

PII: S0031-9422(97)01032-7

NEO-CLERODANE DITERPENOIDS FROM SCUTELLARIA LATERIFLORA

Maurizio Bruno,† Maria Cruciata,† Maria Luisa Bondi,† Franco Piozzi, María C. de la Torre,‡
Benjamín Rodríguez,‡* and Orietta Servettaz§

Dipartimento di Chimica Organica "E. Paternò", Università di Palermo, Archirafi 20, 90123 Palermo, Italy; † Istituto di Chimica e Tecnologia dei Prodotti Naturali-Consiglio Nazionale delle Ricerche (ICTPN-CNR), via Ugo La Malfa 153, 90146 Palermo, Italy; ‡ Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain; § Dipartimento di Biologica, Università di Milano, Celoria 3, 20132 Milano, Italy

(Received 17 October 1997)

Key Word Index—*Scutellaria lateriflora*; Labiatae; neo-clerodane diterpenes; scutelaterins A—C; ajugapitin; scutecyprol A.

Abstract—Three new diterpenoids, scutelaterins A—C, have been isolated from Scutellaria lateriflora and their structures established as $(11S,13S,16S)-2\beta,6\alpha,19$ -triacetoxy- $4\alpha,18;11,16;15,16$ -triepoxy-neo-clerod-14-ene (scutelaterin A), $(11S,13S,16S)-6\alpha,19$ -diacetoxy- 2β -(2'-methyl)butyryloxy- $4\alpha,18;11,16;15,16$ -triepoxy-neo-clerod-14-ene (scutelaterin B) and (11S,13S,15R) and

INTRODUCTION

In continuation of our systematic studies of neo-clerodane diterpenoids within the genus *Scutellaria* [1-4], we have investigated the aerial parts of *S. lateriflora*. We report here on the isolation and structure determination of three new diterpenes (scutelaterins A-C) as well as the identification of the already known neoclerodanes ajugapitin and scutecyprol A.

RESULTS AND DISCUSSION

An acetone extract of the aerial parts of *S. lateriflora* was subjected to extensive chromatography (see Experimental) to yield the already known neoclerodane diterpenoids ajugapitin (1) [5] and scutecyprol A (2) [6, 7], the latter as a mixture of the C-15 epimers, the 15*R* form of which was previously known as clerodin hemiacetal [7, 8]. In addition, three new neo-clerodanes, scutelaterins A-C (3-5, respectively) were also isolated from the same plant and their structures established as follows.

Scutelaterin A (3) was assigned the molecular formula $C_{26}H_{36}O_9$ and its IR spectrum showed absorptions for vinyl ether (3100, 1615 cm⁻¹) and ester (1730, 1240 cm⁻¹) groups and was devoid of hydroxyl

absorptions. The ¹H and ¹³C NMR spectra of 3 (Tables 1 and 2, respectively) revealed the presence of three acetoxyl groups and characteristic signals of a neo-clerodane diterpene [$\delta_{\rm H}$ 0.84 d, 3H, J=6.3 Hz (Me-17) and 0.96 s, 3H (Me-20); $\delta_{\rm C}$ 16.4 q (C-17) and 13.9 q (C-20)] having a 4α , 18-oxirane [$\delta_{\rm H}$ 2.29 d, 1H, $J_{\text{gem}} = 3.9 \text{ Hz} (H_A-18) \text{ and } 3.10 \text{ } dd, 1H, J_{\text{gem}} = 3.9 \text{ Hz},$ $J_{18B,3\alpha} = 2.1 \text{ Hz (H}_B-18); \delta_C 61.4 \text{ s (C-4)} \text{ and } 49.7 \text{ t (C-4)}$ 18)], an esterified 6α -hydroxyl group ($\delta_{H-6\beta}$ 4.74 dd, $J_{6\beta,7\alpha} = 11.3$ Hz, $J_{6\beta,7\beta} = 4.5$ Hz; δ_{C-6} 72.1 d), a C-19 acyloxy grouping ($\delta_{\rm H}$ 4.36 d and 4.85 d, $J_{\rm gem}=12.5$ Hz; δ_{C-19} 61.7 t) and a tetrahydrofurofuran moiety involving C-11-C-16 carbons. The presence of a C-14, C-15 olefinic double bond in this structural part was revealed by the ¹H NMR signals at δ 4.79 (1H, t, $J_{14,13} = J_{14,15} = 2.5$ Hz, H-14) and 6.44 (1H, t, $J_{15,13} = J_{15,14} = 2.5$ Hz), and the carbon atom resonances at δ 101.8 d (C-14) and 146.9 d (C-15). All these functionalities have been found in several neoclerodane derivatives previously isolated from Scutellaria species [1-8].

