PII: S0031-9422(97)00893-5

QUASSINOIDS FROM AILANTHUS VILMORINIANA

KOICHI TAKEYA,* HIDEYUKI KOBATA, AKIRA OZEKI, HIROSHI MORITA and HIDEJI ITOKAWA

Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

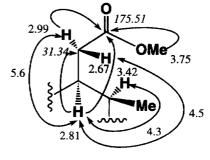
(Received in revised form 23 September 1997)

Key Word Index—Ailanthus vilmoriniana; Simaroubaceae; quassinoid; vilmorinine; spectroscopic analysis.

Abstract—Five new quassinoids, named vilmorinines B-F, have been isolated from the cortex of Ailanthus vilmoriniana. Their structures were established by various spectroscopic methods. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In the course of a search for new antitumour substances from higher plants [1], especially Simaroubaceae [2-6], the crude extract of Ailanthus vilmoriniana showed cytotoxic activity against P388 leukaemia cells. In a previous study [7], a new quassinoid named vilmorinine A was obtained from this plant. Further investigation led us to isolate five novel quassinoids, vilmorinines B (1)-F (5). In this paper, their structural elucidation is reported.


RESULTS AND DISCUSSION

The methanolic extract prepared from the cortex of A. vilmoriniana was partitioned between CH₂Cl₂ and H₂O. The CH₂Cl₂-soluble material was subjected to silica gel CC (CH₂Cl₂-MeOH) to give eight fractions. Further purification of each fraction furnished five new quassinoids, vilmorinines B (1)-F (5).

Vilmorinine B (1) showed the partial structures of an α,β -unsaturated carbonyl group, two lactone groups and one ester carbonyl group (IR, UV and ¹³C NMR). Further, the proton signals of Me-19, Me-21, Me-18, OMe, H-3(olefinic) and H₂-20 were observed. From the observed data, and the ¹H-¹H and ¹H-¹³C long range coupling correlations (Fig. 2), 1 was characterized as the C₁₁—C₁₂ bond-cleaved quassinoid shown in Fig. 1. The stereochemistry of 1 was estab-

spectral data similar to those of 1, but no OMe signal was observed in the NMR spectrum of 2 and the [M]+ peak was 14 amu less than that of 1. These findings

Fig. 1. Quassinoids isolated from Ailanthus vilmoriniana.

²J_{C,H} and ³J_{C,H} correlations

coupling correlations (J/Hz)

Fig. 2. Partial structure of vilmorinine B (1).

lished by NOESY as shown in Fig. 3. Vilmorinine C (2) gave IR, UV, MS and NMR

 OR_3 20 $\mathring{\mathsf{R}}_2$ H 18 \mathbf{R}_2 R. R. R_4 βΟΗ αH Me βМе 2 β OH αΗ Н β Me 3 αOH β Me αH H 4 β OH βH Η β Me β OH βH Η αMe

^{*} Author to whom correspondence should be addressed.

566 Short Report

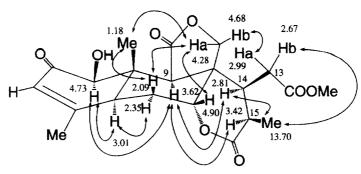
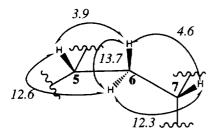
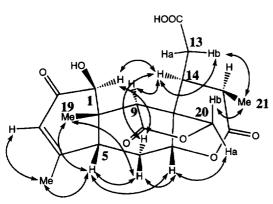




Fig. 3. NOE correlations of vilmorinine B (1).

: coupling correlations (J/Hz)

: Fractional NOE relationships from NOESY spectrum

Fig. 4. ¹H-¹H Coupling and NOE correlations of vilmorinine E (4).

show that vilmorinine C(2) has the structure as shown in Fig. 1.

Vilmorinine D (3) gave the same [M]⁺ peak as 2. IR, UV, MS and NMR spectral data were similar to those of 2, but the C-1 chemical shift of 3 was shifted more upfield (8.6 ppm) than that of 2. Consequently, vilmorinine D (3) was determined to be the 1-epimer of 2 (Fig. 1).

