PII: S0031-9422(97)00870-4

TAXOIDS FROM TAXUS CUSPIDATA VAR. NANA

Hiroshi Morita, Akira Gonda, Lan Wei, Yukinori Yamamura, Hideki Wakabayashi, Koichi Takeya and Hideji Itokawa*

Department of Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

(Received in revised form 12 September 1997)

Key Word Index—Taxus cuspida var. nana; Taxaceae; taxuspinananes H-K; taxoid.

Abstract—Four new taxoids, taxuspinananes H–K have been isolated from the stems of *Taxus cuspidata* Sieb. et. Zucc. var. *nana* Rehder. Their structures were elucidated by spectroscopic analysis. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Paclitaxel (Taxol*), isolated from various species of the genus *Taxus* and docetaxel (Taxotere*), a semisynthetic analog, are a new class of anticancer agents especially effective for patients with advanced ovarian and breast cancers [1–3]. Paclitaxel is considered a leading compound in cancer chemotherapy, and is currently intensively investigated from a chemical, biological, pharmacological, and clinical point of view. The mechanism of action of these diterpenes involves the facilitated assembly and stabilization of microtubules [4].

As a part of research program aimed at developing new bioactive taxoids, we have investigated the taxoids contained in the stems of *Taxus cuspidata* Sieb. et. Zucc. var. nana Rehder, which is a popular garden shrub in Japan [5–7]. Further chromatographic purification of constituents of the stems of *T. cuspidata* var. nana with guidance by a cytotoxic assay resulted in the isolation of four new taxoids, named as taxuspinananes H (1)–K (4). We report here the isolation and structure elucidation of these new taxoids by extensive 2D NMR methods.

RESULTS AND DISCUSSION

The toluene extract obtained by solvent partition of a methanol extract of the stems of *T. cuspidata* var. *nana*, showed cytotoxicity against P-388 lymphocytic leukemia cells, and were successively subjected to bioassay-guided fractionation using silica gel to afford cytotoxic fractions. Further separation of these fractions by reversed-phase HPLC using ODS silica gel

* Author to whom correspondence should be addressed.

yielded four new taxoids, named taxuspinanane H (1: 0.00006%), I (2: 0.00008%), J (3: 0.00001%), and K (4: 0.0001%).

Taxuspinanane H (deaminoacyl cinnamoyltaxine A: 1), an amorphous powder, showed a high-resolution FAB-mass spectral quasimolecular ion peak at m/z = 603.2565 [(M+Na)⁺, $\Delta = -0.5$ mmu], corresponding to molecular formula, C₃₃H₄₀O₉. The IR absorptions at 3423, 1719 and 1638 cm⁻¹ were attributed to hydroxyl, ester and α,β -unsaturated ketone groups, respectively. In the NMR spectra, the presence of two acetyl (δ_H 1.98 and 2.03, δ_C 21.42 × 2) and one cinnamoyl [$\delta_{\rm H}$ 6.51 (1H, d, 16.0 Hz), 7.82 (1H, d. 16.0 Hz), 7.51, 7.40, 7.42, δ_c 166.24, 117.60, 146.31, 134.02, 128.07, 129.11, 130.87] groups was suggested. In the ¹³C NMR spectrum, the presence of signals at 122.96 (d) and 133.19, 133.02, and 134.73 (s) was diagnostic of the 6-10-6 ring system of taxine A [8] and taxuspine B [9]. This skeleton was further verified by the complete assignments of all ¹H and ¹³C signals (Tables 1 and 2), which was done using 2D measurements (¹H-¹H COSY, TOCSY, HMQC, and HMBC). The HMBC correlations: H-20/C-3, C-4, C-5, H-19/C-7, C-8, C-9, H-1/C-11, C-13, C-20, H-10/C-9, C-12, C-15 were especially diagnostic. The location of the acetyl groups at C-2 and C-13, and the cinnamovl group at C-5, were verified by the HMBC correlations (Fig. 1) between H-2 and H-13 and acetyl carbonyls. and between H-5 and the cinnamovl carbonyl carbon. In addition, the stereostructure was elucidated by NOE correlations observed by a phase sensitive ROESY spectrum (Fig. 1).

