Phytochemistry 52 (1999) 1581-1585

Two serratane triterpenes from the stem bark of *Picea jezoensis* var. hondoensis

Reiko Tanaka*, Kazuhiro Tsujimoto, Shunyo Matsunaga

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan

Received 19 October 1998; received in revised form 30 April 1999

Abstract

Two serratane triterpenoids were isolated from the stem bark of *Picea jezoenis* var. *hondoensis*, together with two known compounds, 3β -methoxyserrat-14-en-21 α -ol. The serratane triterpenoids were characterized as 14β , 15β -epoxy- 3α -methoxyserratan- 21β -ol and 3α -methoxy- 21β -hydroxyserrat-14-en-16-one, on the basis of chemical and spectroscopic evidence. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Picea jezoensis var. hondoensis; Pinaceae; Stem bark; Triterpenes; 14 β ,15 β -epoxy-3 α -methoxyserratan-21 β -ol; 3 α -methoxy-21 β -hydroxy-serrat-14-en-16-one

1. Introduction

Previously we reported that the CHCl₃ extract of the stem bark of *Picea jezoensis* (Sieb. et Zucc.) Carr. var. *hondoensis* Rhed. (Japanese name: Touhi, Pinaceae), contained eight serratene triterpenoids including 21 β -methoxyserrat-14-en-3-one, 21 α -methoxyserrat-13-en-3-one and 21 β -hydroxyserrat-14-en-3-one (Tanaka, Mun, Usami & Matsunaga, 1994; Tanaka, Tsuboi & Matsunaga, 1994).

Recently, we reported that the stem bark of P. jezoensis var. hondoensis contained 21α -hydroxy- 3β -methoxyserrat-14-en-29-al and 29-nor- 3α -methoxyserrat-14-en-21-one (Tanaka, Tsujimoto, Muraoka & Matsunaga, 1998).

Further careful examination of the stem bark of this extract has led to the isolation of two new triterpenoids, 1 and 2, besides two known compounds, 3β-methoxyserrat-14-en-21-one (3) (Tanaka, Ohmori, Minoura & Matsunaga, 1996) and 3β-methoxy serrat-

2. Results and discussion

The known compounds were confirmed to be 3β-methoxyserrat-14-en-21-one (3) (Tanaka et al., 1996) and 3β-methoxyserrat-14-en-21α-ol (4) (Fang et al., 1991), respectively, as physical and spectral data were in good agreement with those already reported in the literature data.

Compound 1 was assigned the molecular formula C₃₁H₅₂O₃, by HREIMS. The ¹H- and ¹³C-NMR spectral data (Tables 1 and 2) exhibited the presence of seven tertiary methyl groups, an equatorial methine proton [$\delta_{\rm H}$ 2.78 (1H, t, J = 2.5 Hz); $\delta_{\rm C}$ 85.8 (d)] geminal to a methoxy group [δ_H 3.31 (3H, s, OMe); δ_C 57.1 (q)], an equatorial methine proton $[\delta_H]$ 3.40 (1H, t, J = 2.4 Hz); $\delta_{\rm C}$ 75.7 (d)] geminal to a hydroxyl group (v_{max} 3533 cm⁻¹), a trisubstituted epoxy ring $[\delta_{\rm H} \ 2.80 \ (1\text{H}, \ br \ s); \ \delta_{\rm C} \ 59.3(d) \ \text{and} \ 61.4 \ (s)].$ Acetylation gave a monoacetate (1a). The ¹H- and ¹³C-NMR spectra were similar to those of 14β,15βepoxy- 3β -methoxyserratan- 21β -ol (5) obtained from Picea jezoensis var. jezoensis

¹⁴⁻en-21 α -ol (4) (Fang, Tsai & Cheng, 1991). This paper deals with the structures of 1 and 2.

^{*}Part 4 in the series 'Serratanes from the stem bark of *Picea jezoensis* var. *hondoensis*'; for Part 3 see Tanaka et al. (1998).

^{*} Corresponding author.

