PII: S0031-9422(97)00955-2

A BIBENZYL FROM EMPETRUM NIGRUM

Tomas Jarevång, Marie-Charlotte Nilsson,† Anna Wallstedt,‡ Göran Odham and Olov Sterner*

Department of Organic Chemistry 2, Lund University, P.O. Box 124, S-221 00 Lund, Sweden; † Department of Forest Vegetation Ecology. Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden; † Department of Chemical Ecology and Ecotoxicology, Lund University, S-221 00 Lund, Sweden

(Received in revised form 27 August 1997)

Key Word Index—*Empetrum nigrum*; Empetraceae; leaves; batatasin; bibenzyl; dihydrostrilbene; synthesis.

Abstract—A new bibenzyl, 1-(2-hydroxyphenyl)-2-(3-hydroxy-4,5-dimethoxyphenyl)-ethane, possessing similar germination inhibitory activity to batatasin III *in vitro*, was isolated from the leaves of *Empetrum nigrum*. The isolation, structural determination and synthesis of the new compound is reported. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The secondary metabolites of *Empetrum hermaphroditum* have attracted attention due to the apparent effect of these shrubs on inhibition of seed germination of Scots pine, as well as aspen [1]. Investigations of *E. hermaphroditum* have shown that it produces batatasin III (1), which also has been isolated as a growth inhibitor from yams [2]. Because *E. hermaphroditum* and *E. nigrum* are closely related and show very similar morphological and growth characteristics, the aim of the present study was to investigate the presence of batatasin and similar bibenzyls in *E. nigrum*.

RESULTS AND DISCUSSION

Comparison between the extracts of *E. hermaphroditum* and *E. nigrum* by various analytical techniques suggested that the two species do not produce the same aromatic secondary metabolites. Extracts of *E. hermaphroditum* yielded as expected batatasin III (1), while *E. nigrum* produces a similar but distinctly

different metabolite. This was isolated, the structure determined by spectroscopic techniques (see Experimental), and shown to be 1-(2-hydroxyphenyl)-2-(3hvdroxy-4,5-dimethoxyphenyl)ethane (2), a new bibenzyl. The ¹H-¹³C long-range correlations observed in the HMBC spectrum (the pertinent correlations are summarised in Fig. 1), clearly demonstrated that the hydroxyl group in the hydroxphenyl moiety of compound 2 is positioned at carbon 2, not carbon 3 as in batatasin III (1). This was somewhat surprising, as a previous investigation of E. nigrum yielded compounds 3a and 3b [3]. However, the NMR data reported for compound 3b are significantly different from those obtained with compound 2, and it is possible that the E. nigrum collected in Germany (yielding **3a** and **3b**) differs from *E.nigrum* collected in Sweden. In order to determine the structure of compound 2 unambiguously, and at the same time to obtain larger quantities for biological experiments, a synthetic route was explored.

The synthesis of compound 2 is outlined in Scheme 1 and essentially follows the reported synthesis of batatasin III (1) [2]. (2-Benzyloxy)-benzyltri-

^{*} Author to whom correspondence should be addressed.

Fig. 1. Significant HMBC correlations observed for compound 2.

Scheme 1. Synthesis of compound 2. a: R = CHO; b: $R = CH_2OH$; c: $R = CH_2Br$. i: $(MeSi)_2NK$, THF; ii: H_2 , Pd/C, EtOH.

phenylphosphonium bromide (5) was prepared from o-hydroxy-benzaldehyde and the corresponding ylide condensed with aldehyde 6 to produce the stilbenes 7 and 8. Compound 2, in all respects identical to the isolated product, was obtained by catalytic hydrogenation of stilbenes 7 and 8; the total yield (starting from 4a) was 51%. Preliminary biological characterisation [4] of compound 2 indicates that it possesses a similar inhibitory activity on the germination of seeds as batatasin III (1), although it appears to be slightly less potent. Results from the biological assays will be reported separately.

EXPERIMENTAL

Plant material

Leaves of *E. nigrum* L. were collected in September 1992 at Salmisjärvi (68°11'N, 21°50'E) and leaves of *E. hermaphroditum* Hagerup were collected in September

1993 at Rovågern outside Umeå (63°50'N, 20°15'E). Voucher specimens (No. 32 and 197, respectively) were authenticated by Prof. Olle Zackrisson, Department of Forest Vegetation Ecology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden, where they are deposited. Leaves were left to dry at 20° for ca 2 weeks and then stored at -18° prior to analysis. Leaves were analysed for batatasin-III by GC-MS according to Ref. [4].