Taxuspinanane I (*N*-methyl paclitaxel: **2**) was obtained as an amorphous powder and a high-resolution FAB-mass spectrum gave a quasimolecular ion peak at m/z 890.3346 [(M+Na)⁻, Δ –1.8 mmu], corresponding to the molecular formula, $C_{48}H_{53}NO_{14}$.

Table 1. H NMR signal assignments of taxuspinananes H-K (1-4) in CDCl₃

Position	1	2	3	4
1	1.65 (1H, dd, 2.0, 8.3)			2.16 (1H, br t)
2	5.72 (1H, dd, 2.0, 9.8)	5.67 (1H, d, 7.0)	5.69 (1H, d, 7.0)	$1.88 (1H, m, \alpha)$
-				1.66 (1H, $br d$, 5.0 β)
3	1.91 (1H, d , 15.4, α)	3.80 (1H, d, 7.0)	3.88 (1H, d, 7.0)	3.20 (1H, d, 5.0)
	2.81 (1H, d , 15.4, β)			
5	5.60 (1H, <i>br d</i> , 7.4)	4.93 (1H, dd, 9.4, 1.9)	4.99 (1H, br d, 9.5)	4.26 (1H, br s)
6α	1.70 (1H, m)	2.54 (1H, m)	2.59(1H, m)	1.82(1H,m)
6β	2.40 (1H, m)	1.86 (1H, m)	1.87(1H, m)	1.65 (1H, m)
7	4.20 (1H, <i>br s</i>)	4.41 (1H, m)	4,47 (1H, m)	5.59 (1H, dd, 5.2, 11.5)
9	(, ,		, ,	5.88 (1H, d, 10.8)
10	5.33 (1H, d, 2.5)	6.29 (1H, s)	6.35 (1H, s)	6.29 (1H, d, 10.8)
13	5.45 (1H, <i>br d</i> , 10.0)	6.24 (1H, br t, 8.2)	6.21 (1H, br t, 9.1)	
14α	1.81 (1H, <i>dd</i> , 16.2, 3.0)	2.34 (2H, m)	2.42(1H, m)	1.90 (1H, m)
14β	2.72 (1H, <i>ddd</i> , 8.3, 10.0, 16.2)	2.1 ((- : - ; . : .)	2.29 (1H, m)	2.88 (1H, dd, 7.1, 19.4)
16	1.23 (3H, s)	1.14 (3H, s)	1.28 (3H, s)	1.61 (3H, s)
17	1.19 (3H, s)	1.26 (3H, s)	1.67 (3H, s)	1.07(3H, s)
18	1.93 (3H, s)	1.88 (3H, s)	2.02 (3H, d, 1.4)	2.27 (3H, s)
19	1.30 (3H, s)	1.67 (3H, s)	1.17 (3H, s)	0.82 (3H, s)
20	5.43 (1H, <i>br d</i> , 9.8)	4.17 (1H, d, 8.3)	4.30 (1H, d, 8.3)	5.09 (1H, s)
20	3.13 (111, 57 4, 7.0)	4.28 (1H, d, 8.3)	4.19 (1H, d, 8.3)	4.77 (1H, s)
2′		4.99 (1H, m)	(,,)	, , , , , , , , , , , , , , , , , , ,
3'		5.88 (1H, br s)		
3'- P h		7.46 (2H, m)*		
3 - F11		7.39 (2H, m)†		
		7.39 (1H, m)†		
5'-Ph		7.46 (2H, m)*		
		7.39 (2H, m)†		
		7.39 (1H, m)†		
N-Me		2.82 (3H, br s)		
2-Ac	1.98 (3H, s)	2,02 (0.11, 0. 0)		
4-Ac	1.50 (311, 3)	2.25 (3H, s)	2.30 (3H, s)	
7-Ac		2.23 (311, 3)	2.30 (311, 11)	2.04 (3H, s)
9-Ac				2.04 (3H, s)
10-Ac		2.24 (3H, s)	2.26 (3H, s)	1.99 (3H, s)
13-Ac	2.03 (3H, s)	2.2 (311, 5)	2.20 (311(3)	11,7 (511,0)
2-Bz	2.03 (311, 3)	8.08 (2H, dd, 1.4, 7.3)	8.07 (2H, dd, 1.4, 8.4)	
2-02		7.51 (2H, m)*	7.46 (2H, m)	
		7.60 (1H, t, 7.3)	7.60 (1H, m)	
5-cinnamoyl		7.00 (111, 1, 7.5)	13-cinnamoyt	
2'	6.51 (1H, d, 16.0)		6.51 (1H, d, 16.0)	
3'	7.82 (1H, d, 16.0)		7.85 (1H, d, 16.0)	
5'	7.51 (2H, m)		7.63 (2H, m)	
6'	7.40 $(2H, m)$		7.48 (2H, m)	
7 [']	7.42 (1H, m)		7.48 (1H, m)	
1-OH	1.74 (111, m)	1.89 (1H, br s)	7. TO (111, M)	
1-OH 5-OH		1.07 (111, 01 3)		1.86 (1H, br s)
7-OH		2.43 (1H, d, 4.1)		1.00 (111, 07 3)
7-OH 2'-OH		4.32 (1H, br d, 7.5)		
2 -011		4.52 (111, or a, 1.5)		