(Ezomatsu) (Tanaka et al., 1996), except for C-3 configuration. The C-3 chemical shift values of 5 were extremely different from those of 1 which appeared at $[\delta_{\rm H} \ 2.62 \ (1 \, {\rm H}, \ dd, \ J = 12.2, \ 4.4 \ {\rm Hz}) \ {\rm and} \ \delta_{\rm C} \ 88.5 \ (d)].$ Hence, compound 1 was suggested to be the C-3 α epimer of 5. The conclusive evidence for this structure including an epoxy configuration was confirmed by the NOESY experiment, in which H-3β correlated with Me-23 and Me-24, and H-15 correlated with H-27β and Me-28. The EIMS spectra of 1 and 1a (see Section 3) exhibited the same fragment ion peaks (ions a, d, e, f, g, h, j, k, l and m) as 5 and 14β , 15β -epoxy- 3β -methoxyserratan-21β-yl acetate (5a) (Tanaka et al., 1996). These data suggested that 1 should be 14β,15β-epoxy-3α-methoxyserratan-21β-ol, and this assumption was proved by synthesis. Oxidation of 3α-methoxyserrat-14-en-21β-ol (6), the most abundant triterpene constituent of this plant, with m-chloroperbenzoic acid (m-CPBA) furnished an epoxy compound identical in all respects with compound 1.

Compound **2** was determined the molecular formula as $C_{31}H_{50}O_3$, from HREIMS. The UV and IR spectra indicated absorption bands for a hydroxyl group (v_{max} 3396 cm⁻¹) and an α , β -unsaturated six membered ring ketone [λ_{max} 272 nm (ϵ 8000); v_{max} 1661 cm⁻¹]. The ¹H- and ¹³C-NMR spectra (Tables 1 and 2) exhibited signals for seven tertiary methyl groups, an equatorial methine proton [δ_H 2.78 (1H, t, J = 2.5 Hz); δ_C 85.7 (d)] geminal to a methoxy group [δ_H 3.31 (3H, s, OMe); δ_C 57.1 (q)], an equatorial methine proton [δ_H 3.34 (1H, t, J = 2.7 Hz); δ_C 76.8 (d)] geminal to a hydroxyl group, a trisubstituted double bond [δ_H 5.70 (1H, δ_T δ_T); δ_C 128.6 (d) and 163.7 (s)] and a conjugated ketone group [δ_C 201.2 (s)]. The DEPT spectrum

of 2 revealed seven methyls, nine methylenes, four methines, a methoxy group, two oxymethines, a trisubstituted double bond, five quaternary carbons and a ketone group. Acetylation of compound 2 gave a monoacetate (2a), whose C-21 carbinolic methine proton resonance was shifted to δ 4.58 (1H, t, J = 2.7 Hz). The ¹³C-NMR chemical shifts of **2** related to C-14, C-15, C-16, C-17 and C-18 were considerably different from those of 6, although the other signals of both compounds had very close chemical shifts. The ¹H-NMR signals of Me-28, Me-29 and Me-30 showed paramagnetic shift ($\Delta\delta_{C}$ 0.11, 0.24 and 0.33) when compared to those of 6. These data indicated that 2 must be a serrat-14-en-16-one derivative bearing an axial methoxyl group at C-3 and an axial hydroxyl group at C-21. This assumption was supported by analyzing HMQC, HMBC, ¹H/¹H COSY and NOESY spectra. In the HMBC spectrum, C-16 was correlated with H-15 and H-17β protons. Accordingly, 2 was proved as 3α-methoxy-21β-hydroxyserrat-14-en-16-one; this structure was confirmed by synthesis (Tanaka & Matsunaga, 1991). Treatment of 3α-methoxyserrat-14en-21β-yl acetate (6a) with tertiary-butyl chromate in carbon tetrachloride furnished 3α-methoxy-21β-acetoxyserrat-14-en-16-one which was identical in all respects with 2a.

This is the first report for the isolation of **2** in the literature, although 16-oxoserratenediol $(3\beta,21\alpha$ -dihydroxyserrat-14-en-16-one) and its $3\alpha,21\beta$ - and $3\beta,21\beta$ -dihydroxyl analogues (Tsuda, Fujimoto & Kimpara, 1975), 16-oxoclavanol $(3\alpha,24,30$ -trihydroxyserrat-14-en-16-one), 16-oxolycoclavanol $(3\alpha,21\beta,24$ -trihydroxyserrat-14-en-16-one) and 16-oxoserratriol $(3\beta,21\alpha,24$ -trihydroxyserrat-14-en-16-one) (Tsuda, Fujimoto &