Extraction and isolation

Pulverised dry leaves were extracted with EtOAc (40 ml per g leaves) and the extracts fractionated by chromatography on silica gel (eluted by EtOAc-heptane mixts) and by HPLC (Merck 250×10 mm LiCrospher 100 diol 5 μ m, hexane-1-PrOH-H₂O-HOAc 52.2:40.3:3:1.5, flow rate 3.2 ml min⁻¹). The R_t for compound 2 in the latter system was 13.7 min, compared with 16.1 min for batatasin III (1). Dry leaves (1 g) yielded 9 mg of compound 2.

Spectroscopy

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) were recorded at room temp. in CDCl₃, with an inverse 5 mm probe equipped with a shielded gradient coil. COSY, HMQC and HMBC expts were performed with gradient enhancements using sine-shaped gradient pulses and for 2D heteronuclear correlation spectroscopy the refocusing delays were optimised for ${}^{1}J_{CH} = 145$ Hz and ${}^{2}J_{CH} = 10$ Hz. Chemical shifts are given in δ relative to TMS with the solvent signals [δ 7.26 (1 H) and δ 77.0 (13 C)] as ref.

Synthesis

CH₂Cl₂ was dist. from CaH₂ immediately before use, THF and toluene were dist. from Na-benzophenone ketyl, while DMF and hexane were dried over 4 Å molecular sieves. All other reagents were used as received. All reactions were carried out in septum-capped, oven- or flame-dried flasks under N₂.

1-(2-Hydroxyphenyl)-2-(3-hydroxy-4,5-dimethoxyphenyl)ethane (2). Colourless oil. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 275 (3.49). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3380, 2920, 2830, 1590, 1500, 1450, 1425, 1345, 1230, 1195, 1160, 1090, 985. EIMS (probe) 70 eV, m/z (rel. int): 274.1217 [M]⁺, 33, $C_{16}H_{18}O_4$ requires 274.1205), 167 (100), 123 (5), 107 (8), 77 (5). ¹H NMR (500 MHz, CDCl₃): δ 7.09 (1H, d, $J_{5'-6'} = 7.4$ Hz, H-6'), 7.07 (1H, m, H-4'), 6.86 (1H, ddd, $J_{3'-5'} = 1.0$ Hz, $J_{4'-5'} = 7.4$ Hz, H-5'), 6.74 (1H, d, $J_{3'-4'} = 7.5 \text{ Hz}, \text{ H--3'}, 6.49 (1\text{H}, d, J_{2''-6''} = 1.8 \text{ Hz}, \text{H--}$ 2"), 6.25 (1H, d, H-6"), 5.70 (1H, s, 3"-OH), 4.60 (1H, s, 2'-OH), 3.87 (3H, s, 4"-OCH₃), 3.80 (3H, s, 5"- OCH_3), 2.88 (2H, m, H₂-1), 2.82 (2H, m, H₂-2). ¹³C NMR (125 MHz, CDCl₃): δ 153.5 (C-2'), 152.1 (C-5"), 149.1 (C-3"), 138.2 (C-1"), 133.8 (C-4"), 130.4 (C-6'), 127.8 (C-1'), 127.3 (C-4'), 120.9 (C-5'), 115.4 (C- 3'), 107.8 (C-2"), 104.5 (C-6"), 61.0 (4"-OCH₃), 55.8 (5"-OCH₃), 36.3 (C-2), 32.2 (C-1).

(2-Benzyloxy)benzaldehyde (4a). Prepared by adding o-hydroxybenzaldehyde (13.1 ml, 0.125 mol) dropwise to a cooled (0°) suspension of NaH (0.15 mol) in dry DMF (300 ml), heating to 50° for 2 h, cooling to 0° before the dropwise addition of benzyl bromide (17.8 ml, 0.15 mol), and stirring the reaction mixture at 70° overnight. The product (20.7 g, 78%) was obtained as a colourless oil after diln of the reaction mixt. with H₂O (300 ml) and extraction with Et₂O (5×100 ml), and flash CC with heptane–EtOAc (9:1). ¹H NMR (400 MHz, CDCl₃): δ 10.59 (2H, d, J = 0.7 Hz), 7.90–7.86 (1H, m), 7.58–7.53 (1H, m), 7.48–7.35 (5H, m), 7.09–7.04 (2H, m), 5.22 (2H, s). ¹³C NMR (100.624 MHz, CDCl₃): δ 190.2, 136.5, 136.3, 129.2, 128.9, 128.7, 127.7, 125.6, 121.5, 113.5, 70.9.

