Phytochemistry 51 (1999) 555-558

Further constituents of Achillea ageratum

Anake Kijjoa^a, Luis M. Vieira^a, José A. Pereira^a, Artur M.S. Silva^b, Werner Herz^{c,*}

^aInstituto de Ciências Biomédicas de Abel Salazar and Centro de Estudos de Química Orgânica, Fitoquímica e Farmacologia de Universidade do Porto, 4050, Porto, Portugal

^bDepartamento de Química, Universidade do Aveiro, 3810, Aveiro, Portugal ^cDepartment of Chemistry, The Florida State University, Tallahassee, FL 32306-4390, USA

Received 8 October 1998; received in revised form 31 December 1998

Abstract

Further study of the aerial parts of *Achillea ageratum* yielded the new ageratriol derivative 1-*O*-acetylageratriol, a new oplopane 7β -hydroxyoplop-11-enone and the phenoxychromone 6-demethoxycapillarisin. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Achillea ageratum; Anthemideae; Compositae; Ageratriol derivative; Germacrane; Oplopanone derivative; Phenoxychromone

1. Introduction

In an earlier article (Vieira, Kijjoa, Pereira, Gedris, & Herz, 1997), we described isolation of several new germacranes related to ageratriol (**1a**) and known flavonoids from the herb of a Portuguese collection of *Achillea ageratum* L. One of the new germacranes was 9-O-acetylageratriol (**1b**). Further study of the extract has now led to isolation of a new ageratriol derivative 1-O-acetylageratriol (**1c**), a new oplopane 7β -hydroxyoplop-11-enone (**2**), the chromone 6-demethoxycapillarisin (**3a**) (Komiya, Naruse, & Oshio, 1976; Hashidoko, Tahara, & Mizutani, 1991) and the β -D-glucoside of β -sitosterol.

¹H and ¹³C NMR spectra of **1b** and synthetic triacetate **1d** were redetermined and are listed in Tables 1 and 2 for comparison with those of the new monoacetate **1c**¹. Table 2 also includes revised assignments for **1a** and **1b**, namely an interchange of the frequencies formerly (Vieira et al., 1997) assigned to C-1 and C-5 based on the following experiments. HETCOR showed that H-5 of **1a** at δ 3.64 (Vieira et al., 1997) was

0031-9422/99/\$ - see front matter \odot 1999 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(99)00054-0

^{*} Corresponding author. Tel.: +1-850-644-2774; fax: +1-850-644-8281

¹ In Table 2 of Vieira et al. (1997), there are two misprints. In column 1 the chemical shift of the signal assigned provisionally to C-1 should have been δ 74.6, not 76.6, and the third column should have been headed **1b**†; i.e. the data in column 3 were those of 9-*O*-acetylageratriol in CDCl₃

Table 1 ¹H NMR spectra of compounds **1b-d** (CDCl₃, 300 MHz)