Table 1 500 MHz ¹H-NMR spectral data of 1, 2, and 2a^a

Н	1	2	2a
1α	1.18 <i>m</i>	1.22 m	1.24 <i>m</i>
1β	1.50 m	1.46 dt (13.6, 3.9)	1.46 m
2α	1.72 m	1.72 m	1.73 <i>m</i>
2β	1.72 m	1.72 m	1.73 m
3β	2.78 t (2.5)	2.78 t (2.5)	2.78 t (2.5)
5α	1.23 dd (13.1, 2.3)	1.28 dd (10.5, 4.6)	1.28 m
6α	1.43 <i>m</i>	1.43 <i>m</i>	1.38 <i>m</i>
6β	1.37 <i>m</i>	1.43 <i>m</i>	1.44 <i>m</i>
7α	1.21 <i>m</i>	1.33 <i>m</i>	1.34 <i>m</i>
7β	1.34 dt (12.8, 3.1)	1.41 m	1.45 m
9α	0.89 dd (12.2, 2.1)	1.07 dd (12.2, 2.2)	1.10 dd (12.2, 2.2)
11α	1.98 m	2.10 ddd (12.2, 7.3, 3.4)	2.13 ddd (12.2, 7.2, 3.4)
11β	1.28 m	1.24 m	1.28 m
12α	1.04 m	1.20 m	1.20 m
12β	1.88 m	1.86 dd (11.6, 7.3)	1.84 dd (11.6, 7.2)
13β	1.47 dd (15.1, 2.1)	2.33 dd (11.6, 2.0)	2.33 dd (11.6, 2.0)
15	2.80 br s	5.70 br s	5.72 br s
16α	1.69 ddd (14.6, 13.1, 2.0)	=	_
16β	1.94 ddd (14.6, 4.3, 2.0)	_	- .
17β	1.46 dd (13.1, 4.3)	2.53 s	2.44 s
19α	1.52 m	1.54 dt (13.3, 3.5)	1.59 dt (13.5, 3.5)
19β	1.38 m	1.79 ddd (15.0, 13.3, 3.5)	1.59 ddd (15.0, 13.3, 3.5)
20α	1.77 ddd (14.8, 4.5, 2.3)	1.90 m	1.88 <i>m</i>
20β	1.55 m	1.65 ddd (13.8, 6.5, 2.7)	1.72 <i>m</i>
21α	3.40 t (2.4)	3.34 t (2.7)	4.58 t (2.7)
23	0.91 s	0.93 s	$0.93 \ s$
24	$0.82 \ s$	0.832 s	0.84 s
25	$0.83 \ s$	$0.825 \ s$	$0.85 \ s$
26	1.07 s	0.86 s	$0.90 \ s$
27α	1.91 <i>d</i> (14.4)	2.44 <i>d</i> (14.7)	2.45 d (15.1)
27β	0.72 d (14.4)	$1.90 \ d \ (14.7)$	1.92 <i>d</i> (15.1)
28	0.73 s	0.79 s	0.81 s
29	$0.89 \ s$	1.12 <i>s</i>	1.18 s
30	$0.93 \ s$	1.26 s	1.16 s
OMe	3.31 <i>s</i>	3.31 <i>s</i>	3.31 s
OAc	=	=	2.10 s

^a Measured in CDCl₃. Assignments were made by HMQC, HMBC, ¹H-¹H COSY and NOESY experiments.

Kimpara, 1975), lycoclavanin (3α,20β,21β,24-tetrahydroxyserrat-14-en-16-one) (Tsuda, Fujimoto, Morimoto & Sano, 1975), and 16-oxolyclanitin (3α,20β,21β,24,29-pentahydroxyserrat-14-en-16-one) (Tsuda, Fujimoto, Isobe, Sano & Kobayashi, 1974) had been isolated from *Lycopodium clavatum* and *Lycopodium serratum*.

3. Experimental

3.1. General

Mps.: uncorr. Optical rotations: CHCl₃ at 23°; UV: EtOH; IR: KBr discs; ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz): CDCl₃ with TMS as internal standard; EIMS: 70 eV (probe). CC: silica gel 60 and alumina 90 (each 70–230 mesh, Merck); TLC: silica gel HF₂₅₄ and PF₂₅₄ (Merck).

3.2. Isolation of compounds

Extraction, isolation of 21α -hydroxy- 3β -methoxyser-rat-14-en-29-al and 29-nor- 3α -methoxyserrat-14-en-21-one by residues A and B from the silica gel CC of the CHCl₃ extract of the stem bark of *P. jezoensis* var. hondoensis has been reported (Tanaka et al., 1998).

