

PII: S0031-9422(97)01031-5

GUAIAN-5.12-OLIDES FROM LEONTODON HISPIDUS

CHRISTIAN ZIDORN, ERNST P. ELLMERER-MÜLLER† and HERMANN STUPPNER*

Institut für Pharmakognosie der Universität Innsbruck, Josef-Möller-Haus, Innrain 52, A-6020 Innsbruck, Austria; † Institut für Organische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

(Received 3 October 1997)

Key Word Index—Leontodon hispidus; Asteraceae; Lactuceae; sesquiterpene lactones; guaianolides.

Abstract—The dichloromethane extract of the whole plant of *Leontodon hispidus* afforded one new and two known guaian-5,12-olides. The structure of the new compound has been established by extensive 2D NMR techniques as 14-hydroxyhypocretenolide- β -D-glucopyranoside-4'-14"-hydroxyhypocretenoate. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

Leontodon hispidus L. distributed over most of Europe to Asia Minor, the Caucasus and Persia is one of about 50 species of the genus Leontodon [1]. Only for one species, L. autumnalis L., has the occurrence of sesquiterpene lactones (jacquilenin and 8-deoxylactucin) been reported [2]. Guaian-5,12-olides, a rare group of sesquiterpene lactones, have so far only been found in three other members of the Lactuceae tribe of the Asteraceae: Hypochoeris cretensis (L.) Bory & Chaub., Hedypnois cretica (L.) Dum.-Courset and Crepis aurea (L.) Cass. [3–5].

RESULTS AND DISCUSSION

The CH₂Cl₂ extract of the air dried whole plant of *L. hispidus* was repeatedly chromatographed on Sephadex LH-20, silica gel and reversed phase material to give one new hypocretenolide derivative (3) in addition to the known compounds 14-hydroxy-hypocretenolide (1) and 14-hydroxyhypocretenolide- β -D-glucopyranoside (2).

Identification of 1 and 2 was based on a comparison of their MS (positive ESI m/z 261 [M+H]⁺ and 423 [M+H]⁺, respectively) and ¹H NMR data with those given in literature [4]. Since the ¹³C NMR data from 1 and 2 have not yet been published these are shown in Table 1.

The molecular formula of 3 was determined to be $C_{36}H_{42}O_{12}$ from the HR FAB mass spectrum (m/z)

*Author to whom correspondence should be addressed. Fax: 0043-512-507-2939; Email: Hermann.Stuppner@uibk.ac.at

683.2654 $[M+H]^+$). The ESI mass spectrum showed a quasimolecular ion peak at m/z 683 $[M+H]^+$ and major fragments at m/z 423 $[M-260+H]^+$ and 261 $[M-422+H]^+$ suggesting substance 3 to be a derivative of 2 esterified with the parent sesquiterpenoid acid of 1.

This was confirmed by the 'H NMR spectrum (Table 2) which showed signals for two olefinic methylene groups [$\delta_{\rm H}$ 6.65 (br d, $J_{13,7} = 1.5$ Hz) and $\delta_{\rm H}$ 5.92 (br s) as well as $\delta_{\rm H}$ 6.30 (br d, $J_{13.7}$ = 1.5 Hz) and $\delta_{\rm H}$ 5.78 (br s)], two olefinic methyl groups (δ_H 2.16; d, $J_{15,3} = 1.5$ Hz), two vinylic protons located in the α position to a carbonyl function ($\delta_{\rm H}$ 6.31; q, $J_{3,15} = 1.5$ Hz and 6.03; q, $J_{3'',15''} = 1.5$ Hz), two oxygen-bearing methylene groups (δ_H 5.30 and 4.98; d, J = 13.5 Hz; $\delta_{\rm H}$ 4.97 and 4.65; d, J = 14.5 Hz) and one anomeric sugar proton ($\delta_{\rm H}$ 4.45; d, J = 8.0 Hz). The glucose moiety was identified by a combination of selective HSQC, HSQC-TOCSY and phase sensitive COSY experiments. The ¹³C NMR spectrum showed the presence of 36 carbons: two methyls, 11 methylenes, nine methines and 14 quarternaries. Fifteen carbon signals assignable to the sesquiterpene lactone groups of 3 were almost superimposable on the corresponding signals of 2, whereas those of the sesquiterpene group with the opened y-lactone ring showed the following shift differences: the signals of C-4" (δ 177.7), C-6" (δ 40.4) and C-11" (δ 146.5) were shifted downfield by 7.1, 7.8 and 8.2 ppm, respectively, and those of C-5" $(\delta 79.9)$, C-8" $(\delta 28.8)$ and C-13" $(\delta 124.9)$ shifted upfield by 10.0, 5.6 and 6.0 ppm (Table 2). In comparison with the 13 C NMR data of 2 the C-4′ (δ 72.7) signal of the glucose moiety was shifted to highfield (+1.2 ppm) and the resonances of C-3' (δ 75.7) and C-5' (δ 75.3) were shifted downfield (-2.6 and -3.0ppm, respectively) indicating acylation of the