Vilmorinine E (4) also gave the same [M]⁺ peak as 2. Its IR, UV, MS and NMR spectral data were similar to those of 2, but the NOE correlations between Me-19 and H-5, Me-19 and H-6 β , H-1 and H-6 α , H-1 and H-14 and H-14 and H-6 α (Fig. 4) suggested that vilmorinine E (4) was the 5-epimer of 2.

Vilmorinine F (5) also had the same [M]+ peak as

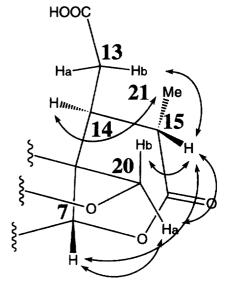


Fig. 5. Partial NOE correlations of vilmorinine F (5).

2. Its IR, UV, MS and NMR spectral data were similar to those of 4, but the NOESY spectrum of 5 did not show the NOE correlations between Me-21 and H- 13β , and H-21 and Hb-20 which were observed in vilmorinines B (1)-E (4). Vilmorinine F (5) was confirmed to be the 15-epimer of 4 by NOESY (Fig. 5).

Vilmorinines A (1)—F (5) are probably biosynthesized by lactonization between 7-OH and 12-COOH of a quassinoid such as vilmorinine A [7] which is formed by oxidative cleavage of the C—11/C—12 bond of a quassinoid such as chapparine [8].

EXPERIMENTAL

General

M.p.s: uncorr; ¹H and ¹³C NMR: pyridine- d_5 with TMS as int. standard, Bruker AM400 or AM500. ¹³C Multiplicities were determined by the DEPT pulse sequence. 2D-NMR: NOESY, HMQC, HMBC; EI-MS (70 eV) and FAB-MS (8 kV, glycerol): VG Auto-Spec E or Finnigan MAT TSQ-700; IR: KBr or CHCl₃; UV: MeOH; Prep. HPLC: 10 μ m ODS col-

Table 1. ¹³C- and ¹H-NMR chemical shifts for vilmorinines B (1)-F (5)

