Phytochemistry 52 (1999) 1633-1638

Sesquiterpene lactones and bisbibenzyl derivatives from the neotropical liverwort *Frullania convoluta**

Michael Flegel, Klaus-Peter Adam, Hans Becker*

FR 12.3, Pharmakognosie und Analytische Phytochemie, Universität des Saarlandes, 66041 Saarbrücken, Germany Received 4 March 1999; received in revised form 29 March 1999; accepted 30 March 1999

Abstract

The new germacranolide *epi*-isocostunolide and two new bisbibenzyls, 2'-(11-hydroxy-1-bibenzyl-oxy)-1'-methoxy-6',10',11'-trihydroxy-7',8'-dihydro-phenanthrene and 2'-(10,11-dihydroxy-1-bibenzyl-oxy)-1'-methoxy-6',10',11'-trihydroxy-7',8'-dihydro-phenanthrene, along with the known eudesmanolides, α-cyclocostunolide, brothenolide, nepalensolide A and nepalensolide B, the bisbibenzyls, perrottetin E, perrottetin F, perrottetin G, 7',8'-dehydroperrottetin F, and the bibenzyls, lunularic acid and lunularin, have been isolated from the neotropical liverwort *Frullania convoluta*. Their structures were elucidated by NMR spectroscopy. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Frullania convoluta; Frullaniaceae; Hepaticae; Sesquiterpene lactone; Germacrane; Eudesmane; Bibenzyl; Bisbibenzyl; Dihydrophenanthrene

1. Introduction

In the course of our evaluation of liverworts as a source for new bioactive natural products we have analysed the constituents of the neotropical species *Frullania convoluta*. This paper describes the isolation and characterization of a new germacranolide and two new bisbibenzyls with a dihydrophenanthrene moiety along with several known sesquiterpene lactones and bisbibenzyls.

2. Results and discussion

A combination of size exclusion chromatography, vacuum liquid chromatography and HPLC of the ether extract of the plant led to the isolation of the new (-)-germacranolide epi-isocostunolide (1). Furthermore, the following five eudesmanolides could be obtained: (-)- α -cyclocostunolide (2) (da Silva,

Garcia, Baker & Rabi, 1981; Conolly, 1990), (-)-entα-cyclodihydrocostunolide (3) (Nagashima, Tanaka, Takaoka, & Asakawa, 1997), (+)-brothenolide (4) (Takeda, Ohta, & Hirose, 1983), (+)-nepalensolide A (5) (Tori, Miyazaki, Kondo, Taira & Asakawa, 1990) and (+)-nepalensolide B (6) (Asakawa & Tori, 1993). These five lactones are known constituents of the Frullania species. The methanolic extract afforded two new bisbibenzyls with a dihyrophenanthrene substruc-2'-(11-hydroxy-1-bibenzyl-oxy)-1'-methoxyture, 6',10',11'-trihydroxy-7',8'-dihydrophenanthrene 2'-(10,11-dihydroxy-1-bibenzyl-oxy)-1'-methoxy-6',10',11'-trihydroxy-7',8'-dihydrophenanthrene **(8)** together with the four bisbibenzyls perrottetin E (9), perrottetin F (10), perrottetin G (11) (Toyota et al., 1985) and 7',8'-dehydroperrottetin F (12) (Asakawa, 1995) as well as the common liverwort bibenzyls lunularin (13) (Huneck & Schreiber, 1976) and lunularic acid (14) (Huneck, 1976). Their structures were deduced from NMR and mass spectral data.