Н	1b	1b ^a	1c	1 d
1α	4.23 dd (11, 4)	4.00 m	5.30 m	5.58 dd (10.5, 2)
2α	2.0–2.3 <i>c</i>	1.99 c	2.05–2.3 <i>c</i>	2.05–2.3 <i>c</i>
2β	2.0–2.3 <i>c</i>	1.99 <i>c</i>	2.05–2.3 <i>c</i>	2.05–2.3 <i>c</i>
3α	2.0–2.3 <i>c</i>	1.99 c	2.05–2.3 <i>c</i>	2.05–2.3 <i>c</i>
3β	2.0–2.3 <i>c</i>	1.99 c	2.05–2.3 <i>c</i>	2.05–2.3 <i>c</i>
5α	3.91 <i>dd</i> (11, 4)	3.67 dt (11, 3.5)	3.96 dd (11, 4)	5.01 dd (11, 4)
6α	1.62–1.8 <i>c</i>	1.46 <i>ddd</i> (14, 11, 3.5)	1.55–1.7 <i>c</i>	1.7-1.8 c
6β	1.62–1.8 <i>c</i>	1.67 c	1.55–1.7 <i>c</i>	1.7-1.8 c
7α	1.62–1.8 <i>c</i>	1.67 <i>c</i>	1.75–1.95 <i>c</i>	2.0 c
8α	1.89 dd (12, 5.5)	1.67 <i>c</i>	1.95 <i>ddd</i> (13, 5, 1)	1.89 ddd (13, 5, 1)
8β	1.62–1.8 <i>c</i>	1.67 <i>c</i>	1.51 ddd (13, 10.5, 9)	1.58 ddd (13, 11, 9)
9α	4.71 dd (11.5, 5.5)	4.93 dd (11.5, 5)	4.05 dd (11.5, 5.5)	4.98 <i>ddd</i> (11, 5.5)
12 ^b	1.69 s	1.63 s	1.69 s	1.69 s
13a	4.68 <i>brs</i>	4.64 <i>brs</i>	4.68 <i>brs</i>	4.77 <i>brs</i>
13b	4.66 brs	4.64 <i>brs</i>	4.68 <i>brs</i>	4.74 <i>brs</i>
14a	5.45 s	5.38 s	5.74 s	5.60 s
14b	5.39 s	5.36 s	5.51 s	5.51 s
15a	5.18 s	4.98 s	5.21 s	5.54 s
15b	5.14 s	4.96 s	5.19 s	5.32 s
OAc^b	2.04 s	1.97 s	2.05 s	2.09 s, 2.01 s
				1.98 s

^a In DMSO-d₆.

coupled to the carbon doublet at δ 74.6, which therefore represents C-5 rather than C-1, and that the two proton multiplet of H-1 and H-9 at δ 3.87 was coupled to the carbon signals at δ 69.3 and 72.0, which therefore arose from C-1 and C-9, respectively. Similarly for **1b** in DMSO, H-5 at δ 3.67 was coupled to the doublet at δ 74.5 which could therefore be attributed to C-5, H-9 at δ 4.93 was coupled to the doublet at δ

74.1, which therefore arose from C-9, and H-1 at δ 4.00 was coupled to the doublet at δ 69.7 (C-1) while long range COSY for **1b** in DMSO showed that H-14a, b were allylically coupled to the protons at δ 4.0 (H-1) and 4.93 (H-9), thus confirming these earlier assignments. The changed assignments for C-1 and C-5 in **1a,b** also required interchanges in the earlier assignments (Vieira et al., 1997) for C-1, C-5 and C-7

Table 2 13 C NMR spectra of compounds **1a–1 d** (75 MHz)

C	1a ^a	1b ^a	$1b^{b}$	1c ^b	1 d ^b	$1 d^a$
1	69.3 d	69.7 d	70.6 d	73.5 d	71.1 <i>d</i>	70.4 d
2	32.1 t	31.6 t	29.9 t	28.4 t	28.4 t	28.0 t
3	22.5 t	21.6 t	21.8 t	22.2 t	22.8 t	22.6 t
4	150.4 s	149.5 s	147.8 s	148.0 s	143.0 s	143.4 s
5	74.6 d	74.5 d	76.2 d	76.3 d	77.9 d	77.1 d
6	36.9 t	36.5 t	36.2 t	36.6 t	34.3 t	33.8 t
7	37.7 t	37.6 t	37.9 d	38.3 d	37.3 d	37.1 <i>d</i>
8	44.4 t	39.8 t	40.0 t	43.2 t	40.5 t	39.6 t
9	72.0 d	74.1 d	77.2 d	73.8 d	74.1 <i>d</i>	73.2 d
10	154.4 s	150.4 s	150.0 s	150.2 s	146.4 s	145.7 s
11	148.7 s	148.0 s	147.3 s	147.5 s	146.5 s	146.9 s
12	18.4 q	18.2 q	$18.0 \; q$	18.2 q	18.2 q	18.0 <i>q</i>
13	110.6 t	$110.1 \ t$	$111.0 \ t$	110.7 t	$111.7 \ \hat{t}$	$111.0 \ \hat{t}$
14	109.7 t	113.6 t	114.7 t	116.8 t	117.0 t	117.5 t
15	112.8 t	113.1 t	115.4 t	115.6 t	118.1 t	117.5 t
Ac		169.5 s	171.7 s	170.9 s	171.0, 169.8, 169.4 s	170.1, 169.2, 168.9 s
		21.0 q	21.3 q	21.3 q	21.9, 21.3, 21.3 <i>q</i>	21.0, 20.9, 20.9 q

a In DMSO-d₆.