İ	δ_{c}	$\delta_{\rm H}$ mult. $(J/{\rm Hz})$	δ_{C}	Vilmorinine C (2) $\delta_{\rm H}$ mult. (J/Hz)	$\delta_{ m c}$	Vilmorinine D (3) $\delta_{\rm H}$ mult. (J/Hz)	δ_c	Vilmorinine E (4) $\delta_{\rm H}$ mult. ($J/{\rm Hz}$)	$\delta_{ m c}$	Vilmorinine F (5) $\delta_{\rm H}$ mult. (J/Hz)
	84.65 d	4.73 s	84.58 d	4.78 s	76.00 d	4.57 s	75.22 d	4.98 s	74.82 d	5.03 s
	197.49 s		197.50 s		196.92 s		s 60.861		198.28 s	
	126.88 d	6.15 br s	126.82 d	6.13 br s	125.55 d	6.10 br s	124.88 d	6.00 s	124.82 d	6.03.8
	160.30 s		160.49 s		159.93 s		160.87 s		161.03 d	
	40.87 d	3.01 br d (12.5)	40.96 d	3.08 br d (12.6)	34.62 d	3.35 br d (13.7)	47.19 d	2.61 dd (12.6, 3.9)	47.33 d	2.61 dd (12.6, 4.2)
	25.97 t	$2.35(\alpha) ddd (15.6, 2.4, 2.4)$	25.99 t	2.36(x) br $d(15.0)$	26.12 t	$2.40 (\alpha) ddd (15.0, 2.7, 2.7)$		2.04 (x) ddd (13.7, 12.6,	31.517	2.10 (x) ddd (13.5, 12.7,
		$2.09 (\beta) ddd (15.6, 12.5,$		2.10 (<i>β</i>) ddd (15.0, 12.6,		2.10 (b) ddd (15.0, 13.7,		12.3)		12.7)
		2.4)		2.4)		2.9)		2.33 (β) ddd (13.7, 4.6, 3.9)	£	2.34 (b) ddd (13.7, 4.4.
										4.2)
	75.64 d	4.90 br s	75.75 d	4.97 br s	76.38 d	4.98 br s	79.51 d	4.80 dd (12.3, 4.6)	P 60.64	4.78 dd (12.2, 4.4)
	45.73 s		45.80 s		44.92 s		46.24 s		30.00 s	
	54.25 d	3.62 s	54.26 d	3.82 s	48.30 d	4.23 s	45.66 d	3.88 br s	46.22 d	4.01 s
	44.99 s		44.99 s		42.34 s		42.95 s		42.82 s	
	172.72 s		176.01 s		176.69 s		174.69 s		175.15 s	
	175.51 s		174.83 s		174.94 s		174.37 s		170 00 x	
	31.34 t	2.99 (a) dd (17.1, 4.5)	31.98 1	3.02 (a) dd (17.2, 4.7)	32.16 t	3.77 (a) dd (16,9, 4.7)	31.44 (3.84 (a) m	34.51	3.62 (a) m
		2.67 (b) dd (17.1, 5.6)		2.78 (b) dd (17.1, 5.0)		3.03 (b) dd (16.9, 4.6)		2.96 (b) dd (16.4, 12.4)		2.76 (b) dd (12.5, 8.8)
	40.57 d	2.81 ddd (5.6, 4.5, 4.3)	40.56 d	2.95 m	41.61 d	3.03 m	32.17 d	3.80 m	35.05 d	3.58 m
	36.90 d	3.42 dq (6.5, 4.3)	31.34 d	3.47 m	36.94 d	3.42 dqd (6.8, 3.9)	36.66 d	3.71 m	40.75 d	2.72 m
	172.23 s		172.49 s		172.34 s		172.35 s		171.47 s	
	22.15 q	1.77 s	22.16 q	1.77 s	22.16 q	1.74 s	22.31 q	1.84 s	22.38 a	1.84 s
	10.70 q	1.18 s	10.66	1.18 s	14.82 q	1.17 s	18.14 9	1.68 s	17.98 q	1.67 s
	69.41 t	4.28 (a) d (10.6)	1 19.69	4.32 (a) d (10.5)	72.81 1	4.37 (a) d (10.4)	67.45 t	4.53 (a) d (9.0)	67.27 t	4.63 (a) d (9.1)
		4.68 (b) d (10.6)		4.83 (b) d (10.5)		4.90 (b) d (10.4)		4.41 (b) d (9.0)		4.33 (b) d (9.1)
21	13.70 q	1.30 d (6.5)	13.86 q	1.42 d (6.8)	13.74 9	1.38 d (6.8)	14.90 q	1.41 d (7.9)	15.17 q	1.64 d (6.8)

Measurements were performed on pyridine- d_s at 400 MHz. ¹³ C Multiplicities were established by each DEPT pulse sequence.

umn; MPLC: $20 \mu m$ ODS column; Kieselgel 60; Anal. TLC: silica gel $60F_{254}$ and RP-18 F_{254} (0.25 mm) precoated plates. Spot detection: UV light at 254 nm and/or spraying with $10\%~H_2SO_4$.

Plant material

The cortices of Ailanthus vilmoriniana were collected at Emeishan, Sichuan Province, People's Republic of China, in 1994. The botanical identification was made by Dr Zhi-Sheng Qiao, Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai, China. A voucher specimen has been deposited in the herbarium of Tokyo University of Pharmacy and Life Science.

Extraction and isolation

The cortices of A. vilmoriniana (7.0 kg) were extracted with MeOH (30 l) three times. The MeOH extract (864 g) was partitioned between CH₂Cl₂ and H₂O. 95 g of CH₂Cl₂-soluble fraction (170 g) was subjected to silica gel CC using a CH₂Cl₂-MeOH (1:0-0:1) gradient system to give 8 frs.

The fourth fraction (78 g) was applied to a silica gel column chromatography using a *n*-hexane–EtOAc (20:1–1:1) gradient system to furnish 7 frs. The last fraction was applied to ODS MPLC and HPLC (MeOH–H₂O or MeCN–H₂O solvent system) to give vilmorinines C (2, 22.1 mg), D (3, 7.7 mg), E (4, 26.1 mg) and F (5, 2.3 mg).