^{*-†} Assignment may be interchanged.

The IR absorptions indicated the presence of hydroxyl (3449 cm $^{-1}$), ester (1720 cm $^{-1}$) and amide (1619 cm $^{-1}$) groups. The NMR signals of **2** (Tables 1 and 2) assigned by 2D measurements ($^1\text{H}-^1\text{H}$ COSY, HMQC, and HMBC) were very close to those of paclitaxel [10], indicating the presence of two acetyl at $\delta_{\rm H}$ 2.24 and 2.25, one benzoyl at $\delta_{\rm H}$ 8.08, 7.60, and 7.51, an oxetane ring at $\delta_{\rm H}$ 4.17 and 4.28, mutually coupled

with a coupling constant of 8.3 Hz and a side chain at C-13 at δ 6.24 (H-13), 4.99 (H-2'), 5.88 (H-3'), 7.39, 7.46 (Ph at C-3'). The major different point is due to the presence of N-methyl signal ($\delta_{\rm H}$ 2.82 and $\delta_{\rm C}$ 37.53). The NOE correlations (Fig. 2) in the taxane skeleton indicated that **2** possessed the same configurations as those of paclitaxel. Thus, compound **2** is N-methyl paclitaxel.

Table 2. ¹³C NMR signal assignments of taxuspinananes H-K (1-4) in CDCl₃

Position	1	2	3	4
1	47.31	79.06	79.31	40.96
	70.98	75.09	74.95	25.64
2 3	35.09	45.62	45.94	34.80
4	133.19	80.99	81.16	151.90
5	70.52	84.48	84.40	72.57
6	36.70	35.61	35.70	36.06
7	68.06	72.18	72.36	69.81
8	53.26	58.63	58.77	46.83
9	213.87	203.85	203.83	75.86
0	77.07	75.70	75.82	72.86
1	133.02	132.97	132.86	138.59
2	134.73	142.65	143.22	151.53
3	69.55	72.18	70.11	200.74
4	27.22	35.82	36.24	39.64
5	37.74	43.26	43.07	39.81
6	24.51	21.96	21.38	25.58
7	32.58	26.86	26.85	37.07
8	16.66	14.90	15.53	14.11
9 0	18.45	9.59 76.50	9.51 76.51	12.56
0 1 ′	122.96	76.50 173.53	76.51	111.41
2'		72.85		
3'		61.46		
4′		173.38		
- 3′-Ph		129.08*		
. I II		126.82†		
		130.01‡		
		136.18		
5'-Ph		128.65*		
		126.82†		
		128.47‡		
		136.02		
I-Me		37.53		
2-Ac	21.42			
	169.92			
4-Ac		22.34	22.63	
		170.21	169.84	
7-Ac				21.43¶
				169.86
9-Ac				20.90¶
				170.24
)-Ac		20.88	20.89	20.78
		171.28	171.33	169.13
3-Ac	21.42			
- 10	170.48			
2-Bz		130.21*	128.67	
		128.47†	130.08	
		133.64‡	133.74	
		129.31	129.25	
· 1		166.90	167.01	
5-cinnamoyl	144.04		13-cinnamoyl	
'	166.24		166.27	
2'	117.60		116.85	
3′	146.31		146.82	
! '	134.02		133.95	
5'	128.07		128.24	
6′ 7′	129.11		129.17	
r.	130.87		130.97	