In addition, scutelaterin A (3) possessed the third acetoxyl group attached to the C-2 β axial position of the neo-clerodane nucleus ($\delta_{\rm C}$ 70.6 d, geminal proton as a quintuplet at δ 5.16, J=2.9 Hz), as was revealed by the small coupling values of its geminal proton with the C-1 and C-3 methylene protons (Table 1). This was also in agreement with double resonance experiments, because irradiation at δ 5.16 (H-2 α)

^{*} Author to whom correspondence should be addressed.

688 M. Bruno et al.

*, Mixture of 15R and 15S forms.

transformed the signal of the H-3 α axial proton (δ 2.38 dd, $J_{3\alpha,3\beta} = 14.6$ Hz, $J_{3\alpha,2\alpha} = 2.9$ Hz, $J_{3\alpha,18B} = 2.1$ Hz) into a double doublet ($J_{3\alpha,3\beta} = 14.6$ Hz, $J_{3\alpha,18B} = 2.1$ Hz) and the signal of the H-1 β equatorial proton (δ 2.45 ddd, $J_{1\beta,1\alpha} = 15.6$ Hz, $J_{1\beta,2\alpha} = 2.8$ Hz, $J_{1\beta,10\beta} = 2.9$ Hz) into another double doublet (J = 15.6 and 2.9 Hz). Comparison of the ¹³C NMR spectrum of 3 (Table 2) with those of other 2-acetoxy-neo-clerodane derivatives [4, 9, 10] further supported the presence of a 2 β -acetoxyl group in scutelaterin A (3).

Scutelaterin B (4, C₂₉H₄₂O₉) gave ¹H and ¹³C NMR spectra almost identical with those of scutelaterin A (3, C₂₆H₃₆O₉, see Tables 1 and 2) and the observed differences were consistent with the presence in 4 of a 2-methylbutanoyloxy substituent [$\delta_{\rm H}$ 2.32 sext, 1H, J = 7.1 Hz (H-2'), 0.91 t, 3H, J = 7.4 Hz (Me-4') and1.13 d, 3H, J = 7.1 Hz (Me-5'); δ_C 175.3 s (C-1'), 41.4 d (C-2'), 26.7 t (C-3'), 11.7 q (C-4') and 16.6 q (C-5')] [1] instead of one of the acetoxyl groups of 3. The HMBC spectrum of 4 showed correlations through three bonds between the carboxyl carbon belonging to the 2-methylbutanoate (δ 175.3 s) and the H-2 α proton (δ 5.19 quint, J = 2.9 Hz), whereas the carboxyl carbons of the acetates at δ 170.6 s and 170.1 s correlated with the C-19 methylene (δ 4.36 d and 4.85 d, $J_{\text{gem}} = 12.4 \text{ Hz}$) and the C-6 β methine (δ 4.73 dd, J = 11.7 and 4.6 Hz) protons, respectively. These results firmly supported structure 4 for this new diter-

Scutelaterin C (5) was homogeneous on TLC and its ¹H and ¹³C NMR spectra (see Experimental) showed

essentially the same signals as those present in the spectra of 4 (Tables 1 and 2). The observed differences between the NMR spectra of 5 and 4 were in agreement with the former being a mixture of the C-15 epimers of the 14,15-dihydro-15-hydroxy derivative of 4 [1, 4, 6, 7]. Treatment of 5 with an excess of Jones' reagent gave the lactone 6 (C₂₉H₄₂O₁₀, see Tables 1 and 2 and Experimental) by oxidation of the C-15 hemiacetal [1, 4, 6, 7], whereas treatment of 4 with the same reagent also yielded 6, but in this case by an initial addition of water to the 14,15-vinyl ether [1, 4, 7, 8] followed by oxidation of the resulting C-15 hemiacetal. This correlation supported structure 5 for scutelaterin C.

The absolute configuration of compounds 3-6 was not ascertained. However, we assume that, on biogenetic grounds, these compounds belong to the neoclerodane [11] class, like other diterpenes isolated from *Scutellaria* species [2, 3, 4, 7]. In addition, for the above reasons, the absolute stereochemistry at the C-2 stereogenic centre of the 2-methylbutyrate part of 4, 5 and 6 is probably 2S [12, 13].

