

Available online at www.sciencedirect.com

PHYTOCHEMISTRY

Phytochemistry 66 (2005) 1680-1684

www.elsevier.com/locate/phytochem

Rare trisubstituted sesquiterpenes daucanes from the wild *Daucus carota*

Ahmed A. Ahmed ^{a,*}, Mohktar M. Bishr ^b, Mohamed A. El-Shanawany ^c, Eman Z. Attia ^b, Samir A. Ross ^d, Paul W. Paré ^e

a Department of Chemistry, Faculty of Science, El-Minia University, El-Minia 61519, Egypt
 b Department of Pharmacognosy, Faculty of Pharmacy, El-Minia University, El-Minia 61519, Egypt
 c Department of Pharmacognosy, Faculty of Pharmacy Assuit University, Assuit, Egypt
 d National Center for Natural Products Research, Department of Pharmacognosy, School of Pharmacy, University of Mississippi, MS 38677, USA
 c Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA

Received 26 October 2004; received in revised form 4 May 2005 Available online 16 June 2005

Abstract

Phytochemical and biological investigation of the roots of the wild *Daucus carota* ssp. *carota* afforded three new and four known compounds, including four sesquiterpenes daucane esters (1–3 [new], and 4), one polyacetylene (5), one sesquiterpene coumarin (6), and sitosterol glucoside. The structures of the new compounds were determined by comprehensive NMR studies, including DEPT, COSY, NOESY, HMQC and HMBC analyses. Based on an agar diffusion assay, 1, 2 and 4–6 were screened and found to contain a range of low antibacterial activities against four gram positive (*Staphylococcus aureus*, *Streptomyces scabies*, *Bacillus subtilus*, *Bacillus cereus*) and two gram negative species (*Pseudomonas aeruginosa*, *Escherichia coli*) as well as antifungal against *Fusarium oxysporum* and *Aspergillus niger* using cup agar diffusion assay.

Keywords: Daucus carota ssp. carota; Apiaceae; Daucane sesquiterpenes; Sesquiterpene coumarin; Polyacetylene; Antibacterial

1. Introduction

The genus *Daucus* (Apiaceae) comprises weedy plants of about 60 species, widely distributed and commonly cultivated for their fleshy edible roots. *Daucus carota* L. ssp. *carota* (wild carrot) is indigenous to Europe and is used as antibacterial, stimulant (Emilio, 1994), antiseptic, carminative, diuretic, hepatoprotective (Bishayee et al., 1995), antisteroidogenic (Majumder et al., 1997), anti-inflammatory (Porchezhian et al., 2000) and in treatment of jaundice and stomach disorders. The seeds of *D. carota* are used for the treatment of

particular bacterial strains.

swelling and tumors, while the roots are used as poultice in mammary and uterine carcinoma as well as skin can-

cer. Seed oil of this species afforded daucane-type sesqui-

terpenes (Dhillon et al., 1989; Mazzoni et al., 1999), such as *trans*-dauc-8-ene-4β-ol, *trans*-dauca-8,11-diene, dauca-5,8-diene, acora-4,9-diene, acora-4,10-diene, carotol and daucol, furocoumarins (Ceska et al., 1986). Additional constituents include flavonoids (Gupta and Niranjan, 1982), polyacetylenes (Lund, 1992), fatty oil (Vesna et al., 1989) and β-carotene (Bicudo-De-Almeida et al., 1998). This investigation of the roots of the wild *D. carota* L. ssp. *carota* in search for new bioactive constituents afforded three new sesquiterpene daucane derivatives, 1–3, and four known compounds, with all of tested constituents exhibiting selective inhibition of

^{*} Corresponding author. Tel.: +208 634 5267; fax: +208 634 2601. E-mail address: abdellaahmed@yahoo.com (A.A. Ahmed).