^{*-¶} Assignment may be interchanged.

Me AcO HOOH 7

Fig. 2.

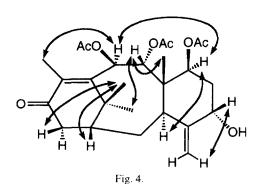
Fig. 1.

Taxuspinanane J (deaminoacyl cinnamoyltaxol: 3), $C_{40}H_{44}O_{12}$. -43.8° (c 0.14, CHCl₃), was isolated as an amorphous powder. The NMR spectra showed the presence of two acetyl ($\delta_{\rm H}$ 2.26 and 2.30; $\delta_{\rm C}$ 20.89 and 22.63), one benzoyl ($\delta_{\rm H}$ 7.46, 7.60 and 8.07; $\delta_{\rm C}$ 128.67, 129.25, 130.08, 133.74) and one cinnamoyl groups [$\delta_{\rm H}$ 6.51 (1H, d, 16.0 Hz), 7.85 (1H, d, 16.0 Hz), 7.48 and 7.63, $\delta_{\rm C}$ 166.27, 116.85, 146.82, 128.24, 129.17, 130.97, 133.95]. The presence of an oxetane ring was implied by signals at $\delta_{\rm H}$ 4.19, 4.30 and $\delta_{\rm C}$ 76.51. The $^{\rm I}$ H and

¹³C signals (Tables 1 and 2), which were assigned by using ¹H–¹H COSY, TOCSY, HMQC, and HMBC, closely resembled those of paclitaxel [10] except for the *N*-acylisoserine moiety at C-13. The substituent at C-13 was disclosed to be a cinnamoyl group by the HMBC correlations of H-13/C-1′ and H-2′/C-1′ and the structure to be as shown in Fig. 3. The stereostructure of its skeleton was elucidated by NOE correlations as in Fig. 3 to be the same as in paclitaxel.

Taxuspinanane K (13-dehydro-5,13-deacetyl-2-

Fig. 3.


deacetoxydecinnamoyltaxinine J: 4), C₂₆H₃₆O₈. [α]_D +95.2° (c 0.29, CHCl₃), was isolated as an amorphous powder. The presence of a taxane skeleton with three acetyl [$\delta_{\rm H}$ 1.99 (3H, s), 2.04 (6H, s)] and an exomethylene [$\delta_{\rm H}$ 4.77 and 5.09 (each 1H, s); $\delta_{\rm C}$ [111.41] groups was suggested by the ¹H and ¹³C NMR signals. Further evidence indicating the presence of hydroxyl and α,β -unsaturated ketone was provided by an IR absorption band at 3450 cm⁻¹ and diagnostic NMR signals ($\delta_{\rm C}$ 138.59, 151.53, 200.74). The assignments, performed using 'H-'H COSY, TOCSY, HMQC and HMBC measurements, are shown in Tables 1 and 2. The acetyl groups were located at C-7, C-9 and C-10 by detection of HMBC correlations between the corresponding proton and the acetyl carbonyl. The relative stereochemistry was confirmed by a phase sensitive NOESY spectrum as shown in Fig. 4.