Compound **1** was obtained as colourless needles with a molecular formula of $C_{15}H_{20}O_2$ as calculated from the EI mass spectrum (m/z 232.3, [M]⁺). ¹³C NMR (δ_C 170.3) and IR data (absorption at 1780

^{*} Publication No. 137 in the series of 'Arbeitskreis Chemie und Biologie der Moose'

^{*} Corresponding author.

cm⁻¹) indicated the presence of a γ -lactone. The ¹H-NMR and ¹³C NMR spectra displayed the signals of an exomethylene group ($\delta_{\rm H}$ 6.25, 5.50, $\delta_{\rm C}$ 139.0, 121.5) and two methine protons, each belonging to a double bond ($\delta_{\rm H}$ 4.97, 4.86, $\delta_{\rm C}$ 119.5, 140.0 and 121.5, 138.0). Based on their chemical shifts the signals at $\delta_{\rm H}$ 5.15 and $\delta_{\rm H}$ 3.02 could be assigned to the bridgehead protons of a cis-lactone ring (Bohlmann, Jacupovic & Schuster, 1983; Zdero & Bohlmann, 1989) with the corresponding carbons at δ_C 77.3 and δ_C 39.0, respectively. The similarity of the spectroscopic data to α -costunolide (Ming, Mayer, Zimmermann & Rücker, 1989) and its 7-epimer with 6,7-cis-lactone ring (Zdero & Bohlmann, 1989) coupled with the molecular formula showed that 1 was a germacrane type sesquiterpene lactone. However, the data suggested a different position of the double bonds within the germacrane ring. The location of the two double bonds could be deduced from the HMBC and HSQC spectra. The Econfiguration of the 4-double bond and the Z-configuration of the double bond between C-9 and C-10 could be determined from NOESY correlations of H-6 to H-15 and H-9 to H-14 (Fig. 1). Furthermore, the cis-configuration of the lactone ring has been confirmed by cross peaks between H-6 and H-7 in the NOESY spectrum as depicted in Fig. 1. Thus, 1 should be epi-isocostunolide, the 7-epimer of isocostunolide (Bapat & Kulkarni, 1971).

Compound 7 was obtained as a yellow oil with the molecular formula $C_{29}H_{26}O_6$ as indicated by the EI mass spectrum (m/z 470,4 [M]⁺). The IR spectrum displayed absorption bands characteristic of hydroxyl groups (3400 cm⁻¹) and aromatic rings (1515 cm⁻¹). The ¹³C NMR spectrum showed the presence of 29 carbons in the molecule. The ¹H-NMR spectrum of 7 displayed the signals of four benzylic methylenes at $\delta_{\rm H}$ 2.69 and $\delta_{\rm H}$ 2.74 corresponding to the ¹³C NMR signals at $\delta_{\rm C}$ 36.7, 37.7, 29.6 and 21.6 which are characteristic for bisbibenzyls. The ¹H-NMR spectrum displayed also eleven aromatic protons. These signals

H 7 H 6 H 0 O

Fig. 1. Significant NOESY couplings of 1.

appearing in the range of $\delta_{\rm H}$ 6.36 to 7.44 were attributed to the four benzene rings A-D of a bisbibenzyl. According to their multiplicity and their coupling constants the two aromatic proton signals at $\delta_{\rm H}$ 6.90 (d, J = 8.5 Hz, H-3, H-5) and δ_{H} 6.69 (d, J = 8.5 Hz, H-2, H-6) could be assigned to the AA'BB' spin system of the 1,4-substituted ring A. Furthermore, chemical shift and multiplicity of four signals each integrating to one proton at $\delta_{\rm H}$ 6.36 (s), $\delta_{\rm H}$ 6.60 (dd), $\delta_{\rm H}$ 6.70 (not resolved) and $\delta_{\rm H}$ 7.08 (t), indicated the presence of a 1,3-substituted benzene ring (ring B). This was proven by the similarity of ¹³C-NMR data of ring A and B to the data of lunularin (Kunz & Becker, 1992). The HMBC spectral data displayed a correlation between H-13' in ring D and C-3' in ring C (Fig. 2). This correlation is explicable if a dihydrophenanthrene substructure is assumed for these two benzene rings. The NOESY spectrum confirmed the presence of a dihydrophenanthrene moiety by a correlation between H-2 and H-13', caused by the sterical fixing of ring D (Fig. 3). Two ortho doublets at $\delta_{\rm H}$ 6.54 (d, J=8.5 Hz, H-12') and 7.44 (d, J = 8.5 Hz, H-13') indicated the substitution pattern of ring D. The remaining singlet at $\delta_{\rm H}$ 6.54 corresponded to H-5'. Therefore, 7 should be 2'-(11-hydroxy-1-bibenzyl-oxy)-1'-methoxy-6',10',11'trihydroxy-7',8'-dihydro-phenanthrene.

