

PII: S0031-9422(97)01107-2

SASANQUOL, A 3,4-seco-TRITERPENE ALCOHOL FROM SASANQUA OIL, AND ITS ANTI-INFLAMMATORY EFFECT

TOSHIHIRO AKIHISA,* KEN YASUKAWA,† YUMIKO KIMURA,† SAKAE YAMANOUCHI† and TOSHITAKE TAMURA

College of Science and Technology, Nihon University, 1–8, Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan; †College of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi-shi, Chiba 274, Japan

(Received 14 October 1997)

Key Word Index—Camellia sasanqua; Theaceae; seed oil; seco-triterpene alcohol; sasanquol; antioedema; TPA-induced ear oedema.

Abstract—A novel 3,4-seco-triterpene alcohol, named sasanquol, was isolated from the non-saponifiable lipid of sasanqua oil from the seeds of *Camellia sasanqua*. Its structure was established to be 3,4-seco-D:B-friedobacchara-4,21-dien-3-ol by spectroscopic methods. This is the first example of naturally occurring triterpene with a D:B-friedobaccharane skeleton. The 50% inhibitory dose of this compound against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation (1 μ g per ear) in mice was 0.4 mg per ear. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The seeds of Camellia sasanqua Thunb. yield a nondrying oil which is similar in composition to camellia oil from the seed of C. japonica L. [1]. Sasanqua oil is occasionally used, for example as a hair oil and an ointment base, as a replacer of camellia oil [2]. Theacea seed oils including camellia and sasanqua oils possess as a characteristic feature significant amounts of euphane/tirucallane-type compounds, i.e., butyrospermol (eupha-7,24-dien-3 β -ol) and Δ^7 -tirucallol (tirucalla-7,24-dien-3 β -ol), in the triterpene alcohol fractions [3-6]. Our recent investigation on the constituents of the triterpene alcohol fractions separated from the non-saponifiable lipids (NSL) of camellia and sasangua oils led to the isolation and characterization of seven novel compounds along with 20 known compounds [7]. In this paper, we described the characterization and the anti-inflammatory effect of a further novel triterpene alcohol (1) named sasanquol, isolated from the NSL of sasanqua oil.

RESULTS AND DISCUSSION

Compound 1 was isolated as the acetyl derivative 2 from the acetylated triterpene alcohol fraction separated from the NSL of sasanqua oil. Its molecular

* Author to whom correspondence should be addressed.

formula was determined as C₃₂H₅₄O₂ on the basis of the HR mass spectrum $(m/z 470.4092 [M]^+)$. Its IR spectrum indicated the presence of an acetoxyl group (1244, 1737 cm⁻¹) and a trisubstituted double bond (825 cm⁻¹). The ¹H NMR spectrum showed four olefinic methyl singlets (δ 1.60, 1.63, 1.65, 1.67), corresponding to two isopropylidene groups and indicating it to be a tricyclic seco-triterpene. The presence of the signals of an acetoxy methyl (δ 2.04) and an oxymethylene (δ 4.02, t) group suggested a 3,4-secotriterpene-3-yl acetate structure [8, 9]. Further distinctive ¹H signals were those of four tertiary methyl singlets (δ 0.88, 0.96, 0.99, 1.07) which, along with the absence of a methyl doublet, suggested that the tricyclic-ring system was constituted with all six-membered rings. These data, in combination with the mass fragmentations observed at m/z 387 [loss of one C₆H₁₁ (C-19-C-22, and C-29 and C-30) of the two sidechains], 287 [loss of both side-chains C₅H₈O₂ $(CH_2=CHCH_2OAc)$ and C_6H_{11}], $[CH_2CH=C(Me)_2]^+$ (C-20-C-22, and C-29 and C-30; base peak), indicated either a baccharane- [10, 11], D:B-friedobaccharane- [12] or a lemmaphyllane (D:C-friedo-18,19-seco-lupane)-[7, 10] skeletal structure with a 3,4-seco-triterpene-3-yl acetate moiety. The mass fragmentations and an olefinic methine signal (δ 5.08, tt) in the ¹H NMR spectrum suggested the presence of a C₆-side-chain containing an isopropylidene functionality [7, 10]. The other isopropylidene group was deduced to be located at C-4 [8, 9]. Further fragment ions observed at m/z 274