2. Results and discussion

Compound **1** was isolated as white powder, $[\alpha]_D^{50} + 22.8$ (c = 0.025, CHCl₃), its IR spectrum showed absorption bands at 3421 cm⁻¹ (OH) and 1714 cm⁻¹ (C=O). The molecular formula of **1**, C₃₁ H₃₆O₈, was determined from HRCIMS (m/z 535.2326), and ¹³C NMR spectral data. The ¹H and ¹³C NMR (Tables 1 and 2) exhibited signals for a daucane sesquiterpene nucleus, including a doublet at δ_H 5.11 (1H, d, J = 6 Hz, H-2) that correlated in the ¹H–¹H COSY spectrum with a signal at δ_H 2.12 (1H, dd, J = 6, 16 Hz, H-3 β). In the same experiment, a signal at δ_H 5.36 (1H, ddd,

Table 1 ¹H NMR of compounds 1–3 (500 MHz,CDCl₃, δ-values)

Protons	1	2	3 ^a	
Η-2β	5.11 d (6)	5.07	5.06	
Η-3β	2.12 dd (6,16)	1.87	1.85	
Η-3α	1.93 d (16)	2.10	2.09	
Η-5α	2.71 d (10.5)	2.61	2.58	
Η-6β	5.36 ddd (10.5, 10.5, 2.5)	5.23	5.21	
Η-7β	2.72 dd (14.5, 2.5)	2.69	2.67	
Η-7α	2.30 dd (14.5, 10.5)	2.23	2.21	
H-9	5.35 br s	5.33	5.29	
H-10α	5.77 br s	5.74	5.61	
H-11	1.85 qq (7)	1.82	1.80	
H-12	0.95 d (7)	0.89	0.89	
H-13	0.80 d (7)	0.87	0.88	
H-14	1.85 br s	1.83	1.84	
H-15	1.36 s	1.34	1.28	
H-3',7'	7.95 d (8.5)			
H-4',6'	6.90 d (8.5)			
H-3",7"	8.10 d (7.5)	7.95	7.60	
H-4'',6''	7.45 t (7.5)	7.45	7.45	
H-5"	7.55 t (7.5)	7.55	7.60	
H-3'		6.20 qq (7.3, 1.5)	6.18	
H-4'		2.03 dq (7.3, 1.5)	2.02	
H-5'		1.90 dq (1.5, 1.5)	1.89	
AcO	1.86 s	1.84	1.93	

^a H-α at $\delta_{\rm H}$ 6.39 (J = 16 Hz), H-β at 7.64 (J = 16 Hz).

Table 2 13 C NMR of compounds 1–3 (125 MHz, CDCl₃, δ-values)

Carbons	1	2	3 ^a
C-1	51.2 (s)	51.1	51.0
C-2	79.8 (d)	79.7	79.5
C-3	39.4 (t)	39.3	39.3
C-4	85.7 (s)	85.6	85.5
C-5	54.7 (d)	54.6	54.5
C-6	69.5 (d)	68.9	68.8
C-7	41.1 (t)	41.2	41.1
C-8	131.6 (s)	127.3	127.4
C-9	128.4 (d)	128.5	128.6
C-10	75. 9 (d)	75.8	75.3
C-11	37.1 (d)	36. 9	36.9
C-12	18.1 (q)	17.4	17.4
C-13	17.6 (q)	18.2	18.1
C-14	26.0 (q)	26.1	26.0
C-15	15.5 (q)	15.5	15.3
C-1'	166.4 (s)		
C-2'	122.3 (s)		
C-3',7'	132.1 (d)		
C-4',6'	115.5 (d)		
C-5'	160.5 (s)		
C-1"	165.9 (s)	165.7	166.2
C-2"	131.5 (s)	131.5	134.2
C-3",7"	129.5 (d)	129.5	128.8
C-4",6"	128.5 (d)	128.5	128.2
C-5"	133.2 (d)	133.2	130.4
C-1'		168.2 (s)	168.2
C-2'		129.5 (s)	127.4
C-3'		140.1 (d)	140.1
C-4'		20.5 (q)	20.4
C-5'		16.0 (q)	15.9
AcO	170.1 (s), 20.9 (q)	170.0, 20.9	170.1,20.8

 $[^]a$ C- α at δ_C 117.8, C- β at δ_C 145.1.