Compound 8 was isolated as a brownish oil with a molecular formula $C_{29}H_{26}O_7$ calculated from the EI-mass spectrum (m/z 486.3 [M]⁺). The IR and ¹H-NMR spectrum of compound 8 were very similar to 7. A difference of 16 mass units in the mass spectrum compared to 7 indicated the presence of an additional hydroxyl group in 8. The location of this oxygenation could be deduced from the ¹H-NMR spectrum. Since the singlet at δ_H 6.36 (H-10) of 7 was missing in the spectrum of 8, a substitution at position 10 had to be assumed. The fragmentation pattern of 8 in the mass spectrum confirmed the location of an additional hydroxyl group in position 10. The spectrum displayed a fragment of m/z 123 for ring B. The EI-MS of 7

Fig. 2. Significant HMBC couplings of 7.

Fig. 3. Significant NOESY couplings of 7.

showed a fragment of m/z 107. The difference of 16 mass units can be attributed to the second hydroxygroup in ring B. Accordingly, **8** is 2'-(10,11-dihydroxy1-bibenzy1-oxy)-1'-methoxy-6',10',11'-trihydroxy-7',8'-dihydrophenanthrene.

So far, only a similar dihydrophenanthrene type bisbibenzyl (shancilin) is known as a constituent of the tubers of the orchid *Pleione bulbocodioides* (Bai, Yamaki & Takagi, 1996). However, its structure is different to 7 and 8 since in shancilin bibenzyl and the phenenathrene moiety are linked via an ether bridge between positions 1 and 6'. As similar compounds in liverworts only two biphenanthrenes are reported (Adam & Becker, 1994).

Based on a tentative chemosystematic classification of the genus *Frullania* (Toyota, Nagashima & Asakawa, 1988), only around 30 (Asakawa, 1995; Kraut, Mues & Sim-Sim, 1994; Nagashima et al., 1997) of the estimated 1250 species (Kron, 1988) have been thoroughly investigated, the present *Frullania convoluta* can be assigned to the group that forms both bisbibenzyls and sesquiterpene lactones.

3. Experimental

Solvents used for spectral measurements: CDCl₃ [1 H NMR: 400 MHz; 13 C NMR: 100 MHz for 1D and 500 MHz and 125 MHz for 2D techniques, respectively. Chemical shifts are given in δ values (ppm) from TMS, CHCl₃ (UV, optical rotation).

3.1. Plant material

Frullania convoluta (L.) Lindenberg & Hampe was collected in Páramo el Angel, Ecuador in October 1988 and identified by Professor Dr. R. Mues and Professor Dr. S. R. Gradstein. A voucher specimen is

deposited at the Botanical Institute of the University (Herbarium SAAR, No. 5671).

3.2. Extraction and isolation

The extraction scheme followed the standard procedures of our group (Adam & Becker, 1994; Bungert, Gabler, Adam, Zapp & Becker, 1998; Cullmann, Adam, & Becker, 1993). Powdered air dried plant material (750 g) was subsequently extracted with Et₂O and MeOH. The Et₂O extract (10.9 g) was chromatographed on Sephadex LH-20 (150 \times 2.5 cm i.d.) with MeOH–CH₂Cl₂ (1:1) as eluent to give four fractions (I–IV). Fraction IV (1.5 g) was separated by VLC (silica gel 15 μ m, 60 \times 35 mm i.d., stepwise with an *n*-hexane–EtOAc gradient) and gave the fractions IV-1 (100% *n*-hexane, 50 mg), IV-2 (0.5–3% EtOAc, 34

