

PII: S0031-9422(97)01136-9

A GERMACRANOLIDE FROM VICOA INDICA‡

DILIP D. SAWAIKAR,* SUPADA R. ROJATKAR, BHIMSEN A. NAGASAMPAGI and VEDAVATI G. PURANIK†

Division of Organic Chemistry: Technology and † Division of Physical Chemistry, National Chemical Laboratory, Pune 411 008, India

(Received in revised form 25 November 1997)

Key Word Index—*Vicoa indica*; Compositae, sesquiterpene lactone, germacranolide.

Abstract—The aerial parts of *Vicoa indica* afforded a new sesquiterpene lactone as its acetate (1) the structure and relative stereochemistry of which was established by spectral data including X-ray crystallographic analysis. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

In previous communications we have reported [1, 2] on the isolation of two germacranolides from *Vicoa indica* D.C. Some more compounds have been isolated by other groups of workers [3–9] from the same plant. Herein, we report on the further chemical investigation of this plant affording a new germacranolide as its acetate (1).

RESULTS AND DISCUSSION

The acetone extract of aerial parts of V. indica after purification by CC and TLC afforded a new gemacranolide as its acetate (1). Compound 1 was obtained as a crystalline solid (molecular formula C₂₄H₃₀O₁₀, M⁺ 478) and showed in its IR spectrum the presence of an α-methylene-γ-lactone and ester carbonyls. Its ¹H NMR spectrum (Table 1) revealed the characteristic signals for an α-methylene-γlactone, a 2-methylbutyryloxy group, two acetate methyls and a methyl on an epoxide ring. The ¹H NMR spectrum along with a ¹H-¹H 2D COSY experiment showed that H-7 was coupled with H-13a, H-13b and H-8 (δ 4.21, dd, J = 8, 10 Hz) confirming the trans-lactone junction. H-8 was further trans coupled with H-9 (δ 5.04, d, J = 10.0 Hz). It also revealed the presence of an epoxide proton H-1, which appeared as a singlet at δ 3.96, indicating the presence of a carbonyl function at C-2. The two doublets at δ 3.07 (J = 12 Hz) and 3.85 (J = 12 Hz) suggested the presence of an exomethylene group at C-4. The two trans coupled protons H-5 and H-6 placed the 2-methylThe 13 C NMR spectrum (Table 1) showed the presence of three ester carbonyls, one lactone carbonyl, and one ring carbonyl at δ 201.87. The spectrum along with an INEPT experiment showed the presence of two exomethylene groups, six oxygenated carbon atoms, one appearing as a singlet and five as doublets.

The above spectral data and ¹³C-¹H decoupling experiment led us to establish the structure of compound 1 as a germacranolide. However, to determine unambiguously the stereochemistry and positions of the functional groups compound 1 was subjected to single crystal X-ray analysis.

The cyclodecane ring adopts a chair-boat-chain conformation while the transfused y-lactone ring is an envelope and is similar to that reported [1, 10]. The valency angles of the cyclodecane ring vary from $112.3(4)^{\circ}$ to $123.5(5)^{\circ}$, the average angle being 115.9(4)°. The large deviation of the valence angle from the tetrahedral value of 109° indicates a considerable amount of angular strain [1, 11]. The largest deviation is found at the fusion of the epoxide ring with the 10-membered ring. In the cyclodecane ring three groups of four atoms each form a good plane viz C(9)-C(10)-C(1)-C(2); C(10)-C(1)-C(5)-C(6)and C(2)—C(4)—C(7)—C(9). The trans annular separation $C(1) \cdots C(5) = 4.14 \text{ Å}$ in the germacranolide is similar to that found in 5β -acetoxy- 1α , 10α -epoxy- $2\alpha,9\beta$ -dihydroxy- 6α -(2-methylbutyryloxy)germacran-8x,12-olide [12] which showed the absence of trans annular interactions as the cyclodecane ring is saturated. The structure is stabilized by intra- and intermolecular hydrogen bonding.

EXPERIMENTAL

butyryloxy ester group at C-5 and the acetate group at C-6 or vice versa.

MP: Uncorr.; Optical rotation: CHCl₃; IR: CHCl₃: ¹H NMR and ¹³C NMR: CDCl₃ with SiMe₄ as int.

^{*} Author to whom correspondence should be addressed.

[‡] NCL communication No 6413.