EXPERIMENTAL

General

Mps uncorr. Scutellaria lateriflora L. was cultivated in the 'Orto Botanico dell'Università di Milano' at Tuscolano (Brescia, Italy). Seeds of the species were provided by the 'Jardin Botanique de Montréal',

Table 1. H NMR spectral data for compounds 3, 4 and 6 [CDCl₃, δ values relative to residual CHCl₃ (δ 7.25)]*

Н	3†	4 ‡	6 §	J(Hz)	3†	4 ‡	6 §
lα	¶	1.87 <i>ddd</i>	4	1α,1β	15.6	15.7	9
1β	2.45 ddd	2.43 ddd	¶	$1\alpha,2\alpha$	2.9	2.9	2.8
2α	5.16 quint	5.19 <i>quint</i>	5.14 quint	$1\alpha, 10\beta$	13.0	13.2	•
3α	2.38 ddd	2.39 ddd	¶ .	$1\beta,2\alpha$	2.9	2.9	2.8
3β	¶	1.29 dd	•	$1\beta,10\beta$	2.8	2.8	•
6β	4.74 dd	4.73 dd	4.70 dd	$2\alpha,3\alpha$	2.9	2.9	2.8
7α	¶	~1.65¶	¶:	$2\alpha,3\beta$	2.9	2.9	2.8
7β	9	~1.46¶	Ÿ.	$3\alpha,3\beta$	14.6	14.5	¶
8β	Í	~1.46¶	¶	$3\alpha, 18B\ddagger\ddagger$	2.1	2.1	2.1
10β	2.09 dd	2.09 dd	Ÿ	6β ,7 α	11.3	11.7	11.3
11α	4.01 dd	4.01 dd	4.09 dd	$6\beta,7\beta$	4.5	4.6	4.8
12A	¶.	~1.65¶	9	6β,19A	0	0	~0.5
12B	Ť	1.76 ddd	Ÿ	8β,17	6.3	6.6	6.3
13β	3.49 m#	3.44 m#	3.04 m**	$11\alpha,12A$	4.9	4.5	5.3
14Å	4.79 t	4.78 t	~2.35¶	11α,12A	11.3	11.8	11.7
14B			2.84 dd	12A,12B	•	11.8	•
15	6.44 t	6.43 t		$12B, 13\beta$	Ÿ	8.1	9
16β	5.98 d	5.95 d	5.97 d	$13\beta,14$	2.5	2.7	•
Ме-17	0.84 d	0.83 d	0.84 d	$13\beta, 15$	2.5	2.4	
18 A ††	2.29 d	2.27 d	2.25 d	$13\beta,14B$			10.5
18B‡‡	3.10 dd	3.08 dd	3.05 dd	$13\beta, 16\beta$	6.2	6.1	5.5
19 A	4.36 d	4.36 d	4.35 br d	14A, 14B			18.4
19 B	4.85 d	4.85 d	4.81 d	14,15	2.5	2.7	
Me-20	0.96 s	$0.97 \ s$	0.94 s	18A,18B	3.9	3.9	4.1
2β-OAc	2.03 s	_		19A,19B	12.5	12.4	12.5
6α-OAc	1.95 s	1.94 s	1.92 s	2′,3′A		7.1	•
19-OAc	2.09 s	$2.08 \ s$	2.06 s	2',3'B		7.1	•
2'		2.32 <i>sext</i>	~2.30¶	2',5'		7.1	7.0
- 3' A	_	~1.46¶	9	3'A,3'B		9	¶
3′ B		~1.65¶	ġ	3'A,4'		7.4	7.4
Me-4′	_	$0.91 \ t$	0.89 t	3'B,4'	_	7.4	7.4
Me-5'	_	1.13 d	1.10 d	-,,			

^{*} Spectral parameters were obtained by first-order approximation.

Montreal, Canada. Plant materials were collected in July 1996 and voucher specimens have been deposited in the Herbarium of the Dipartimento di Biologia, University of Milan, Italy.

