

PII: S0031-9422(97)00907-2

FURTHER MONOTERPENE 5-METHYLCOUMARINS AND AN ACETOPHENONE DERIVATIVE FROM ETHULIA CONYZOIDES

AHMED A. MAHMOUD,* AHMED A. AHMED,* MUNEKAZU INUMA† and TOSHIYUKI TANAKA†

Department of Chemistry, Faculty of Science, El-Minia University, El-Minia, Egypt and † Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome. Gifu 502, Japan

(Received in revised form 1 September 1997)

Key Word Index—Ethulia conyzoides; Vernonieae; Asteraceae; monoterpene coumarins; monoterpene acetophenone derivative.

Abstract—Re-investigation of the aerial parts of *Ethulia convzoides* from Egypt afforded two new monoterpene 5-methylcoumarins, namely 5'-epi-isoethuliacoumarin B and 5'-epi-isoethuliacoumarin A, and a new monoterpene acetophenone derivative, ethuliaconyzophenone, in addition to the five known compounds, ethuliacoumarin, cycloethuliacoumarin, isoethuliacoumarin A, isoethuliacoumarin B and 4-hydroxy-5-methylcoumarin-4-*O*-β-D-glucopyranoside. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The genus *Ethulia* with ca 19 species is widely distributed in tropical Africa and less commonly in tropical Asia [1]. Among this genus, E. conyzoides L var. gracillis Asch, and Scheweinf, a wild growing Egyptian plant, is used in folklore medicine as an antihelminthic for round worms and for abdominal disorders [2, 3]. Only two species, E. conyzoides and E. vernonioides, have been chemically studied. Terpenoid 5-methylcoumarins [4-9] and some flavonoid glycosides were isolated [10]. In continuation of our studies on the chemical constituents of the genus *Ethulia* [11]. we have reinvestigated the aerial parts of the Egyptian species E. convzoides L.

RESULTS AND DISCUSSION

The methylene chloride-methanol (1:1) extract of the dried aerial parts of E. conyzoides afforded two new monoterpene 5-methylcoumarins, namely 5'-epiisoethuliacoumarin B (3a) and 5'-epi-isoethuliacoumarin A (4a), a new monoterpene acetophenone derivative (ethuliaconyzophenone) (5) and the known compounds ethuliacoumarin (1) [4], cycloethuliacoumarin (2) [4] isoethuliacoumarins B and A (3 and **4**) [5] and 4-hydroxy-5-methylcoumarin-4-*O*-β-D-glucopyranoside [6].

The molecular formula of 3a, C₂₀H₂₂O₅, was

deduced from the EI mass spectrum and confirmed

The EIMS spectrum of compound 4a showed a $[M]^+$ peak at m/z 342 corresponding to $C_{20}H_{22}O_5$ (confirmed by ¹³C NMR). Again, this molecular formula, together with the fragmentation pattern, indicated that we were dealing with an isomer of isoethuliacoumarin A (4) [5]. Comparison of the H

by the ¹³C NMR data. The MS fragmentation pattern was similar to that of isoethuliacoumarin B (3) previously isolated from the same species [5]. Two fragments at m/z 284 [M – Me₂CO]⁺ and 270 [M – Me₂C-=CHOH]⁺ supported the presence of an oxetane ring in 3a and indicated that it was an isomer of 3. The ¹H NMR spectra of 3 and 3a (Table 1) were very similar. However, the H-6' and H-2' signals at δ 4.57 and 6.26 in 3, were shifted upfield to δ 4.28 and 6.05, respectively, in 3a. These shift differences together with the downfield shift of the aromatic methyl H-9 $(\delta 2.85)$ indicated epimeric configuration at C-5' [4, 5, 8]. The stereochemistry at C-5' and C-6' in 3 and 3a was proved by NOE experiments with inspection of the molecular model. Thus, in the case of 3, clear effects were observed between H-6', H-8' and the aromatic methyl H-9 as well as between H-9, H-6 and H-6' while in 3a, irradiation of H-6' gave clear effects with H-9' and H-4'\u03c1 and no effect with H-9. Further NOEs were obtained in 3a between H-9', H-6' and H-8' and between H-10', H-4' β and H-2' as well as between H-8', H-9 and H-9'. The ¹³C NMR spectral data of 3 and 3a (Table 2) supported the structures. Therefore, 3a was identified as 5'-epi-isoethuliacoumarin B. Some closely related epimers were reported from an Indian collection of E. convzoides [8]. The structure and absolute configuration of one of these epimers have been established by X-ray analysis.