(1) R = H(2) R = Ac

($C_{20}H_{34}$) [8, 9, 10, 13], corresponding to the loss of seco-ring A and ring B be cleavages of the C-7–C-8 and C-9–C-10 bonds, and 163 ($C_{12}H_{19}$; 274 – C_6H_{11}) indicated the absence of a methyl group at C-10 and eliminated the possibility of the baccharane- and lemmaphyllane-skeletal structure. From the foregoing, compound **2** was assigned a 3,4-seco-D:B-friedobacchara-4,21-dien-3-yl acetate structure. Analysis of the ¹³C DEPT, ¹H-¹H COSY, HMQC and HMBC spectra, and the ¹³C and ¹H NMR spectral comparison of **2** with helianyl acetate [3,4-seco-19(10 \rightarrow 9)abeo-8α.9β,10α-tirucalla-4,24-dien-3-yl acetate] (Table 1) [9]* and lemmaphylla-7,21-dien-3β-yl acetate (D:C-friedo-18,19-seco-lupa-7,19-dien-3β-yl acetate) [7] confirmed the above assumption.

The configuration of 2 was confirmed by difference NOE and NOESY spectroscopy. Compound 2 showed a significant NOE correlations between [H- $26(14\beta\text{-Me})-\text{H}-25(9\beta\text{-Me})-\text{H}-23$] and [H-27(13\alpha-Me)-H-8-H-10] which were consistent with those observed for helianyl acetate [9], and between [H- $26(14\beta-Me)-H-16\beta$, $H-18\beta-H-28(17\beta-Me)$] which were consistent with those observed for lemmaphylla-7,21-dien-3 β -yl acetate [7]. This suggested that **2** had a trans-anti-trans configuration in terms of the B/C/Dring junctures orienting H-25, H-26 and H-28 to the β -face and H-8, H-10 and H-27 to the α -face of the ring-system and revealed the 3,4-seco-D:B-friedobaccharane skeletal structure for 2. The most stable conformation of 2 with minimum steric energy was simulated using MacroModel and drawings [14, 15] (Fig. 1). This conformation of 2 was fairly consistent with the results from the NOE experiment carried out in solution. Alkaline hydrolysis of 2 yielded sasanquol (1; 3,4-seco-D:B-friedobacchara-4,21-dien-3-ol; $C_{30}H_{52}O; [M]^+, m/z 428.4024).$

Sasanquol (1) is the first example of a naturally occurring triterpene possessing a D:B-friedobaccharane skeleton although several triterpenes with this skeleton have previously been synthesized, along with baccharane triterpenes, from a shionane triterpene by backbone rearrangement induced by boron trifluoride treatment [12]. D:B-Friedo baccharane triterpene has been postulated as a biosynthetic intermediate between baccharane triterpene and shionane triterpene in the biogenetic sequence leading to dammarane triterpene [16]. Sasanqua oil has been shown to contain bacchara-12,21dien-3 β -ol and dammaradienol (dammara-20,24dien-3 β -ol) as the triterpene alcohol constituents [7]. Although a number of 3,4-seco-triterpenes are known to occur in nature [17, 18], only a few compounds possessing a 3-hydroxyl group have so far been reported as natural products, i.e., 3,4-seco-dammara-4,24-dien-3-ol, isolated from Abrotanella forsterioides (Compositae) as the acetyl derivative [8] and from the pollen grains of Helianthus annuus (Compositae) [19], helianol from the flowers of H. annuus [9] and several other Compositae plants [20], and 3,4-seco-D: Bfriedo-B':A'-neogammacer-4(23)-en-3,5α-diol and its 5β -epimer from Euphorbia supina (Euphorbiaceae) [21].

Triterpene alcohols and plant sterols have recently been demonstrated to inhibit TPA-induced inflammation in mice [20, 22, 23]. Sasanquol (1) exhibited marked inhibitory activity against TPA-induced inflammation (1 μ g per ear) and its 50% inhibitory dose was 0.4 mg per ear which was at a level almost corresponding to that of indomethacin (0.3 mg per ear), a commercially available anti-inflammatory drug, and was far more inhibitive than quercetin (3.3',4',5,7-pentahydroxyflavone) (1.6 mg per ear), a known inhibitor of TPA-induced inflammation in mice.