Extraction and isolation of the diterpenoids

Air-dried and powdered aerial parts of S. lateriflora L. (3.75 kg) were extracted with Me₂CO (3 × 10 l) at room temp. for one week. The extract (151 g) was subjected to CC (silica gel, Merck No. 7734, deactivated with 10% H₂O, w/v, 800 g) eluting with a petrol–EtOAc gradient. The frs eluted with petrol–EtOAc (7:3) were rechromatographed [CC, silica gel,

CH₂Cl₂-petrol (9:1) as eluent] yielding scutelaterin C (5, 25 mg). The fractions eluted with petrol–EtOAc (3:2) gave, after radial chromatography [silica gel disk, CH₂Cl₂-MeOH (24:1) as eluent], scutelaterin B (4, 80 mg). Radial chromatography (as above) of the fractions eluted with EtOAc-petrol (1:1) successively yielded scutelaterin A (3, 20 mg) and ajugapitin (1, 200 mg). Finally, the fractions eluted with EtOAc-petrol (4:1) were rechromatographed [CC, silica gel, CH₂Cl₂-petrol (9:1) as eluent] giving scutecyprol A (2, 50 mg). All chromatographic fractions containing the diterpenes were decolourized by filtration through a pad of a mixt. (1:1) of activated charcoal and celite, eluting with EtOAc.

[†] At 300 MHz.

[‡] At 500 MHz.

[§] At 200 MHz.

[¶] Overlapped signal. In the case of 4, approximate δ values for overlapped protons were assigned from the HMQC spectrum.

 $^{\#} W_{1/2} = 16 \text{ Hz}.$

^{**} $W_{1/2} = 20 \text{ Hz}.$

^{††} Exo hydrogen with respect to ring B.

^{‡‡} Endo hydrogen with respect to ring B.

Table 2	13C NMR	spectral	data	for compo	unds 3	4 and 6*
Table 2.	C. INIVIR	SUCCULA	uata	ioi comina	11111115 .7.	• and •

C	3	4	6	C	3	4	6
1	26.9 t	27.3 t	27.2 1	16	107.6 d	107.6 d	106.4 d
2	70.6 d	70.2 d	70.3 d	17	16.4 q	16.2 q	16.2 q
3	36.7 t	36.9 t	36.8 t	18	49.7 t	49.7 t	49.6 t
4	61.4 s	61.4 s	61.3 s	19	61.7 t	61.8 t	61.7 t
5	45.1 s	4 5.1 <i>s</i>	45.0 s	20	13.9 <i>q</i>	13.9 q	13.7 q
6	72.1 d	72.2 d	71.9 d	OAc	170.7 s	170.6 s†	170.4 s
7	33.3 t	33.3 t	33.2 t		170.1 s	170.1 s‡	169.9 s
8	36.2 d	36.4 d	36.2 d		170.0 s	21.2 q	21.0 q
9	39.6 s	39.7 s	39.9 s		21.0 q	21.1 q	21.0 q
10	42.2 d	42.5 d	42.0 d		21.0 q	_	
11	84.4 d	84.6 d	84.3 d		21.0 q	_	
12	30.9 t	30.8 t	31.9 t	1'		175.3 s	175.3 s
13	46.1 d	46.1 d	37.9 d	2′	_	41.4 d	41.3 d
14	101.8 d	101.8 d	35.0 t	3′		26.7 t	26.6 t
15	146.9 d	146.9 d	174.8 s	4′	_	11.7 q	11.6 q
				5′		16.6 q	16.5 q

^{*}Spectra were obtained at 50 MHz, except for 4 (125 MHz), in CDCl₃ solution. Chemical shifts are reported in δ values and are relative to the solvent signals (δ_{CDCl_3} 77.00). Multiplicities were determined by the DEPT (135°) pulse sequence and, in the case of 4, by the HMQC spectrum. All the assignments for 4 were in agreement with the HMBC and HMQC spectra.

The previously known compounds, ajugapitin (1) [5] and scutecyprol A (2) [6, 7], were identified by their physical (mp, $[\alpha]_D$) and spectroscopic (¹H NMR, IR and MS) data and, in the case of 1, by comparison (mmp, TLC) with an authentic sample.

Scutelaterin A (3). Amorphous solid, mp 50–60°; $[\alpha]_D^{21} + 1.2^{\circ}$ (CHCl₃; c 0.064). IR v_{max}^{KBr} cm⁻¹: 3100, 1615 (vinyl ether), 1730 br, 1240 br (OAc), 2960, 1440, 1370, 1085, 1020, 860; ¹H NMR: Table 1; ¹³C NMR: Table 2; EI-MS (70 eV, direct inlet) m/z (rel. int.): 492 [M]⁺ (1), 432 [M-AcOH]⁺ (0.7), 317 (1), 287 (1), 263 (1), 213 (2), 203 (4), 201 (8), 189 (6), 185 (6), 173 (9), 171 (17), 157 (8), 145 (6), 111 [side chain at C-9]⁺ (20), 105 (9), 91 (12), 83 (10), 81 (11), 69 (9), 55 (13), 43 (100), 41 (7). (Found: C, 63.16; H, 7.41. $C_{26}H_{36}O_9$ requires: C, 63.40; H, 7.37%).