J = 10.5, 10.5, 2.5 Hz, H-6) exhibited correlations with three signals at $\delta_{\rm H}$ 2.71 (1H, d, J = 10.5 Hz, H-5), 2.72 $(1H,d, J = 14.5, 2.5 Hz, H-7\beta)$ and 2.30 (1H, dd,J = 14.5, 10.5 Hz, H-7 α). The two broad singlets at $\delta_{\rm H}$ 5.35 and 5.77 were assigned to H-9 and H-10, respectively. The two methyl doublet signals at $\delta_{\rm H}$ 0.95 (3H, d, J = 7 Hz, H-12) and 0.80 (3H, d, J = 7 Hz, H-13) coupled in the ${}^{1}H-{}^{1}H$ COSY spectrum with a signal at δ_{H} 1.85 (1H, qq, J = 7 Hz, H-11), which assigned for an isopropyl moiety. Four aromatic protons appeared as two doublets at $\delta_{\rm H}$ 7.95 (2H, d, J = 8.5 Hz, H-3',7') and 6.90 (2H, d, J = 8.5 Hz, H-4', 6'), were typical for a p-hydroxybenzoyloxy group. Other protons at $\delta_{\rm H}$ 7.45 (2H, t, J = 7.5 Hz H-4'',6''), 7.55 (1H, t, J = 7.5 Hz, H-5") and 8.10 (2H, d, J = 7.5 Hz, H-3",7") were assigned for a benzoyloxy moiety. The ¹³C NMR spectral data of 1 (Table 2) exhibited 31 carbon signals that were resolved by DEPT experiment into: 15 methines, 2 methylenes, 5 methyls and 9 quaternary carbons. The three signals at $\delta_{\rm C}$ 170.1, 166.4 and 165.9 could be assigned by HMBC to the three carbonyl carbons of the acetyloxy, phydroxybenzoyloxy and benzoyloxy groups, respectively. Four oxygen bearing carbons were assigned at

 $\delta_{\rm C}$ 79.8 (C-2), 85.7 (C-4), 69.5 (C-6) and 75.9 (C-10). Other proton and carbon signals were determined by HMQC and HMBC. The position of the acyl groups was determined by combination of HMBC and NOESY (Fig. 1). In a HMBC experiment, H-2 ($\delta_{\rm H}$ 5.11) showed a cross peak with the carbon signal at $\delta_{\rm C}$ 170.1, locating the acetyl moiety at C-2; H-6 ($\delta_{\rm H}$ 5.36) exhibited a cross peak with the carbon signal at $\delta_{\rm C}$ 166.4, placing the phydroxy-benzoyloxy moiety at C-6. The relative stereochemistry of the chiral centers could be deduced from a NOESY experiment, where H-2, H-6 and H-15 correlated with each other, indicating the β -configuration of these protons, while H-10 correlated with H-5, suggesting the α -configuration of H-10. Therefore, compound 1 was assigned as 2α-acetyloxy-4β-hydroxy-6α-p-hydroxybenzoyloxy-10β-benzoyloxy-dauc-8-ene, a new natural products.