EXPERIMENTAL

Crystallizations from MeOH. Mp: uncorr.; Ag⁺-TLC: silica gel-AgNO₃ (4:1, w/w) with cyclohexane-

^{*}The assignment of a 20*R*-chirality (euphane-skeleton) for helianol [9] was erroneous, and we would like to revise the structure of the triterpene to a 20*S*-chirality (tirucallaneskeleton).

Table 1. ¹³C and ¹H NMR spectral data for sasanquol (1) and sasanquyl acetate (2) (CDCl₃)

С	1		2	
	13C	¹ H	13C	¹ H
1	26.5	1.30, 1.55	26.6	1.29, 1.51
2	32.1	1.56 (2H)	27.8	1.58, 1.62
3	63.9	3.61 (t, 6.4)*	65.3	4.02 (t, 6.6)
4	122.1	_	122.2	and the second s
5	134.5	_	134.3	_
6	23.7	$2.32 (\alpha), 1.94 (\beta)$	23.9	$2.32 (\alpha), 1.94 (\beta)$
7	21.9	$1.46 \ (\alpha), \ 1.40 \ (\beta)$	21.9	$1.46 (\alpha), 1.37 (\beta)$
8	42.9	1.37 (dd, 9.5, 13.9)	43.1	1.35
9	38.6		38.6	_
10	54.9	2.34	54.8	2.34
11	38.3	$1.63 \ (\alpha), \ 1.54 \ (\beta)$	38.3	$1.63 \ (\alpha), \ 1.54 \ (\beta)$
12	32.8	$0.85(\alpha), 1.53(\beta)$	32.8	$0.84 (\alpha), 1.53 (\beta)$
13	36.6		36.6	_
14	38.9	<u></u>	38.5	_
15	29.3	$1.30 (\alpha), 1.15 (\beta)$	29.3	$1.30 (\alpha), 1.13 (\beta)$
16	34.6	$1.29 (\alpha), 1.55 (\beta)$	34.6	$1.27 (\alpha), 1.54 (\beta)$
17	31.9		31.9	_
18	44.4	$1.12 (\alpha), 1.23 (\beta; d, 13.9)$	44.4	$1.12 (\alpha), 1.23 (\beta; d, 14.7)$
19	43.2	1.13, 1.67	43.2	1.14, 1.68
20	23.1	1.84, 1.98	23.2	1.84, 1.97
21	125.3	5.08 (tt, 1.5, 7.0)	125.3	5.08 (tt, 1.5, 7.0)
22	130.7		130.7	_
23	20.5†	1.64 (s)	20.7	1.63 (s)
24	20.8†	1.64 (s)	20.5	1.65(s)
25	19.4	1.00(s)	19.4	0.99(s)
26	15.4	0.96(s)	15.4	0.96(s)
27	20.3	1.07(s)	20.3	1.07(s)
28	32.9	0.88(s)	32.9	0.88(s)
29	25.7	1.67 (br s)	25.7	1.67 (br s)
30	17.6	1.60 (br s)	17.6	1.60 (br s)
COMe	_		171.3	
COMe	10/4 × 100		21.1	2.04 (s)

^{*}Figures in parentheses denote J values (Hz). If not otherwise specified in parentheses, multiplicity of 'H NMR signals was not determined.

EtOAc (9:1); HPLC: C₁₈ silica columns [HPLC I: Superiorex ODS S 5 μ m column, 25 cm × 10 mm i.d. (Shiseido Co., Ltd, Tokyo) temp. 25°; HPLC II: TSK ODS-120A 5 μ m column, 25 cm × 10 mm i.d. (Toso Co., Tokyo), temp. 25°], MeOH as mobile phase (flow rate 4 ml min⁻¹); GC: DB-17 fused silica capillary column (30 m \times 0.3 mm i.d., column temp. 275°). RR_t on HPLC and GC expressed relative to cholesteryl (cholest-5-en-3β-yl) acetate. EI-MS (70 eV): probe; ¹H NMR (400 MHz) and ¹³C NMR (100.6 MHz): CDCl₃ with TMS (1 H NMR) and CDCl₃ at δ 77.0 (13 C NMR) as int. standard; IR: KBr. Acetylation: Ac₂O-pyridine, at room temp, overnight. Hydrolysis of acetate: 5% KOH in MeOH, at room temp. overnight. Source of crude sasanqua oil was described previously [7]. The NMR signal assignments for 1 and 2 were aided by 13C DEPT, 1H-1H COSY, HMQC, HMBC, NOESY and difference NOE spectroscopy.