Table 1. ¹H and ¹³C NMR (200/50.2 MHz; CDCl₃) spectral data of compound 1

Н	δ	J(Hz)	¹H¹H COSY	C	APT	δ	¹³ C- ¹ H COSY
1	3.96 s			1	СН	65.02	H-1
3a	3.07 d	12	H-3b	2	C	201.87	I. MARKATA
3b	3.85 d	12	H-3a	3	CH_2	42.00	H-3a, H-3b
5	5.74 d	10	H-6	4	C	131.24*	******
6	5.37 d	10	H-5	5	CH	76.64	H-5
7	2.79 ddd	8, 3.5,	H-8, H-13b,	6	СН	69.00	H-6
		3	H-13a	7	CH	43.04	H-7
8	4.21 dd	10, 8	H-9, H-7	8	CH	75.42	H-8
9	5.04 d	10	H-8	9	CH	73.55	H-9
13a	6.45 d	3.5	H-7	10	C	63.89	
13b	5.88 d	3	H-7	11	C	135.18*	-
14	1.75 s			12	C	167.54†	ALTERNATION AND ADDRESS OF THE PARTY OF THE
15-2H	5.59 br s			13	CH_2	125.36	H-13a, H-13l
				14	CH ₃	17.81	Me-14
				15	CH_2	126.26	2H-15
				1′	C	175.12†	
				2'	CH	41.13	H-2'
				3′	CH_2	26.76	H-3'a, H-3'B
				4′	CH ₃	11.62	Me-4'
				5′	CH_3	16.61	Me-5'
OMeBu				OAc	•		
2′	2.4 m	7	H-3', H-5'		C	168.93†	
3'-2H	1.6 m	7	H-2', H-4'		C	170.66†	a annual co
4'	0.9 t	7	H-3′		CH_3	20.79	OAcMe
5'	1.15 d	7	H-2'		CH_3	20.79	OAcMe
OAc	2.06 s				.,		
	2.17 s						

^{*} and † assignments may be interchangeable.

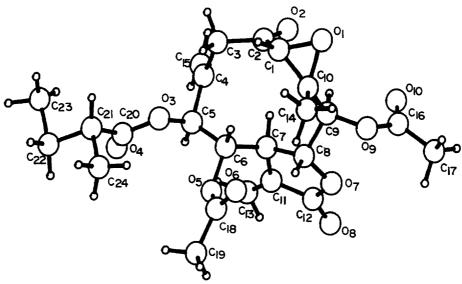


Fig. 1. PLUTO diagram of compound 1 along with crystallographic numbering of atoms.

standard; MS: Finnigan Mat-1020, Automatated GC/MS.

Plants collected during October 1991 near the National Chemical Laboratory Campus were shade dried and powdered. The powder (4 kg) was extracted

with Me₂CO to give an extract (190 g), a portion (100 g) of which was fractionated over silica gel (60–120 mesh) using Me₂CO-petrol as eluent in increasing proportions of Me₂CO. Eight broad fractions were collected: A (23 g), B (12 g), C (8 g), D (4 g), E (4.5 g), F

(5 g), G (7 g) and H (29 g). 500 mg of fraction (G) on acetylation at room temp. and repeated CC and prep. TLC yielded compound 1 (85 mg), 6β ,9 β -diacetoxy-4(15)-en-1 α ,10 α -epoxy-5 α -(2-methylbutyryloxy)-2-oxo-7,8 α -germacranolide (1), mp 200–2°; [α] $_{\rm D}^{2.5}$ + 12.25°; (c, 0.32, CHCl $_{\rm 3}$). IR $\nu_{\rm max}$ cm $^{-1}$: 1780 (C=O), 1760 (γ -lactone), 1745–1730 (CO $_{\rm 2}$ R), 1650 (unsaturation): 1 H and 13 C NMR Table 1; MS m/z. (rel. int.): 478 [M] $^{+}$ (0.5), 418 (2), 394 (2), 394 (0.8), 376 (2), 334 (2.2), 318 (2.2), 274 (4), 258 (3.5), 85 (17) and 57 (100).

X-ray analysis of compound 1

Single crystals of the compound were grown from Me₂CO-petrol (2:1).

Crystal data

 $C_{24}H_{30}O_{10}$, M=478.48 orthorhombic a=9.759(2), b=14.595(2), c=17.351(3) Å, V=2471.3(7) Å³, space group $P2_12_12_1$ (D₂ No. 19). $D_c=1.286$ g cm⁻³, Z=4 F(000)=1016 (25 machine centred reflection $12 \le \theta \le 18^\circ$). A colourless crystal of size $0.06 \times 0.12 \times 0.6$ mm was chosen for data collection. $\mu(\text{Mo-}K_z)=0.1$ mm⁻¹.

Data collection and processing

Enraf-Nonius CAD4 diffractometer, graphite monochromated Mo- K_2 radiation ($\lambda = 0.7107$ Å), ω -2 θ scan mode, (1.87 $\leq \theta \leq 23.37^{\circ}$), 2074 unique reflections 1636 with ($I \geq 2\sigma I$).

Structure solution and refinement

The structure was solved by direct methods (MULTAN-80) using NRCVAX programs [12]. Atomic co-ordinates are depicted in Table 2. Full matrix, least-squares refinement [13] on F^2 with all non-hydrogen atoms anisotropic, H-atoms geometrically determined and confirmed by a difference Fourier were held fixed during the refinement, converged to final $R_1[F^2 \ge 2\sigma(F)^2] = 0.0561$, wR, [all data] = 0.1703, $S(F^2) = 1.043$ for 2074 reflections and 308 refined parameters. The weighting scheme $w^{-1} = [\sigma^2 (F_0^2) + 0.1204 \text{ p}^2 + 0.6810 \text{ p}]. P = 1/3 \text{ [max]}$ $(F_o^2, O) + 2F_c^2$] gave satisfactory agreement analysis. An extinction correction [13] refined to 0.008(3) and the final ΔF synthesis showed no peaks outside the range $-0.262 \rightarrow +0.302$ eÅ⁻³. The PLUTO diagram of the molecule is depicted in Fig. 1.