Taxuspinananes H (1)–K (4) showed moderate cytotoxic activity against P-388 lymphocytic cells (IC₅₀, 1: 21 μ g ml⁻¹, 2: 0.17 μ g ml⁻¹, 3: 2.8 μ g ml⁻¹, 4: 82 μ g ml⁻¹, paclitaxel: 0.02 μ g ml⁻¹). It was found that the introduction of the *N*-methyl substituent of paclitaxel greatly reduced cytotoxicity.

EXPERIMENTAL

General

IR and UV spectra were recorded on JASCO A-302 spectrometer and Hitachi 557 spectrophotometer, respectively. Optical rotation was measured with a

JASCO DIP-4 spectrometer and $[\alpha]_D$ values are given in 10⁻¹ deg cm² g⁻¹. FAB and high resolution mass spectra were taken with a VG Autospec spectrometer. TLC was conducted on precoated Kieselgel 60 F₂₅₄ (Art. 5715; Merck) and the spots were detected by spraying with 10% H₂SO₄. High-pressure liquid chromatography (HPLC) was performed with an Inertsil PREP-ODS column (20 mm i.d. \times 250 mm and 30 mm i.d. \times 250 mm, GL Science Inc.) packed with 10 μ m ODS. All NMR spectroscopy were carried out on Bruker AM400, AM500, and Varian Unity 400 spectrometer. The spectra were recorded at 300 K in CDCl₃. The phase sensitive ROESY and NOESY experiments were acquired with mixing times of 300 and 600 ms, respectively. The values of the delay to optimize one-bond correlations in the HMQC spectrum and suppress them in the HMBC spectrum was 150 ms and the evolution delay for long-range couplings in the HMBC spectrum was set to 50 ms.

Plant material

The stems without leaves of *Taxus cuspidata* Sieb. et. Zucc. var. *nana* Rehder. were collected in Saitama, Japan in October 1995. The plant was identified by Dr Zhi-Sheng Qiao, Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai, China. A voucher specimen has been deposited in the Herbarium of the Tokyo University of Pharmacy and Life Science.

Extraction and isolation

The stems of *Taxus cuspidata* Sieb. et. Zucc. var. nana Rehder. (20.0 kg) were extracted with hot MeOH 3× to give a MeOH extract which was treated with toluene and H₂O. The toluene soluble fraction (230 g) was subjected to silica gel CC using a CHCl₃-MeOH gradient system (1:0–0:1). The fraction which eluted with 10% MeOH was further subjected to silica gel CC using a toluene–EtOAc–MeOH solvent system (12:4:1), followed by ODS HPLC with 70% MeOH, MeOH-CH₃CN-H₂O and CH₃CN-H₂O solvent sys-

862 H. Morita et al.

tems to give taxuspinanane H (1: 11 mg), I (2: 15 mg), J (3: 1 mg), and K (4: 24 mg).

Taxuspinanane H (1). Amorphous powder, $[\alpha]_D$ –42.0° (c 0.12, CHCl₃). FAB-MS m/z: 603 [M + Na]⁺, HRFAB-MS (Found: 603.2565, Calcd for C₃₃H₄₀O₉Na, requires 603.2570). IR $v_{\rm max}^{\rm CCl_4}$ cm⁻¹: 3423, 1719, 1638, 1371, 1244, 1170, 1017. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 279 (4.22), 216 (4.24), 208 (4.23).

Taxuspinanane I (2). Amorphous powder, $[\alpha]_D - 71.0^{\circ}$ (c 0.04, CHCl₃). FAB-MS m/z: 890 [M + Na]⁺, HRFAB-MS (Found: 890.3346, Calcd for C₄₈H₅₃NO₁₄Na, requires 890.3364). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3449, 2923, 1720, 1619, 1246. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 282 (3.22), 272 (3.27), 218 (4.32), 204 (4.41).

