PII: S0031-9422(97)010128-5

THREE ISOFLAVANONES FROM ERYTHRINA ORIENTALIS

HITOSHI TANAKA,* TOSHIHIRO TANAKA,† AYAKO HOSOYA,‡ YUKIO KITADE‡ and HIDEO ETOH§

Faculty of Pharmacy, Meijo University, Yagoto, Tempaku-ku, Nagoya 468, Japan; †Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5-chome, Gifu 502, Japan; ‡Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-11, Japan; §Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422, Japan

(Received 6 October 1997)

Key Word Index—Erythrina orientalis; Leguminosae; roots; isoflavanone; orientanols D-F.

Abstract—Three new isoflavanones, orientanols D-F, were isolated from the roots of *Erythrina orientalis* L, together with the two known isoflavanones, bidwillon A and bidwillon B. Their structures were elucidated on the basis of spectroscopic evidence. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

We have reported [1] the isolation and structural determination of two pterocarpans from the roots of *Erythrina orientalis*. Further investigation of the roots of *E. orientalis* has now led to the isolation of three novel isoflavanones (2–4), named orientanols D–F, along with two previously reported isoflavanones, bidwillon A (eriotrichin B) (1) [2, 3] and bidwillon B (5) [2].

RESULTS AND DISCUSSION

Compound (1) was identified as bidwillon A by comparison of its spectral data (IR, UV and 1H NMR) with the corresponding literature values [2, 3] and, in the 13 C NMR spectrum, the chemical shifts were shown to be identical with those described in the literature except for signals at δ 123.0 (C-6) and 115.4 (C-10), which were assigned by the COLOC spectrum (Table 2). This compound was characterized previously from $Erythrina \times bidwillii$ [2] and E. eriotricha [3].

Orientanol D (2) was obtained as a colourless oil and the molecular formula was confirmed to be $C_{25}H_{28}O_6$ by HRMS (m/z 424.1875). The IR spectrum showed the presence of a conjugated carbonyl (1650 cm⁻¹) and hydroxyl (3400 cm⁻¹) groups. The ¹H NMR spectrum revealed signals of an oxymethylene group (δ 4.37 and 4.92), ascribable to H-2 of a 3-hydroxyisoflavanone [4], four aromatic protons (δ 6.29, 6.32, 7.29 and 7.51) and two prenyl groups (δ 1.66, 1.69, 1.74, 1.77, 3.32, 3.40, 5.18 and 5.31) (Table

1 $R_1 = R_2 = H$

2 $R_1 = OH, R_2 = H$

3 $R_1 = H, R_2 = OH$

1). Comparison of the ¹H NMR and ¹³C NMR spectra of **2** with those of **1** displayed identical positions of

^{*} Author to whom correspondence should be addressed.

the four aromatic protons and the two prenyl groups, indicating the same substituent patterns for aromatic rings A and B and the assignment of the carbinol carbon at the C-3 position was decided from the HMBC spectrum which revealed correlation between C-3 (δ 74.6) and H-2 (δ 4.37 and 4.92) and/or H-6′ (δ 7.29). Assignment of all the ¹H NMR and ¹³C NMR signals of **1–4** was accomplished by analyses of the ¹H– ¹H COSY, HMQC and HMBC spectra. Therefore, the structure of orientanol D was represented as formula **2**.

Orientanol E (3) was obtained as a colourless oil and the molecular formula was confirmed to be $C_{25}H_{28}O_6$ by HRMS (m/z 424.1894). The IR spectrum showed also the presence of a conjugated carbonyl and hydroxyl groups. In the ¹H NMR spectrum of 3, a chelated hydroxyl group at C-5 (δ 12.67) was observed and a further three aromatic protons (δ 6.33, 6.45 and 6.96), an oxomethylene group (δ 4.50 and 4.61), a methine proton (δ 4.24) and two prenyl groups (δ 1.65,

Table 2. ¹³C NMR spectral data of 1–4 in acetone-d₆

C	1	2	3	4
2	71.6	74.5	71.1	71.9
3	47.5	74.6	47.3	47.7
4	192.4	191.5	199.1	191.8
5	125.9	126.2	160.6	128.0
6	123.0	123.6	108.7	124.1
7	159.7	160.2	162.1	157.3
8	116.3	116.3	107.7	109.9
9	160.4	159.8	159.1	157.2
10	115.4	113.3	103.7	115.6
1'	114.8	116.6	114.1	114.6
2′	157.2	159.6	157.0	157.5
3′	103.8	104.5	103.7	103.8
4′	158.6	158.0	158.9	158.7
5′	107.8	107.4	107.8	107.8
6′	131.1	128.5	131.7	131.3
1"	28.7	28.6	21.8	28.2
2"	122.7	122.5	123.4	123.3
3"	133.7	133.8	132.1	132.6
4"	17.8	17.8	17.9	17.9
5"	25.9	25.9	25.8	25.9
1′″	22.8	22.7	22.2	116.6
2′"	123.0	122.8	123.6	129.7
3′"	132.3	132.4	132.0	78.1
4′″	17.9	17.9	17.9	28.3*
5′″	25.9	25.9	25.8	28.4*

^{*} Assignments in the same vertical column may be interchanged.