Repeated silica gel CC (1 kg) of the frs 41–56 (residue C, 35.73 g) of the CHCl₃ extract of *P. jezoensis* var. hondoensis gave a crystalline mass (207 mg) from the frs 16–19. Rechromatography with Al₂O₃ eluting with *n*-hexane:C₆H₆ 5:1 gave 3 β -methoxyserrat-14-en-21-one (3), 111 mg, mp 268–270° (MeOH–CHCl₃), [α]_D –29 (c 0.57) (lit. (Tanaka et al., 1996) mp 268.5–270°, [α]_D –29), identical in all respects with an authentic sample. Subsequent CC of residue C with the same solvent afforded 3 α -methoxyserrat-14-en-21 β -ol (6) (21.76 g) from frs 21–37, 3 β -methoxyserrat-14-en-21 β -ol (7) (2.38 g) from frs 55–72, and a poorly-separ-

able mixt. (1.66 g) from frs 73–81. Acetylation of 1 g of the mixt. with Ac₂O-pyridine (1:1, 10 ml) at room temp. for 24 h and subsequent usual workup gave a residual solid (1.01 g), which was subjected to a 10% AgNO₃ impregnated silica gel (150 g) CC using *n*-hexane–C₆H₆ (5:1) to afford the acetate **7a** (813 mg) from frs 22–78 and 3β-methoxyserrat-14-en-21α-yl acetate **(4a)** (79 mg) from frs 94–102. Hydrolysis of compound **4a** (50 mg) with N/30 KOH/EtOH gave 3β-methoxyserrat-14-en-21α-ol **(4)**, (48 mg), mp 318–321.5° (MeOH–CHCl₃), [α]_D –5 (c 0.44), which was identified by literature data (Fang et al., 1991).

Repeated silica gel CC (1 kg) of frs 104–122 (residue D, 14.30 g) of the extract yielded a crystalline solid (38 mg), from frs 23–38. Purification of the solid by prep. TLC [plate: 0.5 mm thick, 20×20 cm, solvent: CHCl₃–MeOH, 50:1] afforded compound **2** (22 mg). Subsequent CC with the same solvent yielded a crystalline solid (44 mg), from frs 44–49, which was purified by prep. TLC [plate: 0.5 mm thick, 20×20 cm, solvent: CHCl₃–MeOH, 50:1] to give compound **1** (39 mg).

3.3. 14β , 15β -epoxy- 3α -methoxyserratan- 21β -ol (1)

Prisms, mp 279-281° (MeOH–CHCl₃), $[\alpha]_D$ –36 (c 0.12, CHCl₃), HREIMS m/z 472.3913 $[M]^+$ (C₃₁H₅₂O₃ requires 472.3913), IR v_{max} cm⁻¹: 3533 (OH), 2968, 2892, 1457, 1388 and 1360 (gem-dimethyl), 1106, 1067 and 1000; ¹H- and ¹³C-NMR: see Tables 1 and 2; EIMS m/z (rel. int) (Tanaka et al., 1996): 472 $[M]^+$ (21), 457 $[M-Me]^+$ (9), 454.3798 $[M-H_2O]^+$ (11), 440.3654 [ion a, calc for 440.3652] (36), 425 [a-Me] (12), 422 $[a-H_2O]$ (7), 287 [ion b] (12), 257 [ion d] (18), 248 [ion e] (33), 237.1864 [ion f, calc for 237.1853] (16), 224.1766 [ion g, calc for 224.1775] (56), 221 [ion h] (29), 209.1521 [ion j, calc for 209.1540] (52), 203 [ion k) (25), 201 [ion l] (35), 191 [ion m] (23), 189 [ion n] (61) and 136 (100).