(2-benzyloxy)benzyl alcohol (4b). Prepared by adding an Et₂O (20 ml) soln of aldehyde 4a (8.57 g, 40.4 mmol) to a dispersion of LiAlH₄ (3.06 g, 80.7 mmol) in Et₂O (80 ml) at 0° and stirring the reaction mixt. overnight at room temp. The reaction was quenched by adding MeOH (1 ml) in Et₂O (4 ml) followed by 1 M H₂SO₄ (60 ml). The organic layer was washed with H₂O (80 ml), aq. NaHCO₃ (40 ml) and brine (40 ml), and the product (7.11 g, 82%) was obtained as a colourless oil by flash CC with hetane–EtOAc (5:1). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.25 (7H, m), 7.02–6.96 (2H, m), 5.15 (2H, s), 4.76 (2H, d, d) = 6.5 Hz), 2.37–2.31 (1H, m). ¹³C NMR (100 MHz, CDCl₃): δ 157.0, 137.2, 129.9, 129.4, 129.3, 129.2, 128.6, 127.8, 121.5, 112.1, 70.5, 62.6.

(2-Benzyloxy)benzyl bromide (4c). Prepared by adding PBr₃ (2.69 ml, 28.6 mmol) in toluene (20 ml) to a soln of alcohol 4b (5.58 g, 26.0 mmol) in toluene (100 ml) at 0°, and stirring the resulting mixt. at 0° for 20 min and at room temp. for 20 min. Dropwise addition of the reaction mixt. to H_2O (100 ml, 0°) and the washing of the organic layer with aq. NaHCO₃ (100 ml), H_2O (100 ml) and brine (50 ml), gave the crude bromide 4c (6.97 g, 97%), which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.50 (2H, m), 7.45–7.34 (4H, m), 7.32–7.26 (1H, m). ¹³C NMR (100 MHz, CDCl₃): δ 157.0, 137.3, 131.4, 130.6, 129.5, 129.0, 128.4, 127.6, 126.9, 121.4, 112.7, 70.5.

(2-Benzyloxy)benzyltriphenylphosphonium bromide (5). Prepared by adding bromide 4c (6.97 g, 25.2 mmol) in toluene (20 ml) to a soln of triphenyl phosphine (8.57, 32.7 mmol) in toluene (30 ml), refluxing for 1 h and cooling to room temp. The product (12.6 g, 93%) was obtained as a white ppt. which was filtered off and washed with toluene. ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.71 3H, m), 7.56–7.46 (12H, m), 7.41–7.36 (3H, m), 7.27–7.23 (1H, m), 7.19–7.15 (1H, m), 7.14–7.10 (2H, m), 6.87 (1H, t), t) = 8.3 Hz), 6.69 (1H, t), t) = 8.3 Hz), 5.25 (2H, t), t) = 8.3 Hz), 4.47 (2H, t). ¹³C NMR (100 Hz, CDCl₃): t0 157.0, 156.9, 136.3, 135.2, 134.7, 134.6, 133.0, 132.9, 130.7, 130.4, 130.3, 129.5, 129.1, 128.9, 128.6, 128.3, 122.1,

118.9, 118.1, 116.6, 116.5, 111.9, 111.8, 70.4, 26.6, 26.1

(3-Benzyloxy-4,5-dimethoxy)benzaldehyde (6). Prepared by dropwise addition of benzyl bromide (213 μ l, 1.79 mmol) to a stirred soln of 3,4-dimethoxy-5-hydroxybenzaldehyde (297 mg, 1.63 mmol), K₂CO₃ (248 mg, 1.79 mmol) and a catalytic amount of 18-crown-6 in THF (15 ml) at room temp. The reaction mixt. was refluxed overnight and the K Br filtered off. The product (440 mg, 99%) was obtained as a colourless oil by flash CC with heptane–EtOAc (4:1). ¹H NMR (400 MHz, CDCl₃): δ 9.82 (1H, S), 7.47–7.43 (2H, m), 7.41–7.30 (3H, m), 7.16 (2H, AB-q, J = 14.7 Hz, 1.7 Hz), 5.18 (2H, s), 3.96 (3H, s). 3.92 (3H, s). ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 154.3, 153.1, 144.7, 136.9, 132.1, 129.1, 128.6, 127.8, 109.5, 107.0, 71.6, 61.4, 56.7.