The fifth fraction (23 g) was subjected to ODS MPLC using MeOH-H₂O (9:11) solvent system to give 6 frs. The first fraction was applied to silica gel MPLC using a *n*-hexane-EtOAc (20:1-1:1) gradient system to give vilmorinine B (1, 45.8 mg).

Vilmorinine B (1). Colourless amorphous powder, m.p. 178–181°, $[α]_D + 40^\circ$ (c 0.35, MeOH). UV $λ_{max}$ (MeOH) nm (log ε): 238 (3.6); IR v^{CHCl_3} cm⁻¹: 3465, 1770, 1741, 1682, 1263, 1024; FAB-MS m/z: 407 ([M+H]⁺, Calcd for $C_{21}H_{27}O_8$: 407.1705, Found: 407.1709); ¹H and ¹³C NMR (pyridine- d_5): Table 1.

Vilmorinine C (2). Colourless needles, m.p. 222–224°, $[\alpha]_D + 14^\circ$ (c 0.25; MeOH). UV λ_{max} (MeOH)

nm (log ε): 238 (3.7); IR v^{KBr} cm⁻¹: 3400, 1740, 1680, 1260, 1200; FAB-MS m/z: 393 ([M+H]⁺, Calcd for $C_{20}H_{25}O_8$: 393.1549, Found: 393.1520); ¹H and ¹³C NMR (pyridine- d_5): Table 1.

Vilmorinine D (3). Colourless needles, m.p. 238–240°, [α]_D –51° (c 0.25, MeOH). UV $\lambda_{\rm max}$ (MeOH) nm (log ϵ): 240 (3.8); IR $\nu^{\rm KBr}$ cm⁻¹: 3450, 1740, 1730, 1680, 1260, 1220; FAB-MS m/z: 393 ([M+H]⁺, Calcd for C₂₀H₂₅O₈: 393.1549, Found: 393.1535); ¹H and ¹³C NMR (pyridine- d_5): Table 1.

Vilmorinine E (4). Colourless needles, m.p. 184–186°, $[\alpha]_D$ – 34° (c 0.06, MeOH). UV λ_{max} (MeOH) nm (log ε): 237 (3.8); IR ν^{KBr} cm⁻¹: 3450, 1750, 1680, 1220; FAB-MS m/z: 393 ([M+H]⁺, Calcd for $C_{20}H_{25}O_8$: 393.1549, Found: 393.1554); ¹H and ¹³C NMR (pyridine- d_5): Table 1.

Vilmorinine *F* (**5**). Colourless needles, m.p. 251–254°, $[\alpha]_D$ +67° (*c* 0.02, MeOH). UV λ_{max} (MeOH) nm (log ε): 238 (3.7); IR ν^{KBr} cm⁻¹: 3400, 1740, 1680, 1260, 1200; FAB-MS m/z: 393 ([M+H]⁺, Calcd for C₂₀H₂₅O₈: 393.1549, Found: 393.1547); ¹H and ¹³C NMR (pyridine- d_5): Table 1.

Acknowledgement—The authors are grateful to the Ministry of Education, Science and Culture, Japan for financial support through Grant-in-Aid for General Scientific Research.

REFERENCES

- 1. Itokawa, H. and Takeya, K., *Heterocycles*, 1993, **35**, 1467.
- 2. Morita, H., Kishi, E., Takeya, K., Itokawa, H. and Tanaka, O., *Chem. Lett.*, 1990, 749.
- Itokawa, H., Kishi, E., Morita, H. and Takeya, K., Chem. Pharm. Bull., 1992, 40, 1053.
- 4. Morita, H., Kishi, E., Takeya, K., Itokawa, H. and Iitaka, Y., *Phytochemistry*, 1993, 33, 691.
- Itokawa, H., Qin, X.-R., Morita, H. and Takeya, K., J. Nat. Prod., 1993, 56, 1766.
- Takeya, K., Kobata, H., Morita, H., Qin, X.-R. and Itokawa, H., Natural Medicines, 1996, 50, 368.
- 7. Takeya, K., Kobata, H., Ozeki, A., Morita, H. and Itokawa, H., *J. Nat. Prod.*, 1997, **60**, 642.
- 8. Aono, H., Koike, K., Kaneko, J. and Ohmoto, T., *Phytochemistry*, 1994, **37**, 579.