^b Intensity three protons.

^b In CDCl₃.

in triacetate **1d** whose revised ¹³C NMR spectrum in CDCl₃ is included in Table 2, while in the ¹H NMR spectrum of **1d** the earlier assignments (Vieira et al., 1997) of H-1 and H-5 had to be interchanged to align them with the signals of H-1 and H-5 in the spectra of **1a** (Vieira et al., 1997), **1b** and **1d**.

With this background the structure of the new monoacetate could be considered. Comparison of its ¹H NMR spectrum with the ¹H NMR spectra of **1a**, 1b and 1d (Table 1) showed that the acetate was clearly not located on C-5. The unlikely possibility that it was a C-9 epimer of 1b was ruled out as follows. In the new isomer, the chemical shifts of two multiplets at δ 1.95 and 1.51 were essentially identical with the shifts of H-8 α and H-8 β in **1b** and **1d**, hence these signals could presumably be attributed to H-8 α , β as well. Irradiation of the signal at δ 1.51 collapsed the signal of δ 4.05 to a doublet while irradiation of the signal at δ 5.30 had no effect on the signals of H-8 α and H-8 β . Conversely, COSY showed that the signal of the methine proton under the hydroxyl at δ 4.05 was coupled to the signals of H-8 α and H-8 β at δ 1.95 and 1.51 while the signal at δ 5.30 due to the methine proton under the acetate was coupled to signals (for 2- H_2) centered at δ 2.17. Hence the new derivative was 1-*O*-acetylageratriol.

Compound **2a** whose ¹H and ¹³C NMR spectral data are listed in Table 3 was the 11,13-dehydro analog of an oplopane derivative **2b** previously reported from *Artemisia sieberi* Bess. (Marco et al., 1993). Although H-H decoupling and COSY were only partially useful due to overlap of pairs of CH₂ and CH signals (e.g. H-1 and H-6, H-2 and H-9 and H-4 and H-5), HETCOR established the relationship of the car-

Table 3 ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra of **2a** (CDCl₃) (multiplicities of ¹³C signals by DEPT)

	Н	С
1	1.75 c ^a	24.1 <i>t</i>
2	$150 c^{a}$	29.0 t
3	2.53 m	54.8 d
4	1.95 c	46.8 d
5	1.95 c	49.9 d
6	$1.80 c^{a}$	36.3 t
7	3.52 dd (11.7, 4.5)	78.2 d
8	=	75.7 s
9	1.47 <i>m</i>	54.1 d
10	$1.45 \ s^{b}$	14.3 q
11	=	147.6 s
12	4.65 brs, 4.54 brs	111.9 t
13	$1.50 \ s^{\rm b}$	18.09 q
14	_	211.4 s
15	2.04 s ^b	30.7 q

^a Intensity two protons.

Table 4 ¹H ¹³C HMBC spectral correlations of **2a** (75 MHz, CDCl₃)

¹³ C	$^{1}\mathrm{H}$
C-3	H-15
C-5	H-6, H-12a,b, H-13
C-7	H-10
C-8	H-7, H-10
C-9	H-10
C-10	H-7
C-11	H-6, H-13
C-12	H-6, H-13
C-13	H-12,a,b
C-14	H-15

bon multiplets to the ¹H signals while the HMBC spectrum (Table 4) allowed expansion to formula **2a** with the stereochemistry based on NOE data and on the similarity of the spectoscopic data of H-2a and H-2b. Oplopanes are most frequently found in members of the Senecioneae although a few have been isolated from members of the Anthemideae (Marco et al., 1993), Heliantheae (Jakupovic et al., 1988), Eupatoricae (Tamayo-Castillo, Jakupovic, Bohlmann, Rojas, Castro, & King, 1988) and Inuleae (Ahmed, Jakupovic, & Bohlmann, 1990).