1.74, 1.75, 3.31, 3.33, 5.17 and 5.19) were assigned by comparison of the 1H NMR and ^{13}C NMR spectra

Table 1. ¹H NMR spectral data of 1-4 in acetone-d₆

Н	1	2	3	4
2	4,59 dd (11.0, 5.1)	4.37 d (11.7)	4.50 dd (11.0, 5.1)	4.59 dd (11.0, 5.1)
	4.68 dd (11.0, 9.5)	4.92 d(11.7)	4.61 <i>t</i> -like (11.0)	4.70 dd (11.0, 10.3)
3	4.10 dd (9.5, 5.1)		4.24 dd (11.0, 5.1)	4.13 dd (10.3, 5.1)
5	7.54 s	7.51 s		7.56 s
3'	6.42 d(2.9)	6.32 d(2.2)	6.45 d (2.2)	6.43 d(2.2)
5′	6.31 dd (8.1, 2.9)	6.29 dd (8.8, 2.2)	6.33 dd (8.1, 2.2)	6.32 dd (8.1, 2.2)
6′	6.97 d(8.1)	7.29 d (8.8)	6.96 d (8.1)	6.94 d(8.1)
1"	3.33 d (7.3)	3.32 d (7.3)	3.33 d (7.3)	3.24 d (7.3)
2"	5.32 t (7.3)	5.31 t (7.3)	5.17 t (7.3)*	5.26 t (7.3)
4"	1.70 s	1.69 s	1.74 s	1.73 s
5"	1.74 s	1.74 s	1.65 s	1.71 s
1'"	3.41 d (6.6)	3.40 d(7.3)	3.31 d (7.3)	6.64 d (10.3)
2'"	5.19 t (6.6)	5.18 t (7.3)	5.19 t (7.3)*	5.74 d (10.3)
4'"	1.77 s	1.77 s	1.75 s	1.47 s*
5′″	1.66 s	1.66 s	1.65 s	1.46 s*
3-OH		2.15 br s*		
5-OH			12.67 br s	
7-OH	8.03 br s*	2.67 br s*	2.85 br s†	
2′-OH	8.18 br s*	2.95 br s*	8.20 br s†	8.19 br s†
4'-OH	8.51 br s*	8.43 br s*	8.61 br s†	8.51 br s†

^{*,†} Assignments in the same vertical column may be interchanged.

with those of 1. In the 13 C NMR spectrum, the signals of the same partial structures were also in good agreement with those of 1 except for the signal of C-1" (δ 21.8). The higher shift value at C-1" in the 13 C NMR spectrum of 3 suggested that the prenyl group at the C-6 position is in the vicinity of diortho-oxygenated substituents [5] and further the assignment of the C-1" position was confirmed from the HMBC spectrum which showed correlation between C-6 (δ 108.7) and H-1" (δ 3.33) and/or 5-OH (δ 12.67), indicating the obvious location of the prenyl group at C-6. Therefore, the structure of orientanol E was represented as formula 3.

Orientanol F (4) was obtained as a colourless oil and the IR spectrum indicated also the presence of a conjugated carbonyl and hydroxyl groups. The mass spectrum revealed the molecular ion $(C_{25}H_{26}O_5)$ at m/z406 and the first fragment at m/z 391 [M-15]⁺, typical of 2,2-dimethylchromenes [6,7]. The ¹H NMR spectrum showed, in addition to signals of the characteristic dimethylchromene part (δ 1.46, 1.47, 5.74 and 6.64), signals of an oxymethylene group (δ 4.59 and 4.70), a methine proton (δ 4.13), four aromatic protons (δ 6.32, 6.43, 6.94 and 7.56) and a prenyl group $(\delta 1.71, 1.73, 3.24 \text{ and } 5.26)$ which were virtually superimposable on those of 1 and, in the ¹³C NMR spectrum, the signals of the aromatic ring B, ring C and the prenyl group displayed the same substitution patterns as those of 1. Further, the placement of the prenyl group at the C-6 position was confirmed by the DIFNOE experiment which displayed NOE interaction between an aromatic proton at C-5 (δ 7.56) and an aliphatic proton at C-1" (δ 3.24) and/or an olefinic proton at C-2" (δ 5.26). Therefore, the structure of orientanol F was represented as formula 4 with angular chromene arrangement and the linear isomer (5) was simultaneously isolated from this plant.