Isolation procedure

Alkaline hydrolysis (5% KOH in MeOH, reflux, 3 hr) of crude sasangua oil (1 kg) followed by diisopropyl ether extraction yielded neutral NSL (4.5 g). The NSL was chromatographed over a silica gel (250 g) column with hexane, hexane-EtOAc (9:1), hexane-EtOAc (4:1) as eluants. The hexane–EtOAc (9:1) eluted a fraction, which after rechromatography over silica gel, yielded a triterpene alcohol fraction (2.2 g) which, upon acetylation, gave an acetylated fraction (2.0 g). Crystallization of the acetate from Me₂CO-MeOH yielded β -amyrin (olean-12-en-3 β -yl) acetate (0.35 g) as a solid mass and a filtrate (1.65 g). Ag⁺-TLC of the filtrate afforded three major bands of which the second bulky band $(R_t 0.50-0.70)$ from the solvent front yielded a fraction (0.85 g) which was composed mainly of the acetates of butyrospermol and Δ^7 -tirucallol. HPLC of the fraction under the

[†] Assignment interchangeable.

T. Akihisa et al.

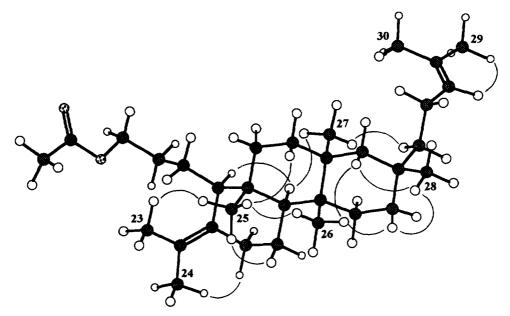


Fig. 1. Minimum energy conformation and some representative NOE correlations (—) for sasanquyl acetate (2).

condition I followed by II eventually yielded 2 (15 mg). Isolation and characterization of other triterpene alcohol constituents as the acetyl derivatives were described previously [7].

Sasanquyl acetate (2)

Mp 99–102° (fine needles). RR_i : 0.67 (HPLC I), 0.33 (HPLC II), 1.31 (GC). IR ν_{max} cm⁻¹: 1737, 1244, 825, 805; MS m/z (rel. int.): 470 [M]⁺ (3), 455 (1), 387 (2), 287 (21), 274 (13), 259 (6), 249 (1), 245 (3), 231 (3), 223 (7), 205 (13), 203 (10), 191 (8), 189 (10), 163 (21), 69 (100); HR-MS m/z: 470.4092 ($C_{32}H_{54}O_2$, requires 470.4120), 387.3316 ($C_{26}H_{43}O_2$, requires 387.3261), 287.2705 ($C_{21}H_{35}$, requires 287.2736), 274.2682 ($C_{20}H_{34}$, requires 274.2659), 163.1455 ($C_{12}H_{19}$, requires 163.1485), 69.0702 (C_5H_9 , requires 69.0703); ¹³C NMR and ¹H NMR: Table 1. On alkaline hydrolysis, **2** yielded a free alcohol (**1**).

Sasanquol (1)

Mp 89–91° (fine needles). IR v_{max} cm⁻¹: 3417, 825; MS m/z (rel. int.): 428 [M]+ (11), 413 (3), 287 (27), 274 (18), 259 (8), 245 (3), 231 (4), 217 (4), 205 (14), 203 (8), 191 (7), 189 (9), 181 (10), 163 (17), 69 (100); HR-MS m/z: 428.4024 ($C_{30}H_{52}O$, requires 428.4016); ¹³C NMR and ¹H NMR: Table 1.