6-Demethoxycapillarisin (**3a**) (Hashidoko, Tahara, & Mizutani, 1991; Komiya, Naruse, & Oshio, 1976) is one of a small group of 2-phenoxychromones (Adesogan, & Okunade, 1978; Ibewuike, Ogudaini, Ogunghamila, Martin, Gaillard, Bohlin et al., 1996) whose biogenesis probably involves oxidative rearrangement of the corresponding flavone (Crombie, 1984). It was characterized by MS, ¹H and ¹³C NMR spectroscopic analyses and conversion to the diacetate **3b**.

2. Experimental

Extraction and fractionation of the extract of the aerial parts of Achillea ageratum were described earlier (Vieira et al., 1997). Frs. 88–94 (1.9 g) were rechromatographed (Si gel 60), 50 ml subfrs. being collected as follows; subfrs. 1-25 (petrol-CHCl₃, 4:1), 25-91 (petrol-CHCl₃, 3:2). Purification of subfrs. 68-91 by RP-2 TLC (Si gel 60 F₂₅₄, Merck 7730, toluene-EtOAc-Me₂CO-HCO₂H, 60:35:5:1) gave **1c** (18 mg). Frs. 127-136 were combined and recrystallized from MeOH to give hispidulin (20 mg). The mother liquor was purified by TLC (Si gel, toluene-EtOAc -Me₂CO-HCO₂H, 60:35:5:1) to give the 2:1 mixture of 5,9-dihydroxy-1-oxogermacra-4(15),10(14),11(13)-triene and 5,9-dihydroxy-1(10)-epoxygermacra-4(15),11(13)diene described previously (Vieira et al., 1997). After separation of this mixture the more polar components

^b Intensity three protons.

were combined, extracted and subjected again to TLC (Si gel, toluene–EtOAc–Me₂CO–HCO₂H, 60:30:5:1, 3 runs). This afforded **2a** (6 mg). Fr. 156 (2.6 g) was rechromatographed (Si gel 60), 100 ml subfrs. being collected as follows: subfrs. 1–3 (petrol–CHCl₃, 7:3), subfrs. 4–7 (petrol–CHCl₃, 3:2), 8–12 (petrol–CHCl, 2:3), 13–30 (petrol–CHCl₃, 4:1), 31–55 (CHCl₃–Me₂CO, 9:1), 66–72 (CHCl₃–Me₂CO, 7:3), subfrs. (CHCl₃–Me₂CO, 1:1). Subfrs. 40–45 were combined and recrystallized from CHCl₃ to give **3a** (43 mg). Frs. 187–200 were combined and precipitated from Me₂CO to give 3β-D-glucosyl-β-sitosterol (37 mg) identified by MS and NMR spectrometry and conversion to the tetraacetate.

2.1. 1-O-Acetylageratriol (1b)

Viscous liquid; PCI MS m/z (rel. int.) 295 ([M+H⁺], 63), 277 (38), 235 (46), 217 (32), 199 (23); IR (film) $\gamma_{\rm max}$ cm⁻¹: 3600–3200 (OH), 3077, 3069, 2930, 2874, 2856, 1730, 1644, 1463, 1454, 1445, 1433, 1373, 1241, 1077, 1024, 960, 924, 895, 803; [α]_D²⁰+31° (CHCl₃, 0.16 g/100 ml); ¹H NMR in Table 1; ¹³C NMR spectrum in Table 2.