Table 1. ¹H NMR data of compound 3 (500 MHz, δ-values in MeOH-d_s)†

	Н	н	
3	6.31 1H, q (1.5)	3"	6.03 1H, q (1.5)
6	2.55 1H, ddd (14.5, 4.5, 1.0)	6"	2.04 1H, d (11.0)
	2.16 1H,†		2.01 1H, d(11.0)
7	3.39 1H, ddd (4.5, 3.0, 1.5)	7″	2.64 1H,†
8	2.64 1H, dddd (15.0, 13.0, 3.0, 1.0)	8"	2.25 1H, m
	2.10 1H,†		1.83 1H, m
9	2.90 1H, ddd (16.5, 5.5, 2.0)	9"	3.01 1H, ddd (16.0, 7.5, 7.5)
	2.49 1H, ddd (16.5, 13.0, 2.0)		2.76 1H, ddd (16.0, 7.0, 5.0)
13	6.65 1H, br d (1.5)	13"	6.30 1H, $br d(1.5)$
	5.92 1H, <i>br s</i>		5.78 1H, br s
14	5.30 1H, d (13.5)	14"	4.97 1H, d (14.5)
	4.98 1H, d (13.5)		4.65 1H, d(14.5)
15	2.16 3H, <i>d</i> (1.5)	15"	2.16 3H, d(1.5)
1'	4.45 1H, d (8.0)		
2'	3.36 1H, dd (9.5, 8.0)		
3′	3.64 1H, dd (9.5, 9.5)		
4′	4.90 1H, dd (9.5, 9.5)		
5′	3.52 1H, ddd (9.5, 5.5, 2.0)		
6′	3.64 1H, dd (12.0, 2.0)		
	3.56 1H, dd (12.0, 5.5)		

[†] Signals are overlapping.

hydroxyl group at C-4' [8]. This was verified by a HMBC experiment (Table 3) which showed long range couplings between H-4' of the sugar moiety and the carbonyl carbon 12" of the sesquiterpenoid acid part of the molecule. Correlations; between the geminal protons of C-14 and C-1' as well as the anomeric proton H-1' and C-14 confirmed the linkage between the glucose and the 14-hydroxyhypocretenolide moiety. β -Glucosidation was proven by the charac-

teristic coupling of the anomeric proton at C-1' $(J_{1',2'} = 8.0 \text{ Hz})$. According to Bohlmann and Singh [3] the 5,12-guaianolide ring requires an equatorial orientation of H-7, which is in agreement with the observed coupling between H-7 $(\delta_{\text{H}} \ 3.39; \ ddd)$ and H-13 $(\delta_{\text{H}} \ 6.65; \ d, \ J_{7,13} = 1.5 \ \text{Hz})$. The configuration at C-7" has been proven to be identical with that at C-7, since 3 in a mixture of water and methanol (3:2) decomposes into equimolar amounts of 1 and 2. This

[‡] Coupling constants (J) in Hz are given in parentheses.

[§] All assignments are based on HMBC and HSQC experiments.

Table 2. ¹³C NMR data of compounds 1–3 (75.1 MHz, δ values in MeOH- d_s)

С	1	2	3	С	3
ı	137.1 <i>s</i>	136.4	137.5	1"	136.2
2	195.2 s	194.7	194.7	2"	197.6
3	136.0 d	134.7	135.6	3"	131.8
4	171.5 s	170.6	171.1	4"	177.7
5	91.0 s	89.9	90.7	5"	79.9
6	33.4 t	32.6	32.7	6"	40.4
7	39.0 d	38.2	38.6	7"	37.3
8	35.1 t	34.5	34.4	8"	28.8*
9	$26.0 \ t$	25.7	25.8	9"	28.9*
10	157.9 s	154.1	154.6	10"	153.4
11	138.9 s	138.3	138.7	11"	146.5
12	167.3 s	165.9	166.9	12"	167.8
13	$131.0 \ t$	130.9	130.5	13"	124.9
14	61.5 t	68.3	68.3	14"	61.9
15	13.0 q	11.9	12.7	15"	12.9
l'		104.5 d	104.7		
2′		74.5 d	76.0		
3′		78.3 d	75.7		
4′		71.5 d	72.7		
5′		78.3 d	75.3		
6′		61.8 t	62.4		

^{*} Signals may be interchangeable.