Assay of TPA-induced inflammation in mice

The assay procedures were the same as those described in our previous article [20, 22, 23].

REFERENCES

- In *The Lipid Handbook*, ed. F. D., Gunston, J. L. Harwood and F. B. Padley, 2nd edn. Chapman and Hall, London, 1994, p. 103.
- 2. In *Encyclopedia of Natural Medicine*, ed. T. Okuda. Hirokawa Publ. Co., Tokyo, 1986, p. 171.
- Itoh, T., Tamura, T. and Matusmoto, T., *Lipids*, 1974, 9, 173.
- 4. Itoh, T., Tamura, T. and Matusmoto, T., *Lipids*, 1976, 11, 434.
- Itoh, T., Uetsuki, T., Tamura, T. and Matsumoto, T., *Lipids*, 1980, 15, 407.
- Akihisa, T., Kokke, W. C. M. C. and Tamura, T., in *Physiology and Biochemistry of Sterols*, ed. G. W. Patterson and W. D. Nes. American Oil Chemists' Society, Champaign, Illinois, 1991, p. 172.
- Akihisa, T., Yasukawa, K., Kimura, Y., Takase, S., Yamanouchi, S. and Tamura, T., Chemical and Pharmaceutical Bulletin, 1997, 45, 2016.
- 8. Greger, H., Zdero, C. and Bohlmann, F., *Phytochemistry*, 1983, **22**, 2085.
- Akihisa, T., Oinuma, H., Yasukawa, K., Kasahara, Y., Kimura, Y., Takase, S., Yamanouchi, S., Takido, M., Kumaki, K. and Tamura, T., Chemical and Pharmaceutical Bulletin, 1996, 44, 1255.
- Masuda, K., Shiojima, K. and Ageta, H., Chemical and Pharmaceutical Bulletin, 1983, 31, 2530.
- Akihisa, T., Kimura, Y. and Tamura, T., *Phyto-chemistry*, 1994, 37, 1413.
- Tachibana, K., Tori, M., Moriyama, Y., Tsuyuki,
 T. and Takahashi, T., Bulletin of the Chemical Society of Japan, 1977, 50, 1552.

- Gamalath, C. B., Gunatilaka, A. A. L. and Subramaniam, S. J., *Journal of the Chemical Society*, *Perkin Transactions* 1, 1989, 2259.
- 14. MacroModel Ver. 6.0 with extended MM3 parameters. The conformation with minimum steric energy was obtained through a Metropolis Monte-Carlo procedure. Drawings were performed by Chem3D program (Cambridge Scientific Computing Inc. Cambridge, MA, U.S.A.).
- Mohamadi, F., Richards, N. G. L., Guida, W. C., Liskamp, R., Lipton, M., Caulfield, C., Chang, G., Hendrickson, T. and Still, W. C., *Journal of Computational Chemistry*, 1990, 11, 440.
- Shoji, N., Umeyama, A., Taira, Z., Takemoto, T., Nomoto, K., Mizukawa, K. and Ohizumi, Y., Journal of the Chemical Society, Chemical Communications, 1983, 871.

- 17. Baas, J. B., Phytochemistry, 1985, 24, 1875.
- In *Dictionary of Terpenoids*, Vol. 2, ed. J. D. Connolly and R. A. Hill. Chapman and Hall, London, 1991, p. 119.
- 19. Ohmoto, T., Udagawa, M. and Yamaguchi, K., Shoyakugaku Zasshi, 1986, 10, 172.
- Akihisa, T., Yasukawa, K., Oinuma, H., Kasahara, Y., Yamanouchi, S., Takido, M., Kumaki, K. and Tamura, T., *Phytochemistry*, 1996, 43, 1255.
- 21. Tanaka, R., Matsunaga, S., Ishida, T. and Shingu, T., Tetrahedron Letters, 1989, 30, 1661.
- Yasukawa, K., Takido, M., Matsumoto, T., Takeuchi, T. and Nakagawa, S., Oncology, 1991, 48, 72
- 23. Yasukawa, K. and Akihisa, T., Recent Research Developments in Oil Chemistry, 1997, 1, 115.