Taxuspinanane J (3). Amorphous powder, $[\alpha]_D$ –43.8° (c 0.14, CHCl₃). FAB-MS m/z: 739 [M + Na]⁺, HRFAB-MS (Found: 739.2729, Calcd for C₄₀H₄₄O₁₂Na, requires 739.2731). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3424, 2974, 1718, 1631, 1370, 1266, 1178, 938, 717, UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 282 (2.94), 274 (3.02), 232 (4.10), 205 (4.05).

Taxuspinanane K (4). Amorphous powder, $[\alpha]_D$ +95.2° (c 0.29, CHCl₃). FAB-MS m/z: 499 [M + Na]⁺, HRFAB-MS (Found: 499.2315, Calcd for C₂₆H₃₆O₈Na, requires 499.2322). IR v_{max}^{KBr} cm⁻¹: 3450, 2985, 1747, 1677, 1245, UV λ_{max}^{MeOH} nm (log ε): 269 (3.58), 203 (3.64).

Cytotoxic activity on P388 cells

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay was performed in a 96-well plate. The blue formazan produced by the mitochondrial dehydrogenase of viable cells was measured spectrophotometrically. RPMI-1640 medium (100 μ l) supplemented with 5% fetal calf serum and 100 μ g ml⁻¹ of kanamycin and containing mouse P388 leukemia cells (3 × 10⁴ cells ml⁻¹) was added to each well. After overnight incubation (37°, 5% CO₂), 100, 30, 10, 3, 1, 0.3, 0.1, 0.03 and 0.01 μ g ml⁻¹ of sample solutions were added to the wells and the plates were incubated for 48 h. Then, 20 μ l of MTT was added to each well and the plates were

incubated for 4 h. The resulting formazan was dissolved in 100 μ l of 10% SDS (sodium dodecyl sulfate) containing 0.01 N HCl. Each well was mixed gently with a pipette for 1 or 2 min and the plate was read on a microplate reader (Tosoh MPR-A4i) at 540 nm. The IC₅₀ (μ g ml⁻¹) value was defined as the concentration of sample which achieved 50% reduction of viable cells with respect to the control.

Acknowledgment—The authors thank the Ministry of Education, Science and Culture, Japan, for financial support through Grant-in-Aid for General Scientific Research.

REFERENCES

- Kingston, D. G. I., Molinero, A. A. and Rimoldi,
 J. M., Progress in the Chemistry of Organic National Products, 1993, 61, 1-206.
- 2. Suffness, M., ed. In *Taxol*³⁰: Science and Applications, CRC Press, Boca Raton, Fl, 1995.
- 3. Swenerton, K., Eisenhauer, E. and ten Bokkel Huinink, W., *Proc. Am. Soc. Clin. Oncol.*, 1993, 12, 256.
- Schiff, P. B., Fant, J. and Horwitz, S. B., *Nature*, 1979, 277, 665.
- Morita, H., Gonda, A., Wei, L., Yamamura, Y., Takeya, K. and Itokawa, H., J. Nat. Prod., 1997, 60, 390.
- Morita, H., Wei, L., Gonda, A., Takeya, K. and Itokawa, H., *Phytochemistry*, 1997, in press.
- Morita, H., Gonda, A., Wei, L., Yamamura, Y., Wakabayashi, H., Takeya, K. and Itokawa, H., Planta Medica, in press.
- 8. Graf, E., Kirfel, A., Wolff, G.-J. and Breitmaier, E., *Liebigs. Ann. Chem.*, 1982, 376.
- Kobayashi, J., Ogiwara, A., Hosoyama, H., Shi-gemori, H., Yoshida, N., Sasaki, T., Li, Y., Iwasaki, S., Naito, M. and Tsuruo, T., Tetra-hedron, 1994, 50, 7401.
- Williams, H. J., Scott, A. I., Dieden, R. A., Swindell, C. S., Chirlian, L. E., Francl, M. M., Heerding, J. M. and Krauss, N. E., *Tetrahedron*, 1993, 49, 6545.