	2482	100	15	46	12	12	8	30	
Internode	2494	100	15	60	14	16	9	31	
Ear	2493	100	15	55	18	13	15	46	
GA_{29}		Ions 506 [M]+	491	447	389	375	303	235	207
Standard	2684	100	11	6	8	15	20	10	39
Internode	2689	100		8	5	6	23	17	100
Ear	2689	100	10	10	16	28	37		53
GA_{34}		Ions 506 [M]+	431	416	372	261	229	223	201
Standard	2665	100	5	9	8	14	23	30	22
Internode	2672	100	5	6	9	4	14	24	7
GA_{44}		Ions 432 [M]+	417	373	238	219	207		
Standard	2786	46	6	14	33	6	100		
Internode	2805	45	8	16	37	5	100		
Ear	2805	21	1	9	20	6	100		
GA_{53}		Ions 448 [M]+	416	389	251	241	235	208	207
Standard	2497	63	19	32	24	34	19	89	100
Internode	2504	49	15	28	14	30	11	88	100
Ear	2505	100	28	72	56	89	_	43	
GA ₉₇		Ions 536 [M]+	521	504	477	387	327	239	207
Standard	2695	26	5	8	9	7	8	41	100
Ear	2699	21	5	9	8	9	10	46	100
GA_{98}		Ions 520 [M]+	505	433	343	299	238	208	207
Standard	2960	20	3	5	6	6	18	3	100
Ear	2966	71	13	14	18	18	49	73	100

^{*} Kovats retention index. Standards analysed using OV1 and plant samples using BP1 stationary phases.

[†] Resolved from GA₉₇ on BP5 GC stationary phase.

[‡] As methyl ester.

674 S. E. Webb *et al.*

Table 2. Gibberellin concentration (ng ⁻¹	g fr wt) in uppermos	t expanding stem internodes of wheat
(cv. Maris Huntsman) containing rhi	t1, rht3 (tall), Rht1 (sen	ni-dwarf) and Rht3 (dwarf) alleles

Time to anthesis (d)	Genotype	Mean shoot height (mm) (±S.E.)	GA_{19}	GA_{20}	GA_1	GA_8
46	rht1	$70.2(\pm 8.2)$	11.0	0.9	0.7	10.1
	rht3	$61.5(\pm 7.3)$	12.8	0.7	0.7	12.8
	Rhtl	$50.3(\pm 8.1)$	11.0	1.8	3.1	12.4
	Rht3	$29.0 (\pm 6.2)$	9.6	2.7	10.7	21.7
39	rht I	$145.9 (\pm 18.5)$	10.1	0.9	0.5	8.1
	rht3	$148.4 (\pm 20.9)$	11.0	1.0	0.5	9.1
	Rht l	$119.5 (\pm 16.0)$	7.3	0.7	1.8	9.9
	Rht3	$63.1(\pm 11.1)$	6.3	3.1	12.7	8.5

Table 3. Gibberellir. concentration (ng⁻¹ g fr wt) in young developing ears of wheat (cv. Maris Huntsman) containing *rht1*, *rht3* (tall), *Rht1* (semi-dwarf) and *Rht3* (dwarf) alleles

Time to anthesis (d)	Genotype	Mean ear length (mm) (\pm S.E.)	GA ₁₉	GA_{20}	GA_1	GA_8
46	rht1/rht3	$4.3(\pm 0.8)$	10.1	10.1	1.0	> 55*
	Rht1/Rht3	$4.7(\pm 1.1)$	7.5	5.1	1.3	>45
39	rht1/rht3	$13.5(\pm 2.7)$	5.1	1.7	0.1	17.7
	RhtI/Rht3	$13.1(\pm 1.8)$	3.5	0.6	0.3	21.9

^{*} Beyond upper range of calibration curve.