^{*}Author to whom correspondence should be addressed.

Table 1. 'H NMR spectral data of compounds 3a, 4a and 5 (400 MHz, CDCl₃, δ Values)

H	3a	4 a	5* 3.29 s	
3	enr			
6	7.05 br d	6.99 br d	6.70 br d	
7	7.36 dd	7.34 dd	7.21 dd	
8	7.16 br d	7.12 br d	6.75 br d	
9	2.85 br s	2.76 br s	2.52 br s	
1'c	5.14 d	5.22 m	5.05 d	
1′t	5.04 d	5.22 m	5.00 d	
2'	6.05 dd	6.21 dd	6.01 <i>dd</i>	
4',	2.26 d	2.23 d	2.96 s	
4'2	2.12 d	2.08 d	2.96 s	
6′	4.28 d	4.29 d	3.37 s	
8′	1.52 s	1.89 br s	1.43 s	
9′	1.48 s	5.18, 5.22 br s	$1.23 \ s$	
10′	1.61 s	1.59 s	1.24 s	
ОН	2.32 d†	$2.50 d^{\ddagger}$	$10.50 \ s$	

^{*}Assignment were confirmed by 'H-13C COSY

J (Hz): 6, 7 = 7, 8 = 8 Hz, $4'_1$, $4'_2$ = 14 Hz, 1't, 2' = 17 Hz, 1'c, 2' = 10 Hz.

NMR spectra of **4** and **4a** (Table 1) showed some characteristic differences. In the ¹H NMR spectrum of **4a**, H-1' and H-2' signals were shifted downfield to δ 5.22 and 6.21, respectively, while H-10' was shifted upfield to δ 1.59 compared with δ 1.73 in **4**. The signals of H-4'₁ (δ 2.23) and H-4'₂ (δ 2.08) in **4a** were also significantly downfield from those in **4**. These shift differences clearly indicated 5' α -OH [4, 5, 8]. The ¹³C

NMR spectra of 4 and 4a (Table 2) also supported the structures. Finally, oxidation of 4a by Jones reagent, gave the lactone previously obtained [4] from oxidation of isoethuliacoumarin A (4). Thus 4a was 5'-epi-isoethuliacoumarin B.

The ¹³C NMR spectrum of 5 (Table 2) displayed 19 carbon signals, instead of 20 as in 1-4. This was supported by the high-resolution positive ion FABmass spectrum which showed a $[M+1]^+$ peak at m/z317.4755 corresponding to $C_{19}H_{25}O_4$. While the aromatic signals (H-6, H-7, H-8 and H-9) in the ¹H NMR spectrum of 5 (Table 1) were similar to those in 1-4, the ¹³C NMR spectrum (Table 2) indicated the absence of C-2. Furthermore, the IR and 'H NMR spectral data (Table 1 and Experimental) showed the presence of a chelated hydrogen bond between a phenolic hydroxyl group (3500 cm⁻¹ and $\delta_{\rm H}$ 10.50) and an aromatic ketone (1632, 1608 cm⁻¹ and $\delta_{\rm C}$ 205.7). These differences indicated that 5 was a monoterpene linked with 2-hydroxy-6-methylacetophenone. The presence of trisubstituted oxirane ring at C-6' and C-7' was inferred from the H-6' signal at $\delta_{\rm H}$ 3.37 (1H, s) and $\delta_{\rm C}$ 65.9 (s) while C-7' resonated at δ 61.8. Whereas, the tertiary methyl H-8' (δ 1.43) and H-9' (δ 1.23), correlated with C-7' in the COLOC spectrum. The two (CH₂) singlet signals [(δ_H 3.29, δ_C 51.5 t) and (δ_H 2.96, $\delta_{\rm C}$ 48.6)] were assigned to the methylene groups C-3 and C-4', respectively, while the vinyl group signals were similar to those in 1-4. The tertiary methyl group $[\delta_H 1.24 (s), \delta_C 25.7 (q)]$ was assigned to C-10'. The assignments of all proton and carbon signals in 5 were established from the results of 2D ¹H-¹³C COSY together with COLOC experiments which also confirmed the connection between the monoterpene part

 $[\]dagger 6'$, OH = 8.5 Hz.