Scutelaterin B (4). Mp 118–120° (EtOAc–n-hexane); $[\alpha]_D^{26}$ –4.2° (CHCl₃; c 0.311). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3100, 1620 (vinyl ether), 1730 br, 1250 br (esters), 2980, 2940, 2880, 1465, 1380, 1190, 1150, 1090, 1025, 1000, 950, 865, 720; ¹H NMR: Table 1; ¹³C NMR: Table 2; EI-MS (70 eV, direct inlet) m/z (rel. int.): 534 [M]⁺ (5), 432 [M-C₅H₁₀O₂]⁺ (4), 390 (4), 317 (4), 287 (4), 202 (17), 201 (18), 189 (12), 185 (13), 173 (20), 171 (33), 169 (10), 159 (13), 157 (13), 145 (11), 143 (11), 111 [side chain at C-9]⁺ (37), 107 (13), 105 (11), 95 (12), 91 (17), 83 (25), 81 (28), 69 (34), 57 (100), no ion fragments below m/z 55 were registered. (Found: C, 65.21; H, 7.78, C₂₉H₄₂O₉ requires: C, 65.15; H, 7.92%).

Scutelaterin C (5). Thick oil; mixture 1:1.3 of the 15R (exo) and 15S (endo) forms, respectively; ¹H NMR (300 MHz, CDCl₃): δ 5.79 d, 0.4 H, and 5.75 d, 0.6 H, J = 5.5 Hz (H-16 β), 5.66 br d, 0.4 H, and 5.54 d, 0.6 H, J = 5.5 Hz (H-15), 5.23 quint, 0.4 H, and

5.18 quint, 0.6 H, J = 2.8 Hz (H-2 α), 4.90 d, 1H, $J = 12.4 \text{ Hz (H}_B-19), 4.77 dd, 1H, <math>J = 10.8 \text{ and } 4.9$ Hz (H-6 β), 4.56 dd, 0.6 H, and 4.02 dd, 0.4 H, J = 11.3and 5.4 Hz (H-11 α), 4.40 br d, 1H, J = 12.4 Hz (H_A-19), 3.14 br, 1H (H_{B} -18), 3.02 m, 0.4 H, and 2.78 m, 0.6 H (H-13 β), 2.36 d, 0.6 H, and 2.31 d, 0.4 H, J = 4.0Hz (H_A-18), 2.13 s, 3H (OAc), 1.99 s, 3H (OAc), 1.19 d, 1.8 H, and 1.17 d, 1.2 H, J = 7.1 Hz (Me-5'), 0.95-0.90 complex signal, 9H (Me-17, Me-20 and Me-4'). ¹³C NMR (50 MHz, CDCl₃): δ (in double signals the first chemical shift correspond to the major 15S epimer) 176.1 and 175.4 (C-1'), 170.7 (OAc), 170.1 (OAc), 109.3 and 107.4 (C-16), 98.4 and 98.7 (C-15), 82.7 and 83.7 (C-11), 72.2 and 72.1 (C-6), 70.6 and 70.2 (C-2), 61.8 and 61.7 (C-19), 61.5 and 61.4 (C-4), 49.8 and 49.6 (C-18), 44.9 and 45.1 (C-5), 42.0 and 42.3 (C-13), 41.4-41.2, complex signal (C-10, C-2'), 40.0-39.7, complex signal (C-9, C-14), 37.0 and 36.9 (C-3), 35.2 and 36.2 (C-8), 33.2 and 32.7 (C-12), 33.6 and 33.2 (C-7), 26.6 (C-1), 26.4 (C-3'), 21.2 (2OAc), 16.9 and 16.7 (C-5'), 16.4 and 16.2 (C-17), 13.8 and 13.9 (C-20), 11.7 and 11.8 (C-4').