Compound 2 exhibited similar ¹H NMR spectra with those of compound 1. However, a few differences were observed, including the presence of an angeloyloxy moiety in 2, instead of p-hydroxybenzoyloxy in 1. The ¹H NMR spectrum showed a typical angeloyeloxy signals at $\delta_{\rm H}$ 6.20 (1H, qq, J = 7.3, 1.5 Hz, H-3'), 2.03 (3H, dq, J = 7.3, 1.5 Hz, H-4') and 1.90 (3H, dq, J = 1.5, 1.5 Hz, H-5'). The ¹³C NMR spectral data of **2** (Table 2) revealed 29 carbon signals that were classified by DEPT experiment into: 12 methines, 2 methylenes, 7 methyls and 8 quaternary carbons. The three signals at $\delta_{\rm C}$ 170.0, 168.2 and 165.7 could be assigned by the HMBC spectrum to the three carbonyl carbons of the acetyloxy, angeloyoxyl and benzoyloxy groups, respectively. Other signals were determined by HMQC and HMBC. Furthermore, the placement of angeloyloxy moiety at C-6 was suggested by the isopropyl methyl doublets collapsed to two close doublets (ca. \(\Delta \) 0.13 ppm)

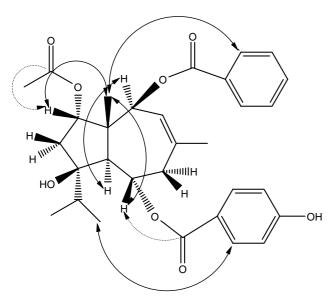


Fig. 1. Selected HNBC \rightarrow , and NOESY \leftrightarrow of compound 1.

(Miski and Mabry, 1985; Garg et al., 1987). This finding was supported by a HMBC experiment, the angeloyloxy carbonyl carbon ($\delta_{\rm C}$ 168.2) exhibited correlation with H-6 ($\delta_{\rm H}$ 5.23) and the acetyloxy carbonyl carbon ($\delta_{\rm C}$ 170.0) showed correlation with H-2 ($\delta_{\rm H}$ 5.07). The relative stereochemistry of **2** was same as **1**, a NOESY experiment showed correlation between H-6 β , H-15 β , H-3 β , between H-5 α , H-10 α and between H-6 β , H-2 β . Therefore, compound **2** was determined as 2 α -acetyeloxy-4 β -hydroxy-6 α -angeloyloxy-10 β -benzyoloxy-dauc-8-ene, a new natural product.

Compound 3 was isolated as a mixture with 2 (3:2). However, its structure could be easily determined from comparison of the 1D and 2D NMR with those of 2. The ¹H NMR spectrum exhibited two doublets at $\delta_{\rm H}$ 7.64 ($\delta_{\rm C}$ 145.1) and 6.39 ($\delta_{\rm C}$ 117.8), that coupled with each other in the ¹H–¹H COSY spectrum. The large coupling (J = 16 Hz) of the signals was consistence with trans-configuration. Both signals correlated in a HMBC spectrum with the carbonyl carbon at c 166.2 (C-1"). Furthermore, the HMBC spectrum showed correlation between the quaternary carbon at $\delta_{\rm C}$ 134.2 (C-2") and the two proton signals at $\delta_{\rm H}$ 6.39 and 7.45. This accumulated data established the presence of a cinnamoyloxy moiety in 3, instead of a benzoyloxy moiety in 2. The placement of the cinnamoyloxy moiety at C-10 was supported by a HMBC experiment, the carbonyl carbon at $\delta_{\rm C}$ 166.2 (C-1") correlated with H-10 at $\delta_{\rm H}$ 5.61. The other protons and carbons were similar to those of 2 (Tables 1 and 2). The molecular formula of 3 was established as C₃₁H₄₀O₇ on the basis of HRCIMS, which gave an ion peak $[M + H - H_2O]^+$ at m/z 507.2769. Therefore, compound 3 was identified as 2α -acetyloxy-4β-hydroxy-6α-angeloyloxy- 10β-cinnamoyloxydauc-8ene, a new natural product.

The structure of the known compounds fercomin (4) (Miski and Mabry, 1989), falcarindiol (5) (Driss et al., 1987) and ferulenol (6) (Lund, 1992) was determined from NMR spectral comparison with those reported in the literature.