2.2. 7β -hydroxyoplop-11-enone (2a)

Viscous yellow liquid; EI MS m/z (rel. int.) 252 ([M⁺], 20), 219 (15), 183 (18), 167 (35), 149 (100), 141 (35), 135 (70); $[\alpha]_0^{25}$ -13.0° (c. 4×10^{-4} g/ml, CHCl₃); ¹H and ¹³C NMR spectra in Table 3, HMBC spectrum in Table 4.

2.3. 6-Demethoxycapillarisin (3a)

EI MS m/z (rel. int.) 286 ([M⁺], 100), 257 (10), 229 (5), 194 (10), 165 (5), 153 (37), 134 (30), 121 (17), 106 (20); ¹H NMR (DMSO- d_6) δ 12.80 (s, 5-OH), 7.19 (dd, J=9 Hz, 2H, H-2', 6'), 6.87 (d, J=9 Hz, 2H, H-3', 5'), 6.36 (d, J=2 Hz, H-6), 5.02 (s, H-3); ¹³C NMR (DMSO- d_6) δ 183.0 (C-4), 168.0 s (C-2), 163.9 s (C-7), 161.4 s (C-5), 156.1 s (C-4'), 154.9 s (C-8a), 143.1 s (C-

1'), 121.7 d (C-2',6'), 116.5 d (C-3',5'), 102.0 s (C-4a), 99.3 d (C-3), 94.0 d (C-6), 86.6 d (C-8). Acetylation of **3a** (20 mg) in the usual manner furnished the diacetate **3b** (14 mg); ¹H NMR (DMSO- d_6) δ 12.96 (s, 5-OH), 7.49 (d, J=9 Hz, 2H, H-2', 6'), 7.32 (d, J=9 Hz, 2H, H-3', 5'), 6.97 (d, J=2 Hz, H-8), 6.69 (d, J=2 Hz, H-6), 5.35 (s, H-3), 2.30 and 2.29 (both s and 3H, Ac); ¹³C NMR (DMSO- d_6) δ 183.6 s (C-4), 169.1 and 168.4 (both s, C=O of acetates), 167.4 (s, C-2), 160.7, 155.5, 153.7, 148.8, 148.3 (all s, C-7, 5, 4', 8a, 1'), 123.9 d (C-2', 6'), 121.9 d (C-3', 5'), 106.6 s (C-4a), 106.2 and 101.4, (both d, C-6, C-3), 88.8 d (C-8), 20.9 and 20.8 (both acetate methyls).

Acknowledgements

Work in Portugal was supported by Fundação para Ciências e Tecnologia (Unidade de I & D No. 226/94), Praxis XXI and Projecto Praxis XXI §/2/2.1/QUI/17/94.

References

Adesogan, E. K., & Okunade, A. L. (1978). Chemical Communications 152.

Ahmed, A. A., Jakupovic, & Bohlmann, F. (1990). Phytochemistry, 29, 3355.

Crombie, L. (1984). Natural Product Reports, 1, 3.

Hashidoko, Y., Tahara, S., & Mizutani, J. P. (1991). *Phytochemistry*, 30, 3837.

Ibewuike, J. C., Ogundaini, A. O., Ogunghamila, F. O., Martin, M-T., Gaillard, J-F., Bohlin, L., & Païs, M. (1996). *Phytochemistry*,

Jakupovic, J., Schuster, A., Bohlmann, F., & Dillon, M. O. (1988).
Phytochemistry, 27, 1771.

Komiya, T., Naruse, Y., & Oshio, H. (1976). Yakugaku Zasshi, 96, 855

Marco, J. A., Sanz-Cervera, J. F., Sancenon, F., Jakupovic, J., Rustaiyan, A., & Mohamed, F. (1993). *Phytochemistry*, 34, 1061.

Tamayo-Castillo, G., Jakupovic, J., Bohlmann, F., Rojas, A., Castro, V., & King, R. M. (1988). Phytochemistry, 27, 2893.

Vieira, L. M., Kijjoa, A., Pereira, J. A., Gedris, T. E., & Herz, W. (1997). *Phytochemistry*, 45, 111.