 $^{$^{1}6&#}x27;, OH = 3.5 \text{ Hz}.$

C	1	2	3	3a	4	4 a	5*
2	159.9 s	159.8 s	159.8 s	160.1 s	159.7 s	160.5 s	
3	106.3 s	107.5 s	106.4 s	106.1 s	107.6 s	104.8 s	51.5 t
4	160.0 s	160.1 s	160.5 s	160.9 s	160.6 s	161.2 s	205.7 s
4a	114.5 s	114.4 s	114.5 s	114.1 s	114.8 s	114.7 s	124.0 s
5	137.0 s	136.3 s	137.0 s	136.4 s	136.7 s	137.0 s	137.9 s
6	127.4 d	127.5 d	127.5 d	127.6 d	127.3 d	127.6 d	123.2 d
7	130.7 d	130.9 d	$130.0 \ d$	$131.0 \ d$	130.6 d	131.1 d	133.5 d
8	114.3 d	115.1 d	115.0 d	115.0 d	114.7 d	114.1 d	115.9 d
8a	153.7 s	154.0 s	154.1 s	154.0 s	153.8 s	154.0 s	159.7 s
9	23.8 q	23.6 q	23.9 q	22.2 q	24.0 q	23.7 q	23.7 q
1′	112.4 t	112.5 t	112.0 t	113.3 t	111.9 t	111.8 t	112.2 t
2′	145.0 d	143.1 d	142.8 d	143.1 d	146.0 d	144.4 d	145.0 d
3′	35.9 s	35.4 s	35.0 s	37.4 s	35.4 s	35.7 s	39.3 s
4′	41.7 t	39.8 t	40.5 t	45.2 t	40.8 t	38.6 t	48.6 t
5′	97.4 s	105.3 s	107.5 s	106.5 s	99.7 s	101.6 s	207.9 s
6'	66.4 d	63.5 d	78.6 d	76.4 d	$80.0 \ d$	78.7 d	65.9 d
7′	59.2 d	61.5 s	82.8 s	87.4 s	141.9 s	142.5 s	61.8 s
8′	24.9 q	69.9 1	28.6 q	28.6 q	17.9 q	20.3 q	24.7 q
9′	17.6 <i>q</i>	$13.3 \ q$	21.9 2 q	22.2 q	117.5 t	115.9 <i>t</i>	18.3 q
10′	25.0 q	25.6 q	$25.8 \ q^{-1}$	25.2 q	24.1 q	23.7 q	25.7 q

Table 2. ¹³C NMR spectral data of compounds 1–5 (100.6 MHz, CDCl₃ δ-values)

with the acetophenone moiety. The most important correlations were observed between H-3 and C-4a, between H-10' and C-3, C-2', C-4' as well as between H-6' and C-4', C-8', C-9'.

EXPERIMENTAL

Plant material

The aerial parts of *E. conyzoides* were collected on the Cairo-Alexandria road in May, 1996. A voucher sample is deposited in the Department of Botany, Faculty of Science, El-Minia University, Egypt.

Extraction and isolation

The air-dried aerial parts (4 kg) were powered and extracted with CH₂Cl₂-MeOH (1:1) at room temp. The extract (340 g) was prefractionated as reported [12] by CC on silica gel using gradient mixture of (petrol-Et₂O-MeOH) with increase polarity into five frs [fr. 1: petrol, fr. 2: petrol-Et₂O (9:1), fr. 3 petrol-Et₂O (1:1), fr. 4 petrol-Et₂O (1:9) and fr. 5 Et₂O-MeOH (9:1.5)]. Purification of fr. 2 by prep TLC (Et₂O-petrol 1:3) gave 2-hydroxy-6-methylacetophenone (50 mg). Fr. 3 was further separated by CC on silica gel (Et₂O-petrol 1:1) to afforded 1 (1 g), 2 (40 mg). One of subfr. 2 was further separated by CC on Sephadex LH-20 (hexane-CH2Cl2-MeOH) and purified by TLC eluted with (Et₂O-petrol 1:1) to give 5 (8 mg). Repeated separation of fr. 4 on CC silica gel and Sephadex LH-20 gave a mixt. of 3 and 3a (25 mg), and of 4 and 4a (100 mg). Further separation of the two mixts. using CC on Sephadex LH-20 (hexaneCH₂Cl₂–MeOH 7:4:0.5) followed by TLC (petrolether 1:1) afforded 3 (8 mg), 3a (6 mg), 4 (75 mg) and 4a (40 mg). Fraction 5 was further separated by CC on silica gel (hexane–CH₂Cl₂–MeOH) to afforded 4-hydroxy-5-methylcoumarin-4O- β -D-glucopyranoside (2 g).