Table 1 ¹H NMR spectral data of compounds **7** and **8** (CDCl₃). Coupling constants (*J* in Hz) in parentheses

Н	7	8
2	6.69 d (8.5)	6.70 d (8.5)
3	6.90 d (8.5)	6.98 d (8.5)
5	6.90 d (8.5)	6.98 d (8.5)
6	6.69 d (8.5)	6.70 d (8.5)
7	2.75 ^a	2.74 ^a
8	2.75 ^a	2.74 ^a
10	6.36 s	_
12	6.60 dd (8.0, 2.3)	6.63 ^b
13	7.08 t (8.0)	6.62 ^b
14	6.70 ^b	6.58 ^b
5'	6.73 s	6.70 s
7′	2.69 ^a	2.67 ^a
8'	2.68 ^a	2.73 ^a
12'	6.54 d (8.5)	6.54 d (8.5)
13'	7.44 d (8.5)	7.43 d (8.5)
15'	3.77 s	3.73 s

^a Signals overlapped.

^b Signals not resolved.

Table 2 ¹³C NMR spectral data of compounds 7 and 8 (CDCl₃)

C	7	8
1	155.7 s	155.7 s
2	114.8 d	114.9 d
3	129.4 d	129.3 d
4	134.9 s	135.4 s
5	129.4 d	129.3 d
6	114.8 d	114.9 d
7	36.7 t	35.3 t
8	37.7 t	32.0 t
9	143.5 s	128.6 s
10	115.7 d	142.4 s
11	155.5 s	143.8 s
12	112.8 d	112.8 d
13	129.4 d	119.8 d
14	120.7 d	121.4 d
1'	138.7 s	138.8 s
2'	147.8 s	147.8 s
3'	121.5 s	121.4 s
4'	135.2 s	135.2 s
5'	111.6 d	111.7 d
6'	144.7 s	144.7 s
7′	29.6 t	29.6 t
8'	21.6 t	21.5 t
9'	124.9 s	124.9 s
10'	140.5 s	140.6 s
11'	142.2 s	142.4 s
12'	112.5 d	112.3 d
13'	119.8 d	119.5 d
14'	125.2 s	124.9 s
15'	61.2 q	61.2 q

mg), IV-3 (3.5–4% EtOAc, 178 mg), IV-4 (4.5–6% EtOAc, 410 mg), IV-5 (7–10% EtOAc, 122 mg), IV-6 (11–20% EtOAc, 115 mg) and IV-7 (20–100% EtOAc, 131 mg). The fractions IV-3, IV-4 and IV-5 were further purified by HPLC on silica gel LiChrospher Si 60, 5 μ m, 4 × 250): n-hexane–EtOAc (193:7) for **2** (9.6 mg), **3** (18 mg) and **4** (17 mg), n-hexane–t-BME (94:6) for **6** (41 mg) and **5** (50 mg) and n-hexane–EtOAc (95:5) for **1** (6.5 mg).

The methanolic extract was evapd *in vacuo* and distributed between EtOAc and H₂O. The organic layer was chromatographed on Sephadex LH-20. For the EtOAc soluble fraction of the methanol extract MeOH–CH₂Cl₂ (4:1) was used as eluent to yield 3 frs.

Fr. I (370 mg) was chromatographed on diol-modified silicagel via VLC with an *n*-hexane–EtOAc-gradient to give the fractions I-1 (30–45% EtOAc, 113 mg) and I-2 (45–55% EtOAc, 83 mg). I-1 was further purified by HPLC on diol-modified silica gel with *n*-hexane–EtOAc (85:15) as eluent to give lunularin (32.9 mg), lunularic acid (5.1 mg), perrottetin E (9) (7.5 mg) and perrottetin G (10) (23.8 mg). HPLC of I-2 gave perrottetin F (11) (*n*-hexane–EtOAc 45:55, 7.0 mg). Fr. II was chromatographed as described above to give II-1 (45–60% EtOAc, 66.1 mg). The HPLC-purification

on diol-modified silicagel yielded 7 (*n*-hexane–EtOAc 45:55, 15.6 mg). The VLC of fr. III afforded III-1 (45–80% EtOAc, 115 mg). III-1 was purified via HPLC on diol-modified silicagel (*n*-hexane–EtOAc 37:63) to give 7',8'-dehydroperrottetin F (12) (1.7 mg) and 8 (22.0 mg).