3.4. Acetylation of 1

Compound **1** (13 mg) was dissolved in a mixt. of Ac_2O and C_5H_5N (1:1, 1 ml) and the mixt. was kept at room temp. overnight. Usual workup yielded a crude solid (13 mg), which was purified by prep. TLC to afford the corresponding acetate **1a**, 12 mg, mp 238–240° (MeOH–CHCl₃), $[\alpha]_D$ –47 (c 0.67, CHCl₃), IR v_{max} cm⁻¹: 1738 and 1245 (OAc), 2935, 2872, 1457, 1387 and 1363 (gem-dimethyl), 1165, and 1099; ¹H-NMR (C_5D_5N) δ : 0.73 (3H, s, Me-28), 0.81 (3H, s, Me-24), 0.83 (3H, s, Me-25), 0.84 (3H, s, Me-30), 0.88 (3H, s, Me-29), 1.03 (3H, s, Me-23),1.21 (3H, s, Me-26), 2.06 (3H, s, OAc) 2.76 (1H, t, t) = 2.5 Hz, H-3t), 2.78 (1H, t) t0, 3.32 (3H, t0, OMe), 4.82 (1H, t0, t1, t2, t3, t3, t4, t5, t5, t6, t6, t7, t8, t7, t8, t8, t9, t9,

Table 2 125 MHz ¹³C-NMR spectral data of compounds 1, 1a, 2, and 2a^a

-				
С	1	1a	2	2a
1	33.6 t	33.7 t	33.4 <i>t</i>	33.5 t
2	20.2 t	20.3 t	20.2 t	20.2 t
3	85.8 d	85.5 d	85.7 d	85.6 d
4	38.0 s	38.2 s	$38.0 s^{\rm b}$	$38.0 s^{\rm b}$
5	50.0 d	50.0 d	50.0 d	50.0 d
6	18.3 t	18.6 t	18.6 t	18.6 t
7	44.4 t	44.9 t	44.7 t	44.7 t
8	39.3 s	39.4 s	$38.2 s^{\rm b}$	$38.2 s^{\rm b}$
9	62.8 d	62.9 d	62.2 d	62.2 d
10	38.0 s	38.3 s	$38.0 \ s^{\rm b}$	$38.1 s^{\rm b}$
11	25.2 t	25.4 t	26.5 t	26.5 d
12	27.1 t	27.2 t	25.0 t	25.0 t
13	56.8 d	57.3 d	58.7 d ^c	58.8 d
14	61.4 s	$60.8 \ s$	163.7 s	163.6 s
15	59.3 d	59.0 d	128.6 d	128.6 d
16	22.8 t	23.0 t	201.2 s	200.4 s
17	$38.0 \ d$	39.6 d	58.8 d ^c	59.7 d
18	35.2 s	35.5 s	44.3 s	44.3 s
19	31.8 t	32.8 t	31.4 t	32.2 t
20	25.1 t	23.1 t	24.5 t	22.3 t
21	75.7 d	77.7 d	76.8 d	78.8 d
22	37.1 s	36.4 s	36.7 s	35.9 s
23	28.4 q	28.8 q	28.4 q	28.4 q
24	22.4 q	22.4 q	22.5 q	22.5 q
25	$16.3 \ q$	16.5 q	15.8 q	15.8 q
26	20.5 q	20.8 q	20.0 q	20.2 q
27	55.4 t	55.7 t	55.8 t	55.9 t
28	14.7 q	14.8 q	14.8 q	14.7 q
29	22.9 q	22.5 q	21.5 q	21.3 q
30	27.8 q	27.6 q	27.8 q	27.6 q
OMe	57.1 q	56.7 q	57.1 q	57.1 q
OCO <u>Me</u>	_	21.0 q	_	21.3 q
O <u>C</u> OMe	-	170.8 s	=	170.5 s

^a Measured in CDCl₃: 1, 2, 2a, and C₅D₅N: 1a.

z (rel. int) (Tanaka et al., 1996): 514.4020 [M⁺, calc for 514.4020] (35), 499 [M–Me]⁺ (9), 482 [ion a] (8), 467 [a–Me] (4), 454 [M–HOAc]⁺ (10), 439 [M–HOAc–Me]⁺ (12), 287 [ion b] (7), 266.1862 [ion g, calc for 266.1881] (80), 257 [ion d] (20), 251.1626 [ion j, calc for 251.1646] (67), 248.2137 [ion e, calc for 248.2139] (44), 221 [ion h] (27), 203 (ion k) (25), 201.1643 [ion l, calc for 201.1643] (37), 191 [ion m] (30), 189 [ion n] (50) and 136 (100).

3.5. Synthesis of 1 from 6

A solution of *m*-CPBA (30 mg) in CHCl₃ (3 ml) was gradually added to a solution of compound **6** (30 mg) in CHCl₃ (2 ml) with stirring at room temperature for 4 h, when the reaction mixture was washed with 5% aqueous Na₂CO₃ and H₂O. Evaporation of the solvent under reduced pressure afforded a residue which was purified by prep. TLC [plate: 0.5 mm thick, 20×20 cm, solvent: CHCl₃–MeOH, 50:1] to give

b,c May be interchanged within the same column.