EXPERIMENTAL

General

Mps: uncorr.; CC: Merck silica gel 60 (230–400 mesh); TLC: glass plates precoated with Kieselgel 60 F_{254} (Merck); the spots were detected by spraying with 50% H_2SO_4 and by UV light; ¹H NMR (500 and 600 MHz) and ¹³C NMR (67.5): TMS int. standard; UV: MeOH.

Plant material

See Ref. [1].

Extraction and isolation

The CH₂Cl₂ soluble fraction was chromatographed on silica gel with solns of varying polarity of CHCl₃ as reported in ref. [1]. Frs 43–46 were purified by repeated CC (*n*-hexane–Me₂CO, 2:1) to give **3** (4.1 mg). Frs 47–50 were chromatrographed on silica gel with benzene–EtOAc (5;1) and benzene–EtOAc (1:1) and subsequently by *n*-hexane-Me₂CO (2:1) and *n*-hexane–Me₂CO (1:1) to afford **1** (192 mg), **2** (20 mg), **4** (6.2 mg) and **5** (4.2 mg). The known compounds **1** [2, 3] and **5** [2] were identified by comparison of their spectral and physical data with those reported in the literature.

Bidwillon A (1). Colourless oil, [α]_D ±0° (MeOH, c 0.1). IR (CHCl₃) $\nu_{\rm max}$ cm⁻¹: 3600, 1650, 1600; UV $\lambda_{\rm max}$ nm: 206, 222, 284, 318; MS m/z: 408 [M]⁺, 390, 373, 363, 335, 319, 291, 279, 273 (100%), 257, 244, 229, 217, 188, 173, 161; HRMS m/z: 408.1924 (M⁺, calcd for C₂₅H₂₈O₅: 408.1935); ¹H NMR: Table 1; ¹³C NMR: Table 2

Orientanol D (2). Colourless oil, $[\alpha]_D \pm 0^\circ$ (MeOH, c 0.1). IR (KBr) $\nu_{\rm max}$ cm⁻¹: 3400, 1650, 1610; UV $\lambda_{\rm max}$ nm: 207, 221, 286, 318; MS m/z: 424 [M]⁺, 406, 389, 363, 335, 330, 314, 295, 289, 273 (100%), 257, 243, 229, 217, 203, 201, 188, 161; HRMS m/z: 424.1875 (M⁺, calcd for C₂₅H₂₈O₆: 424.1884); ¹H NMR: Table 1; ¹³C NMR: Table 2.

Orientanol E (3). Colourless oil, $[\alpha]_D \pm 0^\circ$ (MeOH, *c* 0.1). IR (KBr) ν_{max} cm⁻¹: 3400, 1640, 1610; UV λ_{max} nm: 208, 232 (sh), 296, 336; MS m/z: (424 [M]⁺, 100%), 406, 391, 369, 363, 353, 335, 295, 289, 273, 260, 245, 233, 217, 204, 189, 177; HRMS m/z: 424.1894 (M⁺, calcd for C₂₅H₂₈O₆: 424.1884); ¹H NMR: Table 1; ¹³C NMR: Table 2.

Orientanol F (4). Colourless oil, [α]_D ±0° (MeOH, *c* 0.1). IR (KBr), v_{max} cm⁻¹: 3400, 1640, 1600; UV λ_{max} nm: 206, 256, 264, 317; MS m/z: 406 [M]⁺, 391, 388, 373, 363, 340, 337, 333, 309, 271, 255 (100%), 242, 227, 215, 187, 173; HRMS m/z: 406.1791 (M⁺, calcd for $C_{25}H_{26}O_5$: 406.1779); ¹H NMR: Table 1; ¹³C NMR: Table 2.

REFERENCES

- Tanaka, H., Tanaka, T. and Etoh H., Phytochemistry, 1998, 47, 475.
- 2. Iimuma, M., Tanaka, T., Mizuno, M., Yamamoto, H., Kobayashi, Y. and Yonemori, S., *Chemical Pharmaceutical Bulletin*, 1992, **40**, 2749
- 3. Nkengfack, A. E., Vardamides, J. C., Fomum, Z. T. and Meyer, M., *Phytochemistry*, 1995, **40**, 1803.
- 4. Kim, C. M., Ebizuka, Y. and Sankawa, U., Chemical Pharmaceutical Bulletin, 1989, 37, 2879.
- 5. Fukai, T. and Nomura, T., *Heterocycles*, 1996, **42**,
- 6. Pelter A., Stainton, P. and Barber M., Journal of Heterocyclic Chemistry, 1965, 2, 262.
- 7. Takayama, M., Fukai, T., Hano, Y. and Nomura, T., *Heterocycles*, 1992, **33**, 405.