

PHYTOCHEMISTRY

www.elsevier.com/locate/phytochem

Phytochemistry Vol. 66, No. 14, 2005

Contents

Reports on Structure Elucidation

FULL PAPERS

TERPENOIDS

Sesquiterpenes from Centaurea aspera

J. Alberto Marco*, Juan F. Sanz-Cervera, Alberto Yuste, Félix Sancenón, Miguel Carda

Germacrane and eudesmane derivatives bearing various acyl groups R have been isolated from *Centaurea aspera*.

pp 1644-1650

pp 1651-1655

Necrodane monoterpenoids from Lavandula luisieri

Nicolas Baldovini*, Sophie Lavoine-Hanneguelle, Georges Ferrando, Ghislaine Dusart, Louisette Lizzani-Cuvelier

Four irregular monoterpenoids were identified in the essential oil of *Lavandula luisieri* (Rozeira) Riv. Mart., which showed a significant antibacterial activity against several strains of *Staphylococcus aureus* and *Candida albicans*.

Lanostane triterpenoids from the inedible mushroom Fomitopsis spraguei

Dang Ngoc Quang, Yuuki Arakawa, Toshihiro Hashimoto, Yoshinori Asakawa*

Five lanostane triterpenoids were isolated from mushroom *Fomitopsis spraguei*, three of which are named fomitopsins A–C, together with two other compounds. The structure of quercinic acid C has been revised.

pp 1656-1661

ent-Verticillane-type diterpenoids from the Japanese liverwort Jackiella javanica

Fumihiro Nagashima*, Katsuhiro Kishi, Yuko Hamada, Shigeru Takaoka, Yoshinori Asakawa

Three *ent*-verticillane diterpenoids (1–3) have been isolated from the Japanese liverwort *Jackiella javanica*, together with five known *ent*-verticillane, three known *ent*-kaurane diterpenoids, and five sesquitepenoids. Their structures are established by application of extensive NMR spectroscopic analysis, chemical conversions and X-ray crystallographic studies.

pp 1662-1670

Triterpenoids from Sanguisorba officinalis

pp 1671-1679

Xin Liu, Yanxing Cui, Qiang Yu, Biao Yu*

Seven triterpenoids (1–7) and three known ones (8–10) were isolated from the roots of *Sanguisorba officinalis*, and their structures were determined by spectroscopic and chemical methods.

Rare trisubstituted sesquiterpenes daucanes from the wild Daucus carota

pp 1680-1684

Ahmed A. Ahmed*, Mohktar M. Bishr, Mohamed A. El-Shanawany, Eman Z. Attia, Samir A. Ross, Paul W. Paré

Phytochemical and biological investigation of the roots of *Daucus carota* ssp. *Carota* afforded seven compounds, including four sesquiterpenes daucane esters. The structures of the compounds were determined by extensive NMR studies, including DEPT, COSY, NOESY, HMQC and HMBC analyses.

Diterpenoid quinones from Rosemary (Rosmarinus officinalis L.)

pp 1685-1690

Ahmed A. Mahmoud*, Shar S. AL-Shihry, Byeng W. Son

Two abietane-type diterpenoid o-quinones, 7β -methoxyabieta-8,13-diene- 11,12-dione- $(20,6\beta)$ -olide (rosmaquinone A) (1) and 7α -methoxyabieta-8,13-diene-11,12-dione- $(20,6\beta)$ -olide (rosmaquinone B) (2), together with six known compounds were isolated from the aerial parts of *Rosmarinus officinalis*. The structures were determined on the basis of spectral studies.

1: $R = \beta$ -OCH₃

2: R = α-OCH₃

PHENOLICS

Bibenzyls and dihydroisocoumarins from white salsify (*Tragopogon porrifolius* subsp. *porrifolius*)

pp 1691-1697

Christian Zidorn*, Ulrike Lohwasser, Susanne Pschorr, Daniela Salvenmoser, Karl-Hans Ongania, Ernst P. Ellmerer, Andreas Börner, Hermann Stuppner

Tragopogon porrifolius L. subsp. porrifolius (Asteraceae, Lactuceae) yielded three bibenzyl derivatives, 5,4'-dihydroxy-3-α-L-rhamnopyranosyl-(1 \rightarrow 3)-β-D-xylopyranosyloxybibenzyl, 2-carboxyl-3,4'-dihydroxy-5-β-D-xylopyranosyloxybibenzyl, tragopogonic acid (2'carboxyl-3',5',4-trihydroxyphenylethanone) and the dihydroisocoumarin 6-O-methylscorzocreticoside I.

Cyclohexanoid protoflavanones from the stem-bark and roots of Ongokea gore

pp 1698-1706

Gerold Jerz*, Reiner Waibel, Hans Achenbach

Four protoflavanones with hydrogenated B-ring were isolated from *Ongokea gore* (Olacaceae) and named as (2S)-ongokein-4'-one (1), (2S)-4',4'-dimethoxy-ongokein (2), (2S)-cis-4'-hydroxy-ongokein (3), and (2S)-trans-4'-hydroxy-ongokein (4).