5'-Epi-isoethuliacoumarin B (3a). White powder. IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3480 (OH), 1680 (C=O), 1600, 1560 (aromatic), 1460, 1200, 920, 860, 780; UV $\lambda^{\rm max}$ (CHCl $_3$, nm): 325 sh, 312, 292, 282; EIMS (direct inlet) 70 eV, m/z (rel. int.): 342 [M] $^+$ (C $_{20}$ H $_{22}$ O $_5$) (5), 324 [M $^-$ H $_2$ O] $^+$ (2), 284 [M $^-$ Me $_2$ C=O] $^+$ (3), 270 [M $^-$ Me $_2$ C=CHOH] $^+$ (35), 228 [270 $^-$ C $_2$ H $_2$ O] $^+$ (50), 177 (30), 135 (80), 95 (100); [α]D 26 $^+$ 33 (c 1.127, CHCl $_3$).

5'-Epi-isoethuliacoumarin A (4a). White powder. IR (max) cm⁻¹: 3470 (OH), 1690 (C=O), 1605, 1555 (aromatic), 1465, 1150, 910, 850, 780; UV λ^{max} (CHCl₃, nm): 322 sh, 308, 292, 280; EIMS (direct inlet) 70 eV, m/z (rel. int.): 342 [M]⁺ (C₂₀H₂₂O₃) (2), 324 [M-H₂O]⁺ (3), 271 [M-MeC(=CH₂)CHOH]⁺ (55), 229 [271-C₂H₂O]⁺ (50), 177 (30), 135 (80), 95 (100).

Ethuliaconyzophenone (5). Oil. IR (CDCl₃) cm⁻¹: 3550 (OH), 1708 (C=O), 1632, 1608 (aromatic ketone, hydrogen bridge), 1576, 1454, 1226, 924; UV λ^{max} (CHCl₃, nm): 240 sh, 265, 291 sh, 324; HR-FABMS 317.4755 (calc. for C₁₉H₂₄O₄, 317.4025); FABMS (direct inlet) m/z (rel. int.): 317 [M+H]⁺ (15), 299 [M-H₂O+H]⁺ (8), 245 [M-Me-₂C(O)CH—]⁺ (90), 229 (8), 203 245 [M-Me-₂C(O)CHCOCH₂—]⁺ (10), 185 (65), 135 (80); [α]D²⁶+32 (c 0.125, CHCl₃).

^{*} Assignments were confirmed by ¹H-¹³C COSY and COLOC experiments. Multiplicities were deduced from DEPT experiments.

REFERENCES

- Anderberg, A. A. In Asteraceae, Cladistic & Classification, ed. K. Bremer, Timber Press, Portland, Oregon, 1995, p. 220.
- 2. Mahmoud, Z. F., Sarg, T. M., Amer, M. E. and Khafagy, S. M., *Pharmazie*, 1983, **38**, 486.
- 3. Watt, J. M. and Breyer-Brandwijk, M. C., *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, 2nd edn, E. S. Livingestone Ltd., London, 1962, p. 228.
- 4. Bohlmann, F. and Zdero, C., *Phytochemistry*, 1977, **16**, 1092.
- Balbaa, S. I., Halim, A. F., Halaweish, F. T. and Bohlmann, F., *Phytochemistry*, 1980, 19, 1519.
- 6. Mahmoud, Z. F., Sarg, T. M., Amer, M. E.,

- Khafagy, S. M. and Bohlmann, F., Phytochemistry, 1980, 19, 2029.
- 7. Bohlmann, F., Balbaa, S. I., Halim, A. F. and Halaweish, F. T., *Phytochemistry*, 1981, **20**, 177.
- 8. Shukla, V. S., Dutta, S. C., Baruah, R. N., Sharma, R. P., Thyagarajan, G., Herz, W., Watanabe, K. and Blount, J. F., *Phytochemistry*, 1982, **21**, 1725.
- 9. Schuster, N., Christiansen, C., Jakupovic, J. and Mungai, M., *Phytochemistry*, 1992, **34**, 1179.
- Mahmoud, A. A., Ahmed, A. A., Iinuma, M., Tanaka, T. and Muraoka, O., Tetrahedron Letters, 1994, 35, 6517.
- Balbaa, S. I., Halim, A. F. and Halaweish, F. T. Fitoterapia, 1981, 52, 75.
- 12. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H., *Phytochemistry*, 1984, 23, 1979.