Lactone 6 from scutelaterins B (4) and C (5). To a soln of 4 (60 mg) in Me₂CO (10 ml) was added an excess of Jones' reagent at 0° with stirring. After 15 min, the excess of Jones' reagent was destroyed by addition of EtOH and then the reaction mixt. was diluted with H₂O (40 ml). Extraction with EtOAc (4 × 20 ml) and work-up as usual gave an amorphous solid, which was percolated through a silica gel column eluted with EtOAc yielding 6 (56 mg): amorphous solid, mp 85–90°; $[\alpha]_{20}^{26} + 13.6^{\circ}$ (CHCl₃; c 0.324). IR v_{max}^{KBr} cm⁻¹: 1790 (γ -lactone), 1730 br, 1250 br (esters), 2990, 2950, 2890, 1465, 1380, 1180, 1090,

[†] Acetate at C-19, assigned from the HMBC spectrum.

[‡] Acetate at C-6, assigned from the HMBC spectrum.

1030, 1000, 970, 930, 870; ¹H NMR: Table 1; ¹³C NMR: Table 2; EI-MS (70 eV, direct inlet) m/z (rel. int.): 551 [MH]⁺ (0.3), 405 (5), 358 (5), 333 (6), 316 (9), 303 (14), 249 (9), 201 (25), 189 (20), 187 (10), 184 (17), 173 (21), 171 (55), 159 (13), 127 (22), 109 (18), 105 (13), 91 (18), 83 (18), 81 (23), 69 (21), 57 (100), 55 (39), no ion fragments below m/z 55 were registered. (Found: C, 63.31; H, 7.46. $C_{29}H_{42}O_{10}$ requires: C, 63.25; H, 7.69%).

Oxidation of 5 (15 mg) in the same way gave a compound (12 mg) which was identical ($[\alpha]_D$, IR, ¹H NMR and MS) to the lactone 6 obtained from 4 (see above).

Acknowledgements—The authors thank Prof. R. Martínez Alvarez, Servicio de Espectrometría de Masas de la UCM, Madrid, for the mass spectra. This work was supported by funds from MURST, Italy, DGICYT, Spain (grant PB94-0104 and PB96-0830) the bilateral project CNR-CSIC between ICTPN-CNR (Italy) and Instituto de Química Orgánica (Spain), and the Consejería de Educación y Cultura de la Comunidad de Madrid (grant 06G/001/96).

REFERENCES

- Bruno, M., Piozzi, F., Rodríguez, B., de la Torre, M. C., Vassallo, N. and Servettaz, O., *Phyto-chemistry*, 1996, 42, 1059.
- 2. Hussein, A. A., de la Torre, M. C., Jimeno, M.-

- L., Rodríguez, B., Bruno, M., Piozzi, F. and Servettaz, O., *Phytochemistry*, 1996, **43**, 835.
- Munoz, D. M., de la Torre, M. C., Rodríguez, B., Simmonds, M. S. J. and Blaney, W. M., Phytochemistry, 1997, 44, 593.
- Rodriguez, B., de la Torre, M. C., Jimeno, M.-L., Bruno, M., Vassallo, N., Bondi, M. L., Piozzi, F. and Servettaz, O., *Journal of Natural Products*, 1997, 60, 348.
- Hernández, A., Pascual, C., Sanz, J. and Rodríguez, B., Phytochemistry, 1982, 21, 2909.
- Bruno, M., Fazio, C. and Arnold, N. A., Phytochemistry, 1996, 42, 555.
- 7. Ohno, A., Kizu, H. and Tomimori, T., Chemical and Pharmaceutical Bulletin, 1996, 44, 1540.
- 8. Barton, D. H. R., Cheung, H. T., Cross, A. D., Jackman, L. M. and Martin-Smith, M., *Journal of the Chemical Society*, 1961, 5061.
- Esquivel, B., Flores, E., Hernández-Ortega, S. and Toscano, R. A., *Phytochemistry*, 1995, 38, 175.
- Savona, G., Piozzi, F., Servettaz, O., Fernández-Gadea, F. and Rodríguez, B., *Phytochemistry*, 1984, 23, 611.
- Rogers, D., Unal, G. G., Williams, D. J., Ley, S. V., Sim, G. A., Joshi, B. S. and Ravindranath, K. R., Journal of the Chemical Society, Chemical Communications, 1979, 97.
- Bozov, P. I., Malakov, P. Y., Papanov, G. Y., de la Torre, M. C., Rodríguez, B. and Perales, A., Phytochemistry, 1993, 34, 453.
- 13. Ohno, A., Kizu, H. and Tomimori, T., Chemical and Pharmaceutical Bulletin, 1997, 45, 1097.