Acknowledgement—The authors are thankful to the authorities of the Botanical Survey of India, Pune for the identification of the plant. A voucher specimen has been deposited in the national Chemical Laboratory herbarium.

Table 2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10$) for $C_{24}H_{30}O_{10}U(eq)$ is defined as one third of the trace of the orthogonalized Uij

	Х	у	Z	U(eq)
O(1)	6735(4)	8019(3)	435(3)	83(1)
O(2)	7335(4)	6343(3)	-319(2)	77(1)
O(3)	2701(3)	4935(3)	222(2)	58(1)
O(4)	2197(6)	3488(4)	157(8)	226(6)
O(5)	3596(3)	4942(2)	1735(2)	58(1)
O(6)	3091(5)	6333(3)	2173(3)	91(1)
O(7)	7437(4)	5684(3)	2378(2)	66(1)
O(8)	8203(5)	4320(3)	2742(3)	95(2)
O(9)	7801(4)	7407(3)	2017(3)	74(1)
O(10)	9803(5)	6920(6)	1577(4)	139(3)
C(1)	5719(6)	7362(4)	212(4)	68(2)
C(2)	6146(5)	6543(4)	-231(3)	60(1)
C(3)	4992(5)	5957(4)	-560(3)	60(1)
C(4)	4992(5)	4973(4)	-285(3)	55(1)
C(5)	4114(4)	4741(3)	400(3)	50(1)
C(6)	4434(5)	5306(3)	1120(3)	48(1)
C(7)	5960(4)	5276(3)	1334(3)	47(1)
C(8)	6415(5)	6070(3)	1861(3)	53(1)
C(9)	7089(5)	6867(4)	1431(3)	58(1)
C(10)	6091(6)	7517(4)	1045(3)	64(1)
C(11)	6497(5)	4447(3)	1739(3)	53(1)
C(12)	7450(6)	4770(4)	2337(3)	64 (1)
C(13)	6322(7)	3579(5)	1612(4)	87(2)
C(14)	5155(6)	8059(4)	1540(4)	80(2)
C(15)	5716(6)	4321(5)	-637(3)	74(2)
C(16)	9160(8)	7277(5)	2072(5)	89(2)
C(17)	9726(9)	7649(6)	2812(5)	119(3)
C(18)	2927(5)	5531(5)	2195(3)	65(1)
C(19)	1999(7)	5051(5)	2745(4)	89(2)
C(20)	1841(6)	4263(5)	136(5)	95(2)
C(21)	396(6)	4622(5)	-42(5)	104(3)
C(22)	-604(13)	3806(10)	-171(12)	319(17)
C(23)	-208(18)	3753(19)	-1009(10)	245(10)
C(24)	-194(13)	4900(12)	731(7)	194(7)

REFERENCES

- Dhaneshwar, N. N., Bhat, U. G., Nagasampagi, B. A. and Tavale, S. S., Acta Crystallographica, 1983, C39, 362.
- 2. Sawaikar, D. D., Rojatkar, S. R. and Nagasampagi, B. A., *Phytochemistry*, 1994, 37, 585.
- Purushothaman, K. K., Vasanth Sardha, Cox, P. J., Akinniyi, J. A., Connoly, J. D., Raycraft, D. S. and Sim, A. S., Journal of Chemical Research (S), 1981, 374, Journal of Chemical Research (M), 437.
- Purushothaman, K. K. and Vasanth Saradha, Indian Journal of Chemistry, 1986, 25B, 417.
- 5. Balakrishna, K., Vasanth Saradha, Bima Rao, R. and Purushothaman, K. K., *Indian Drugs*, 1989, **26**, 708.
- Vasanth Saradha, Kundu, A. B., Purushothaman,
 K. K., Patra, A., Vasantha Pattabhi and

- Connolly, J. D., Journal of Natural Products, 1990, 52, 354.
- 7. Vasanth Saradha, Kundu, A. B., Panda, S. K. and Patra, A., *Phytochemistry*, 1991, **30**, 3053.
- 8. Vasanth Saradha, Kundu, A. B. and Patra, A., *Journal of Natural Products*, 1992, **55**, 1149.
- 9. Chowdhary, B. L., Hussaini, F. A. and Shoeb, A., Journal of Crude Drug Research, 1990, 28, 121.
- 10. Hilderbrandt, R. L., Wieser, J. D. and Montgo-

- mery, L. K., Journal of the American Chemical Society, 1973, 95, 8598.
- 11. Cox, P. J. and Sim, G. A., Journal of the Chemical Society, Perkin Transaction, 2, 1974, 1355.
- Gabe, E. J., Page, Y.-Le., Charland, J. P., Lee, F. L. and White, P. S., Journal of Applied Crystallography, 1989, 22, 384.
- 13. Sheldrik, G. M., SHELXL-93, Program for the refinement of crystal structures. University of Gottingen, Germany, 1993.