(Fig. 1). The Rht alleles decreased the rate of expansion of P-1 internodes, causing reductions in final lengths of 15% and 55% for Rht1 and Rht3 alleles, respectively, compared with rht (tall) genotypes. In contrast, the Rht alleles had no effect on the pattern of rachis expansion or final lengths of ears (Fig. 1), as observed previously [4]. The most notable feature of the GA analyses was that GA₁ accumulated Rht3 > >> Rht1 > rht in P-1 internodes during the linear phase of expansion, whereas GA₁ concentration remained low, and was similar, in ears of all three genotypes during the period of rachis elongation (Fig. 2), providing further indirect evidence that Rht genes are not expressed in developing ears. No significant genotypic differences in GAs were detected in ears, whereas the Rht3 and, to a much lesser extent, the Rht1 alleles affected the GA profile in P-1 internodes, compared with the rht (tall) genotype (Fig. 2). The accumulation of GA₁ was directly proportional to the severity of the Rht allele or the rate of expansion of the P-1 internode (Fig. 1). Previously, it was argued that the accumulation of GA1 in Rht3 wheat leaves was due to the release of the block on the GA19 to GA₂₀ step that normally occurs as a consequence of GA action in GA-responsive, rht (tall) lines [3]. However, the situation in internodes appears to be more complex. Although GA₁₉ concentrations were rht > Rht1 » Rht3 in upper internodes at 39 days before anthesis (Table 2) and in P-1 internodes at the beginning of the phase of rapid expansion (Fig. 2), genotypic differences were not apparent at later stages of P-1 internode development.

Since genotypic differences in GA content may have been masked by the increasing proportion of mature tissue, GA distribution was examined in P-1 internodes at ca 25% final lengths. The concentration of GAs was much higher in the basal segments of both genotypes containing the intercalary meristem and expansion zone than in the more distal segment containing maturing tissues (Table 4). As expected, GA₁ accumulated in the Rht3 (dwarf), compared with the rht3 (tall), isoline but there was no decrease in the pool-size of GA19 in Rht3 (dwarf) segments (Table 4), again confirming that factors in addition to GAresponsiveness may perturb the GA pathway, such that both GA₁₉ and GA₁ accumulate in Rht3 internodes at certain stages of development. It remains a paradox that GA₁₉ accumulates in GA-responsive, rht (tall) wheat, since an expressed wheat GA 20-oxidase cDNA clone converts GA53 through to GA20 very efficiently (Appleford, Phillips, Hedden and Lenton, unpublished results).

Although the present experiments were not designed to test whether vegetative stem internodes of *rht* (tall) wheat were responsive to the presence of low concentrations of GA₁ (Tables 2 and 4; Fig. 2), indirect evidence suggesting that this was the case came from treatment of plants with a single dose of the early-step GA-biosynthesis inhibitor, paclobutrazol, at the beginning of the phase of rapid stem

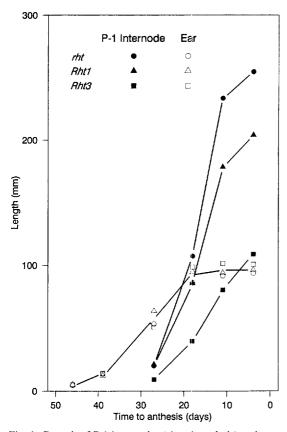


Fig. 1. Growth of P-1 internodes (closed symbols) and ears (open symbols) of winter wheat (cv. Maris Huntsman) containing *rht* (circles), *Rht1* (triangles) and *Rht3* (squares) alleles.

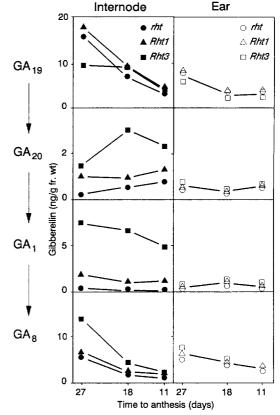


Fig. 2. Changes in GA concentrations in P-1 internodes (closed symbols) and ears (open symbols) of winter wheat (cv. Maris Huntsman) containing *rht* (circles), *Rht1* (triangles) and *Rht3* (squares) alleles.

extension, six weeks before anthesis. Final lengths of P-2, P-1 internodes and peduncle were decreased by 65%, 49% and 16%, respectively, compared with untreated controls, but there was no effect on final ear length (Webb, Appleford and Lenton, unpublished results). It is suggested that the rachis of the ear may not contain GA-responsive cell types that are characteristic products of the intercalary meristem in vegetative stem internodes.