3.3. Epi-isocostunolide (1)

 $[\alpha]_{\rm D}^{20}$ -56° (CHCl₃; c0.33); EI-MS m/z (rel. int.): 232.3 [M]⁺ (30), 217 (20), 203 (19), 199 (12), 185 (18), 176 (41), 161 (27), 145 (31), 136 (39), 131 (54), 121 (68), 105 (73), 93 (82), 91 (98), 82 (100); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1780 (γ -lactone); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ 6.25 $(1H, d, J = 3.4 Hz, H-13\alpha), 5.50 (1H, d, J = 3.4 Hz,$ H-13 β), 5.15 (1H, dd, J = 8.9, 10.4 Hz, H-6), 4.97 (1H, d, J = 10.4 Hz, H-5), 4.86 (1H, m, H-9), 3.02(1H, m, H-7), 2.42 (1H, ddd, H-8a), 2.27-2.18 (2H, m, $H-1\alpha$, $H-1\alpha$), 2.14 (1H, m, H-8 β), 2.01 (1H, m, H-3 β), 1.75 (1H, m, H-1 β), 1.68 (1H, m, H-2 α), 1.64 (3H, s, H-14), 1.61 (1H, m, H-2β), 1.52 (3H, s, H-15); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ 170.3 (C-12), 140.0 (C-4), 139.0 (C-11), 138.0 (C-10), 121.5 (C-9, C-13), 119.5 (C-5), 77.3 (C-6), 41.7 (C-3), 39.0 (C-7), 30.5 (C-1), 29.7 (C-8), 23.3 (C-14), 20.7 (C-2), 15.8 (C-15)

3.4. 2'-(11-hydroxy-1-bibenzyl-oxy)-1'-methoxy-6',10',11'-trihydroxy-7',8'-dihydro-phenanthrene (7)

IR $v \text{ cm}^{-1}$: 3400, 2940, 1580, 1470, 1290, 1210, 1170; UV λ nm: 280; ¹H NMR: Table 1; ¹³C NMR: Table 2; EI-MS m/z (rel. int.): 470.4 [M]⁺ (100), 363 (51), 246 (20), 226 (38), 214 (54), 107 (74).

3.5. 2'-(10, 11-dihydroxy-1-bibenzyl-oxy)-1'-methoxy-6',10',11'-trihydroxy-7',8'-dihydrophenanthrene (8)

IR v cm⁻¹: 3400, 2940, 1580, 1470, 1290, 1210, 1170; UV λ nm: 280; ¹H NMR: Table 1; ¹³C NMR: Table 2; EI-MS m/z (rel. int.): 486.3 [M]⁺ (100), 470 (13), 363 (73), 242 (26), 107 (88)

Acknowledgements

The authors thank Professor R. Mues, Saarbrücken, for providing the plant material and Dr. Josef Zapp for recording the NMR spectra.

References

Adam, K. P., & Becker, H. (1994). Phenanthrenes and other phenolics from in vitro cultures of *Marchantia polymorpha*. Phytochemistry, 35, 139–143.