1: R^1 , $R^2 = 0$

3: $R^1 = H, R^2 = OH$

2: $R^1 = R^2 = OCH_3$

4: $R^1 = OH$. $R^2 = H$

Flavonoids, triterpenoids and a lignan from Vitex altissima

pp 1707-1712

Chenchugari Sridhar, Karumanchi V. Rao, Gottumukkala V. Subbaraju*

A lignan, altissinone (1), and a flavonoid, 2-*O-p*-hydroxybenzoylorientin (2), along with 11 known compounds have been isolated from ethyl acetate extractives of the leaves of *Vitex altissima*. The structures of these compounds were determined by 2D NMR data. The isolates were evaluated for their antioxidant and 5-lipoxygenase inhibitory activities.

Xanthones from Garcinia smeathmannii (Oliver) and their antimicrobial activity

pp 1713-1717

Justin Komguem, A.L. Meli, R.N. Manfouo, David Lontsi*, F.N. Ngounou, V. Kuete, Hippolyte W. Kamdem, Pierre Tane, Bonaventure T. Ngadjui, Beiban L. Sondengam, Joseph D. Connolly

Smeathxanthones A (1) and B (2) have been isolated from the stem bark of *Garcinia smeathmannii* (Oliver).

Xanthones and benzophenones from Garcinia griffithii and Garcinia mangostana

pp 1718-1723

Nilar, Lien-Hoa D. Nguyen, Ganpathi Venkatraman, Keng-Yeow Sim, Leslie J. Harrison*

Two benzophenones and a xanthone have been isolated from *Garcinia griffithii* and *G. mangostana* (Guttiferae).

ALKALOIDS

N-Substituted acridone alkaloids from *Toddaliopsis bremekampii* (Rutaceae: Toddalioideae) of south-central Africa

pp 1724–1728

Dashnie Naidoo, Philip H. Coombes*, Dulcie A. Mulholland, Neil R. Crouch, Albert J.J. van den Bergh

Toddaliopsins A–D, four acridone alkaloids, have been isolated from the leaves of *Toddaliopsis bremekampii*. Toddaliopsins B–D are the first reported acridone alkaloids with substituted N-methyl groups, in the light of which the chemotaxonomic relationship of *Toddaliopsis* and *Vepris* is discussed. Toddaliopsin C possesses moderate anti-inflammatory activity, which may be related to the hydroxy group present at C-1.

$$\begin{array}{c|cccc} O & OH & OMe & OMe \\ \hline & OMe & OMe & OMe \\ \hline & OH_2 & OH_2 & OH_3 \\ \hline & OH_3 & OH_3 & OH_3 \\ \hline & OH_3 & OH_3 & OH_3 \\ \hline & OH_3 & OH_3 & OH_3 \\ \hline & OH_4 & OH_3 & OH_3 \\ \hline & OH_4 & OH_3 & OH_3 \\ \hline & OH_4 & OH_4 & OH_4 \\ \hline & OH_5 & OH_4 & OH_4 \\ \hline$$

GENERAL CHEMISTRY

Fatty acids from seeds of *Pinus pinea* L.: Composition and population profiling

pp 1729-1735

Nizar Nasri*, Abdelhamid Khaldi, Bruno Fady, Saida Triki

The fatty acid composition of seeds of the Mediterranean pine tree *Pinus pinea* L. is described and quantified. The possibility to use of these fatty acids for range-wide population profiling is investigated.

Champanones, yellow pigments from the seeds of champa (Campomanesia lineatifolia)

pp 1736-1740

Adriana Bonilla, Carmenza Duque*, Cristina Garzón, Yoshihisa Takaishi, Kazutaka Yamaguchi, Noriyuki Hara, Yoshinori Fujimoto

Two yellow pigments, named champanones A (1) and B (2), were isolated from the methanol extract of the seeds of *Campomanesia lineatifolia* (Myrtaceae). Their structures were established on the basis of NMR and MS studies.

Composition and antimicrobial activity of essential oils from *Centaurea sessilis* and *Centaurea armena*

pp 1741-1745

Nurettin Yayli*, Ahmet Yaşar, Canan Güleç, Asu Usta, Sevgi Kolaylı, Kamil Coşkunçelebi, Şengül Karaoğlu

The essential oils of air-dried *Centaurea sessilis* and *Centaurea armena* were analyzed by GC-MS. Sixty-one and thirty-four components were identified in the essential oils and the main components of these taxa were found to be β -eudesmol in the ratios of 11.08% and 11.18% from *C. sessilis* and *C. armena*, respectively. The antimicrobial activity of the isolated essential oil of the plants was also investigated. They showed moderate antibacterial activity against Gram-positive and Gram-negative bacteria, but no antifungal activity was observed against two yeastlike fungi.

$$\beta$$
-eudesmol

OTHER CONTENTS

Book review Announcement: The Phytochemical Society of North America Author Index Guide for Authors p 1746 p I p III pp III-IV

*Corresponding author

The Editors encourage the submission of articles online, thus reducing publication times. For further information and to submit your manuscript, please visit the journal homepage at http://www.elsevier.com/locate/phytochem

INDEXED/ABSTRACTED IN: Current Awareness in Biological Sciences (CABS), Curr Cont ASCA. Chem. Abstr. BIOSIS Data, PASCAL-CNRS Data, CAB Inter, Cam Sci Abstr, Curr Cont/Agri Bio Env Sci, Curr Cont/Life Sci, Curr Cont Sci Cit Ind, Curr Cont SCISEARCH Data, Bio Agri Ind

ISSN 0031-9422

Also available on

SCIENCE DIRECT®

www.sciencedirect.com