EXPERIMENTAL

Plant material

Near-isogenic pairs of lines, homozygous for either *rht1* (tall) or *Rht1* (semi-dwarf) and *rht3* (tall) or *Rht3* (dwarf) alleles, in the background winter wheat (*Triticum aestivum* L. cv. Maris Huntsman) were generously supplied by Prof. M. D. Gale, John Innes Centre for Plant Science Research, Norwich [1]. Seeds were sown in pots (27 cm diam.) containing a loambased compost (10 l) with Osmocote slow-release fertiliser granules. Pots were transferred outside to a plunge bed and plants were thinned to 15 per pot at the seedling stage. At various times throughout the

Table 4. Gibberellin concentration (ng⁻¹g fr wt) in rapidly expanding P-1 internodes of wheat (cv. Maris Huntsman) containing *rht3* (tall) and *Rht3* (dwarf) alleles

Genotype	Segment length (mm)	GA ₁₉	GA_{20}	GA_1	GA_8
rht3	0–24	12.1	0.3	0.5	3.2
Rht3	0-11	17.4	0.9	18.7	6.3
rht3	24-48	4.3	0.2	0.1	1.0
Rht3	11-22	5.5	0.6	5.3	2.5

growing season, plants were harvested, dissected into the required tissues for subsequent GA analysis, plunged into liquid N_2 , weighed and stored in MeOH at -25° . Mean lengths (\pm S.E.), fr. and dry wts were determined on a subset of stems, individual internodes and ears.

Identification of GAs in stem internodes and ears

Upper expanding *Rht3* stem internodes (5-20 mm, 25.3 g) and adjacent developing ears (10-20 mm, 8.1 g) were homogenised and small amounts (ca 800 Bq

676 S. E. Webb *et al.*

each) of $[1,2^{-3}H_2]GA_1$, $[1,2,3^{-3}H_3]GA_{20}$, $[1,2^{-3}H_2]GA_4$ and [2,3-3H₂]GA₉ were added and stirred overnight at 4° [3]. After filtration, the residues were re-extracted for 3 h at room temp. The combined MeOH extracts were evapd under red. pres. at $<35^{\circ}$ and the aq. residue adjusted to pH 3 (2 M HCl) and partitioned against EtOAc ($4 \times$ equal vols). The combined EtOAc fr. was partitioned against 5% w/v NaHCO₃ (3×0.2 vol) and the EtOAc-solubles re-extracted from the acidified aq. phase and evapd to dryness (internodes 20.1 mg, ears 2.6 mg). After purification by QAE-Sephadex anion-exchange, C₁₈ Sep-Pak cartridge chromatography and reverse-phase HPLC [3, 22], grouped HPLC frs were methylated (CH₂N₂) dried and partitioned between H₂O (500 µl) and EtOAc $(3 \times 1 \text{ vol})$. The organic phases were passed through an NH₂ Bond Elut (100 mg) column, evapd to dryness, trimethylsilylated and analysed by GC-MS [22], but using a BP-1 (SGE) capillary column (0.1 µM film thickness). Differences in Kovats retention indices between standards in the ref. library [16] and the wheat GAs (Table 1) can be accounted for by differences in column phase and film thickness.

Quantification of GAs in upper internodes and young ears

Samples consisted of 100 upper stem internodes (3.1-4.2 g) and ears (0.34-0.45 g) per genotype at 46 days before anthesis and 70 internodes (4.3-6.9 g) and ears (1.3-1.4 g) per genotype at 39 days before anthesis. In addition to tritiated GAs, [17-2H₂]GA₁₉, $[17-^{2}H_{2}]GA_{20}$, $[17-^{2}H_{2}]GA_{1}$ (from Prof. L. Mander, Australian National University of Canberra) and [17-¹³C]GA₈ (gift from Prof. B. Phinney, University of California) were added as int. standards. The amounts added depended on genotype, tissue and sample wt. For internodes, amounts added were based on preliminary analyses of lower internodes (data not shown) and were within the recommended analyte: int. standard ratio, 0.1–4.0 of the calibration curves [23]. For ears, the data presented in Table 3 were based on a single analysis and were beyond the upper range of the calibration curve for GA₈ in the sample harvested 46 days before anthesis. Following homogenisation and purification, as described above, samples were analysed by GC-SIM [3].