(Z)-2,3'-Dibenzyloxy-4',5'-dimethoxystilbene and (E)-2,3'-dibenzyloxy-4',5'-dimethoxystilbene (8). Prepared by dropwise addition of a 1.60 M soln of potassium bis(trimethylsilyl)amide [5] in THF (2.90 ml, 4.63 mmol) to a slurry of 5 (2.65 g, 4.94 mmol) in toluene (20 ml) at -20° , stirring for 45 min at room temp., cooling to -20° and adding the aldehyde 6 (421 mg, 1.54 mmol) in THF (10 ml) dropwise. The reaction mixt. was stirred for 30 min at room temp., partitioned between Et₂O (50 ml) and H₂O (50 ml), whereafter the organic layer was washed with H₂O (100 ml) and brine (75 ml). The products 7 (319 mg. 45%) and 8 (367 mg, 52%) were obtained as colourless oils by flash CC with heptane-EtOAc (8:1). 7. 'H NMR (400 MHz, CDCl₃): δ 7.39–7.37 (2H, m), 7.37– 7.36 (2H, m), 7.36–7.34 (3H, m), 7.34–7.32 (1H, m), 7.32-7.30 (1H, m), 7.30-7.28 (1H, m), 6.97 (1H, d, J = 7.9 Hz), 6.86 (1H, t, J = 7.5 Hz), 6.73 (1H, d, J = 12.1 Hz), 6.55 (1H, d, J = 1.8 Hz), 6.52 (1H, d, J = 12.2 Hz), 6.49 (1H, d, J = 1.8 Hz), 5.10 (2H, s), 4.86 (2H, s), 3.87 (3H, s), 3.63 (3H, s). ¹³C NMR (100 MHz. CDCl₃): δ 156.6, 153.3, 152.4, 137.7, 137.6, 133.0, 130.9, 130.6, 129.0, 128.9, 128.8, 128.2, 128.1, 127.8, 127.7, 127.6, 127.5, 126.1, 121.1, 113.0, 108.6, 106.9, 71.2, 70.6, 61.4, 56.2. 8. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (1H, dd, J = 7.7, 1.6 Hz), 7.53–7.48 (4H, m), 7.42 (1H, d, J = 16.7 Hz), 7.41 (2H, t, J = 7.3)Hz), 7.40 (2H, t, J = 8.0 Hz), 7.37–7.30 (2H, m), 7.24 (1H, dt, J = 7.5, 1.5 Hz), 7.09 (1H, d, J = 16.4 Hz),7.04-6.96 (2H, m), 6.80 (1H, d, J = 1.8 Hz), 6.76 (1H, d, J = 1.8 Hz), 5.19 (2H, s), 5.18 (2H, s), 3.93 (3H, s), 3.92 (3H, s). ¹³C NMR (100 Mhz, CDCl₃): δ 156.6, 153.9, 152.9, 139.0, 137.7, 137.6, 134.1, 129.6, 129.0, 128.9. 128.4, 128.3, 127.8, 127.7, 127.6, 127.2, 127.1, 123.6, 121.7, 113.3, 106.4, 104.4, 71.6, 71.0, 61.5, 56.5.

1-(2-Hydroxyphenyl)-2-(3-hydroxy-4,5-dimethoxyphenyl)ethane (2). Prepared by stirring a mixt. of 7 and 8 (294 mg, 0.65 mmol) in EtOH (20 ml) and heptane (5 ml) in the presence of catalytic amounts of 10% Pd/C and H₂ (atm. pres.) at room temp. Filtration of the slurry through a pad of Celite followed by flash CC with heptane–EtOAc (2:1) gave a product

(103 mg, 71%) which in all respects was identical with the natural product.

Acknowledgements—Financial support by the Swedish Natural Science Research Council is gratefully acknowledged.

REFERENCES

1. Odén, P. C., Branteberg, P. O., Andersson, R., Gref, R., Zackrisson, O. and Nilsson, M.-C., Scan-

- dinavian Journal of Forest Research, 1992, 7, 497. 2. Hashimoto, T., Hasegawa, K., Yamaguchi, H., Saito, M. and Ishimoto, S., *Phytochemistry*, 1972, 13, 2849.
- Arriaga-Giner, F. J., Wollenweber, E. and Dörr, M., Phytochemistry, 1993, 33, 2849.
- 4. Wallstedt, A., Nilsson, M.-C., Odham, G. and Zackrisson, O., *Journal of Chemical Ecology*, 1997, 23, 2345.
- 5. Åhman, J. and Somfai, P., Synthetic Communications, 1995, 25, 2301.