It appears to us that this is the first chemical investigation of the roots of the wild *D. carota*. Ferulenol (5) is

the major constituents of the wild *D. carota*. However, accumulation of sesquiterpene-daucans type in the roots of the wild species showed a chemical relation to the genus *Ferula* (family Apiaceae) (Ahmed, 1991; Galal et al., 2001). This is the first report of trisubstituted daucans containing two phenyl moieties from the genus *Daucus*, which are rare in the genus *Ferula* (Miski and Mabry, 1985).

Antibacterial activity of the compounds 1, 2 and 4-6 was evaluated against the gram positive species Staphylococcus aureus, Streptomyces scabies, Bacillus subtilis and Bacillus cereus as well as the gram negative species Pseudomonas aeroginosa, Escherichia coli. Also, were tested against two fungal strains Fusarium oxysporum and Aspergillus niger. From preliminary studies, the minimum inhibitory concentration (MIC) of 1 and 2 was less than 2 mg/mL against all microorganism except E. coli in which the tested compounds exhibited no antibacterial activity at the doses tested. Compound 6 had an estimated MIC less than 2.5 mg/mL against S. aureus, S. scabies, B. subtilis, B. cereus and P. aeroginosa and between 5 and 4.5 mg/mL against E. coli, F. oxysporum and A. niger. Compounds 4 and 5 had MIC less than 2.5 mg/mL against all selected microorganisms but show no antibacterial effect against F. oxysporum and E. coli. As a point of biological-activity comparisons, the antifungal terpenoid ascaridole and the commercially available fungicide vinclozolin have a MIC at ca. 4 mg/mL under the same bioassay system (Paré et al., 1993).

3. Experimental

3.1. General

 1 H NMR (500 MHz, CDCl₃), 13 C NMR (125 MHz, CDCl₃) and the 2D spectra were recorded on Varian 500 MHz, with TMS as an internal standard. Mass spectra were determined by VG-ZAB2E (70 eV) and optical rotations were determined with a JASCO-20 C automatic recording spectropolarimeter. TLC: precoated silica gel type 60 (Merck); CC: silica gel type 60 (Merck). HPLC was performed in the reversed phase on Knauer pump 64 and different refractometer (column: RP-8, 250×25 mm, flow = 17 mL/min, elution with MeOH–H₂O mixtures, refractive index).

3.2. Plant material

Roots of *D. carota*, Linn. ssp. *carota* were collected in the flowering stage May 2002, from the Wadi Shuib, Jordan, by one of the authors (A.A. Ahmed). A voucher specimen was deposited in the Center for Jordanian Studies, Jordan Natural History Museum.

3.3. Biological activity

3.3.1. Antimicrobial assav

The antibacterial activity of the compounds 1, 2 and 4 **6** was determined against S. aureus, S. scabies, B. subtilis, B. cereus, P. aeroginosa and E. coli and the antifungal activity of those compounds was determined against F. oxysporum and A. niger using cup agar diffusion assay (United States Pharmacopia, XXII, 1990) (see Table 3). The media used were nutrient agar (Oxoid). The over night culture of each organism was diluted with saline to contain 1×10^6 cell/mL for bacteria and 1×10^5 spores/mL for fungi (Padual-Desai et al., 1976). An aliquot of 3 mL of diluted culture was spread onto the surface of nutrient agar plate (40 mL each) and the excess bacterial suspension was withdrawn. The assay plates were incubated at 35 °C and left for 24 h for bacteria and 7 days for fungi to observe the inhibition zones around the wells and then were measured.