Quantification of GAs in P-1 internodes and expanding ears

At 27 days before anthesis, samples of 50 P-1 internodes (4.7–10.3 g) and ears (13.0–14.2 g) per genotype were harvested, whereas the corresponding samples at 18 days before anthesis consisted of 50 P-1 internodes (22.4–52.3 g) and ears (48.0–56.1 g) per genotype. The samples at 11 days before anthesis contained 30 P-1 internodes (8.8–26.5 g) and 10 ears (18.3–20.4 g) per genotype. P-1 internodes harvested at ca 25% final length (*rht3* 55–75 mm, *Rht3* 25–35 mm) were sub-

divided into lower (*rht3* 0–24 mm, *Rht3* 0–11 mm), containing intervalary meristem and expansion zone (*rht3* 32.1 g, *Rht3* 9.9 g) and equivalent upper segments containing more mature tissue (*rht3* 25.7 g, *Rht3* 11.6 g). Following addition of int. standards, samples were worked-up and analysed, as described above. For clarity, means of the GA analysis of P-1 internodes and ears from the two independent tall lines are presented in Fig. 2, since replication was good, as observed previously with upper internodes (Table 2).

Acknowledgement—IACR receives grant-aided support from the Biotechnology and Biological Research Council of the U.K.

REFERENCES

- 1. Gale, M. D. and Youssefian, S., in *Progress in Plant Breeding*, ed. G. E. Russell. Butterworths, London, 1985, p.1.
- Pinthus, M. J., Gale, M. D., Appleford, N. E. J. and Lenton, J. R., Plant Physiology, 1989, 90, 854.
- 3. Appleford, N. E. J. and Lenton, J. R., *Planta*, 1991, **183**, 229.
- 4. Youssefian, S., Kirby, E. J. M. and Gale, M. D., Field Crops Research, 1992, 28, 191.
- Keyes, G., Sorrells, M. E. and Setter, T. L., *Plant Physiology*, 1990, 92, 242.
- Tonkinson, C. L., Lyndon, R. F., Arnold, G. M. and Lenton, J. R., Journal of Experimental Botany, 1995, 46, 1085.
- Hutley-Bull, P. D. and Schwabe, W. W., in Chemical Manipulation of Crop Growth and Development, ed. J. S. McLaren. Butterworths, London, 1982, p. 329.
- 8. Youssefian, S., Kirby, E. J. M. and Gale, M. D., Field Crops Research, 1992, 28, 179.
- 9. Evans, L. T., Blundell, C. and King, R. W., Australian Journal of Plant Physiology, 1995, 22, 365.
- Lin, J.-T. and Stafford, A. E., *Phytochemistry*, 1987, 26, 2485.
- 11. Jensen, E. and Junttila, O., *Physiologia Plantarum*, 1987, **71**, 277.
- Stafford, A. E., Lin, J.-T. and Murofushi, N., Bioscience Biotechnology and Biochemistry, 1993, 57, 715.
- 13. Radley, M., Planta, 1970, 92, 292.
- 14. Stoddard, J. L., Planta, 1984, 161, 432.
- 15. Croker, S. J., Hedden, P., Lenton, J. R. and Stoddart, J. L., *Plant Physiology*, 1990, **94**, 194.
- Gaskin, P. and MacMillan, J., GC-MS of Gibberellins and Related Compounds: Methodology and a Library of Reference Spectra. Cantock's Enterprises, Bristol, 1991.
- Gaskin, P., MacMillan, J., Spray, C. R., Suzuki, Y. and Phinney, B. O., *Phytochemistry*, 1995, 38,
 1.
- 18. Fujioka, S., Yamane, H., Spray, C. R., Phinney,

- B. O., Gaskin, P., MacMillan, J. and Takahashi, N., *Plant Physiology*, 1990, **94**, 127.
- 19. Kobayashi, M., Kwak, S.-S., Kamiya, Y., Yamane, H., Takahashi, N. and Sakuri, A., *Agricultural and Biological Chemistry*, 1991, **55**, 249.
- Mander, L. N., Owen, D. J., Croker, S. J., Gaskin, P., Hedden, P., Lewis, M. J., Talon, M., Gage, D. A., Zeevaart, J. A. D., Brenner, M. L. and Sheng, C., Phytochemistry, 1996, 43, 23.
- Kobayashi, M., Kamiya, Y., Sakurai, A., Saka, H. and Takahashi, N., Plant and Cell Physiology, 1990, 31, 289.
- 22. Penny, M., Willis, C. L., Gaskin, P. and Lenton, J. R., *Phytochemistry*, 1993, 33, 951.
- 23. Croker, S. J., Gaskin, P., Hedden, P., MacMillan, J. and MacNeil, K. A. G., *Phytochemical Analysis*, 1994, 5, 74.