- Asakawa, Y., & Tori, M. (1993). The atlas of 400 MHz spectra of natural products. Hirokawa Publishing Co.
- Asakawa, Y. (1995). Chemical constituents of bryophytes. In W. Herz, G. W. Kirby, R. E. Moore, W. Steglich, & C. Tamm, Progress in the chemistry of organic natural products (pp. 1–618). New York: Springer Verlag.
- Bai, L., Yamaki, M., & Takagi, S. (1996). Stilbenoids from *Pleione bulbocodioides*. *Phytochemistry*, 42, 853–856.
- Bapat, B. V., & Kulkarni, G. H. (1971). Terpenoids: Part CXLVIII: migration of the C1–C10-double bond of costunolide and related products during selenium dioxide oxidation. *Indian Journal of Chemistry*, 9, 608–609.
- Bohlmann, F., Jacupovic, J., & Schuster, A. (1983). 8-Hydroxypegolettiolide, a sesquiterpene lactone with a new carbon skeleton and further constituents from *Pegolettia senegalensis*. *Phytochemistry*, 22, 1637–1644.
- Bungert, M., Gabler, J., Adam, K. P., Zapp, J., & Becker, H. (1998). Pinguisane sesquiterpenes from the liverwort *Porella navicularis*. *Phytochemistry*, 49, 1079–1083.
- Conolly, R. D. (1990). Monoterpenoids and sesquiterpenoids from the Hepaticae. In H. D. Zinsmeister, & R. Mues, *Bryophytes:* their chemistry and chemical taxonomy (pp. 41–58). Oxford: Oxford University Press.
- Cullmann, F., Adam, K. P., & Becker, H. (1993). Bisbibenzyles and lignans from *Pellia epiphylla. Phytochemistry*, 34, 831–834.
- da Silva, A. J. R., Garcia, M., Baker, P. M., & Rabi, J. A. (1981).
 ¹³C NMR spectra of natural products. *Organic Magnetic Resonance*, 16, 234–235.
- Huneck, S. (1976). Moosinhaltsstoffe: XVIII. Synthese von Pellepiphyllin und Lunularin. *Tetrahedron*, 32, 109–113.
- Huneck, S., & Schreiber, K. (1977). Synthese der Lunularsäure. Phytochemistry, 16, 1013–1016.

- Kraut, L., Mues, R., & Sim-Sim, M. (1994). Sesquiterpene lactones and 3-benzylphthalides from *Frullania muscicola*. *Phytochemistry*, 37, 1337–1346.
- Kron, K. A. (1988). Taxonomic study of Venezuelan members of Frullania Raddi subgenus Meteoropsis Spruce. Journal of the Hattori Botanical Laboratory, 64, 347–358.
- Kunz, S., & Becker, H. (1992). Bibenzyl glycosides from the liverwort *Ricciocarpos natans*. *Phytochemistry*, *31*, 3981–3983.
- Ming, C. W., Mayer, R., Zimmermann, H., & Rücker, G. (1989). A non-oxidized melampolide and other germacranolides from Aristolochia yunnaniensis. Phytochemistry, 28, 3233–3234.
- Nagashima, F., Tanaka, H., Takaoka, S., & Asakawa, Y. (1997). Eudesmane-type sesquiterpene lactones from the Japanese liverwort Frullania densiloba. Phytochemistry, 45, 555–558.
- Takeda, R., Ohta, Y., & Hirose, Y. (1980). (+)-Frullanolide and (+)-brothenolide, new sesquiterpene lactones from the liverwort Frullania brotheri. Chemistry Letters, 1980, 1461–1464.
- Tori, M., Miyazaki, N., Kondo, K., Taira, Z., & Asakawa, Y. (1990). Nepalensolide A, novel sesquiterpene lactone from the liverwort *Frullania nepalensis*. Compound breaking the samek rule. A study by NOE and X-ray. *Chemistry Letters*, 1990, 2115–2116.
- Toyota, M., Tori, M., Takikawa, K., Shiobara, Y., Kodama, M., & Asakawa, Y. (1985). Perrottetins E, F and G from *Radula perrottetii* (Liverworts): Isolation, structure determination and synthesis of perrottetin E. *Tetrahedron Letters*, 26, 6097–6100.
- Toyota, M., Nagashima, F., & Asakawa, Y. (1988). Labdane-type diterpenoids from the liverwort *Frullania hamachiloba*. *Phytochemistry*, 27, 1789–1793.
- Zdero, C., & Bohlmann, F. (1989). Sesquiterpene lactones and other terpenes from *Geigeria* species. *Phytochemistry*, 28, 3105– 3120.