14β,15β-epoxy-3α-methoxyserratan-21β-ol, 26 mg, mp 280–281° (MeOH–CHCl₃), $[\alpha]_D$ –36 (c 0.25, CHCl₃). The resulting product was identified by direct comparison with data for compound 1.

3.6. 3α -methoxy-21 β -hydroxyserrat-14-en-16-one (2)

Needles, mp 320–322° (MeOH–CHCl₃), $[\alpha]_D$ –83 (*c* 0.13, CHCl₃), HREIMS: m/z 470.3757 (C₃₁H₅₀O₃ requires 470.3756); UV λ_{max} (ε) nm: 230 sh, 272 (3500, 8000); IR ν_{max} cm⁻¹: 3396 (OH), 2933, 2861, 1661 (C=C-C=O), 1458, 1387 and 1361 (gem-dimethyl), 1245, 1184, 1132, 1107, 1090, 1103, 986, 935, 876 and 793 (HC=C<); ¹H- and ¹³C-NMR: see Tables 1 and 2; EIMS m/z (rel. int.): 470 [M]⁺ (100), 452 [M–H₂O]⁺ (6), 438 [M–MeOH]⁺ (21), 405 (18), 371 (4), 330 (6), 261 (24), 221 (46), 203 (26), 189 (65).

3.7. Acetylation of 2

Treatment of compound **2** (10 mg) as described for **1** yielded a crude solid (10 mg), which was purified by prep. TLC to afford the corresponding acetate (**2a**), 10 mg, amorphous solid, EIMS: m/z 512 [M]⁺; ¹H-and ¹³C-NMR: see Tables 1 and 2.

3.8. Synthesis of 2a from 6a

A soln of freshly prepd. $CrO_2(O-t-Bu)_2$ (1 ml) in CCl_4 (7.5 ml) was dropwise added to a soln of 3α -methoxyserrat-14-en-21 β -yl acetate (**6a**) (102 mg) in CCl_4 (20 ml) and the mixt. was heated at 80° for 12 h. After cooling, 10 ml of 5% aqueous NaHSO₃ was added to the mixt. to destroy any excess oxidant. The organic layer was washed with H_2O and dried over Na₂SO₄; removal of the solvent under reduced press-

ure yielded a residual solid (99 mg), which was purified by prep. TLC (plate: 0.5 mm thick, 20×20 cm, solvent: CHCl₃–MeOH, 50:1) to give 3α -methoxy-21 β -acetoxyserrat-14-en-16-one, $[M]^+$ m/z: 512. It was identified by direct comparison with the data for compound **2a**.

Acknowledgements

The authors are grateful to Mr M. Fujiwara, National Osaka Forestry Bureau, 1-8-75 Temmabashi, Kita-ku, Osaka 530-0042, Japan, for the supply of the plant material. Thanks are also due to Mrs M. Fujitake and Mr K. Minoura of this University, for MS and NMR measurements.

References

Fang, J-M., Tsai, W-Y., & Cheng, Y-S. (1991). *Phytochemistry*, 30, 1333.

Tanaka, R., & Matsunaga, S. (1991). Phytochemistry, 30, 4093.

Tanaka, R., Tsuboi, R., & Matsunaga, S. (1994). *Phytochemistry*, 37, 209.

Tanaka, R., Mun, C., Usami, Y., & Matsunaga, S. (1994).
Phytochemistry, 35, 1517.

Tanaka, R., Ohmori, K., Minoura, K., & Matsunaga, S. (1996). Journal of Natural Products, 59, 237.

Tanaka, R., Tsujimoto, K., Muraoka, O., & Matsunaga, S. (1998).
Phytochemistry, 47, 839.

Tsuda, Y., Fujimoto, T., & Kimpara, K. (1975). Chemical and Pharmaceutical Bulletin, 23, 1290.

Tsuda, Y., Fujimoto, T., Morimoto, A., & Sano, T. (1975). Chemical and Pharmaceutical Bulletin, 23, 1336.

Tsuda, Y., Fujimoto, T., Isobe, K., Sano, T., & Kobayashi, M. (1974). Yakugakuzasshi, 94, 970.