Table 3. HMBC data for compound 3

			•
Н	С	Н	С
3	1, 2, 4, 5, 15	3"	1", 2", 4", 5", 15"
6	1, 4, 5	6"	1', 5", 8"
	4, 5		1', 5", 8"
7	-	7"	_
8	10	8"	7", 9", 10"
	7		7", 9"
9	1, 7, 8, 10	9"	1", 7", 8", 10", 14"
	1, 7, 8, 10, 14		1", 7", 8", 10", 14"
13	7, 11, 12	13"	7", 11", 12"
	7, 12		7", 12"
14	1, 9, 10, 1'	14"	1", 9", 10"
	1, 9, 10, 1'	14*"	
15	3, 4, 5	15"	3", 4", 5"
1′	14		
2′	1', 4'		
3′	2', 5'		
4′	2', 6'		
5′	3', 4'		
6′	5′		
	5'		

reaction could be inhibited by using pure MeOH as solvent or by acidifying aqueous MeOH with TFA. Thus, 3 is 14-hydroxyhypocretenolide-β-D-glucopyranoside-4'-14"-hydroxyhypocretenoate.

EXPERIMENTAL

Plant material

Leontodon hispidus L. was collected in June 1996 in the vicinity of Innsbruck. A voucher specimen is deposited at the Institute of Pharmacognosy.

Extraction and isolation of compounds 1-3

Whole, air dried plants (3.1 kg) were ground and extracted exhaustively at room temp. with CH₂Cl₂ yielding 50 g of residue after evaporation of the solvent *in vacuo*. Fifteen grams of the residue were chromatographed on a Sephadex LH-20 column using MeOH as solvent. Frs containing compounds 1–3 were combined and repeatedly chromatographed on silica gel columns using gradients of EtOAc-MeOH. Final purification of compounds 1–3 was carried out by MPLC on a RP-18-column (Merck) using a gradient of TFA (0.01%)—MeOH-MeCN (3:1) to give 1 (8 mg), 2 (5 mg) and 3 (35 mg).

Decomposition of 3

One mg amounts of 3 were dissolved respectively in 1.0 ml $\rm H_2O-MeOH$ (3:2), pure MeOH and $\rm H_2O-MeOH$ (3:2) acidified with TFA (pH 1.5) and kept at room temp. for 24 h. The solns were analyzed by HPLC using a Zorbax Rx-C18 4.6 mm \times 25 cm column (P.N. 880967.902), a gradient of $\rm H_2O-MeOH$ starting from 4:1 to 39:61 in 24 min; flow rate: 1.0 ml min⁻¹; detection: 245 nm. R_i s of 1–3: 13.4, 10.6 and 19.4 min, respectively.

Compound 3. Amorphous wax-like substance melting between 96° and 102°. FAB-MS (positive ion), (rel. int.): m/z 683.2654 [M+H]⁺ (100); ESIMS (positive ion), (rel. int.): m/z 705.5 [M+Na]⁺ (14), 683.5 [M+Na]⁺ (18), 665.5 [M-H₂O+H]⁺ (23), 423.3 [M-sesquiterpenic acid+H]⁺ (27), 405.2 [M-sesquiterpenid acid-H₂O+H]⁺ (62), 261.2 [M-sesquiterpenid acid-glucose+H]⁺ (100), 243.2 [M-sesquiterpenid acid-glucose-H₂O+H]⁺] (39).

Acknowledgements—We are indebted to P. Robatscher and H. Perschinka for their valuable help.

REFERENCES

- Wagenitz, G., Hegi Flora von Mitteleuropa, Vol. VI/4 2nd Edn. Parey, Berlin, Hamburg, 1987, p. 1483.
- 2. Pyrek, J., Phytochemistry, 1985, 24, 186.
- 3. Bohlmann, F. and Singh, P., *Phytochemistry*, 1982, **21**, 2119.

[†] Assignments are based on DEPT, HMBC and HSQC experiments.

800 C. Zidorn et al.

- 4. Harraz, F. M., Kassem, F. F., Grenz, M., Jakupovic, J. and Bohlmann, F., *Phytochemistry*, 1988, 27, 1866.
- 5. Kisiel, W., Fitoterapia, 1994, 65, 381.
- 6. Bohlmann, F., Jakupovic, J., Abraham, W.-R. and Zdero, Ch., *Phytochemistry*, 1981, **20**, 2371.
- 7. Bohlmann, F., Gupta, R. K. and Jakupovic, J., *Phytochemistry*, 1982, **21**, 460.
- 8. Jansson, P.-E., Kenne, L. and Schweda, E., J. Chem. Soc. Perkin Trans. I, 1987, 377.