3.4. Extraction and isolation

Air-dried roots (250 g) were ground and extracted with MeOH-CH₂Cl₂ (1:1) at room temperature. The extract was concentrated in vacuo to obtain a residue of 20 g. The residue was prefractionated by column chromatography (6×120 cm) on a silica gel column eluting with *n*-hexane (3 L) followed by a gradient elution with n-hexane-CH₂Cl₂ up to 100% CH₂Cl₂ and finally with CH_2Cl_2 -MeOH (85:15). The *n*-hexane- CH_2Cl_2 (1:4) gave two fractions, the first one was purified by TLC (n-hexane-ether, 1:4) to give compound 1 (4 mg), the second fraction was purified by HPLC (MeOH-H₂O, 73:27) to afford 2 (2 mg) and a mixture of 2 and 3 (1.5 mg). The CH₂Cl₂(100%) fraction was subjected to a Sephadex LH-20 column (2x60) eluted with n-hexane-CH2Cl2-MeOH (7:4:0.5) to afford compound 4 (30 mg). The CH₂Cl₂-MeOH (85:15) fraction was subjected to Sephadex LH-20 column (2 × 60) eluted with n-hexane-CH₂Cl₂-MeOH to give four fractions. The n-hexane-CH₂Cl₂-MeOH (7:4:1) afforded compound 6

Table 3 Antimicrobial activity of compounds 1, 2 and 4–6

Microorganism	MIC-minimum inhibitory concenteration (mg/ mL)						
	1	2	4	5	6		
S. aureus	1.8	1.6	2.3	2.2	2.4		
S. scabies	1.2	1.4	2.1	1.5	2.2		
B. subtilis	1.0	1.2	1.7	1.4	2.0		
B. cereus	1.5	1.3	1.4	1.6	2.1		
P. aeroginosa	1.3	1.5	1.0	1.4	2.3		
E. coli					4.8		
F. oxysporum	0.5	0.4			4.6		
A. niger	0.3	0.25	1.0	0.5	4.7		

These data are means of four replicates.

(10 mg), *n*-hexane–CH₂Cl₂–MeOH (7:4:2) was further purified by TLC to afford compound **5** (1.5 mg).

3.4.1. 2α -Acetyloxy- 4β -hydroxy- 6α -p-

hydroxybenzoyloxy- 10β -benzoyloxy-dauc-8-ene (1)

White powder; $[\alpha]_D^{25} + 22.8^\circ$ (c = 0.30, CHCl₃); IR ($\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹): 3421, 2963, 2925, 1714, 1272, 1164, 770 cm⁻¹; CIMS [M – H]⁺ m/z 535, [M + H – H₂O]⁺ m/z 519, [519 – benzoate]⁺ m/z 415; HRCIMS: m/z 535.2326 (calc. for C₃₁H₃₄O₈, 535.2332); ¹H and ¹³C NMR, see Tables 1 and 2, respectively.

3.4.2. 2α-Acetyloxy-4β-hydroxy-6α-angeloyloxy-10β-benzoyloxydauc-8-ene (2)

Amorphous white powder; $\left[\alpha\right]_{D}^{25} + 8.8^{\circ}$ (c = 0.10, CHCl₃); IR ($\nu_{\rm max}^{\rm KBr}$ cm⁻¹): 3500, 2980, 2960, 1730, 1260, 1164, 1032, 770 cm⁻¹; CIMS [M + H - H₂O]⁺ m/z 481, [M - benzoate]⁺ m/z 277; HRCIMS: m/z 481.2585 [M + H - H₂O]⁺ (calc. for C₂₉H₃₇O₆, 481.2590). ¹H and ¹³C NMR, see Tables 1 and 2, respectively.

3.4.3. 2α -Acetyloxy- 4β -hydroxy- 6α -angeloyloxy- 10β -cinnamoyloxydauc-8-ene (3)

Amorphous yellowish powder; IR ($\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹): 3500, 2980, 2960, 1730, 1260, 1164, 1032, 770 cm⁻¹; CIMS [M + H - H₂O]⁺ m/z 507, [M - cinnamate]⁺ m/z 377; HRCIMS: m/z 507.2769 [M + H - H₂O]⁺ (calc. for C₃₁H₃₉O₆, 507.2747). ¹H and ¹³C NMR, see Tables 1 and 2, respectively.

Acknowledgments

The work was supported by The Robert A. Welch Foundation at Texas Tech University (Grant D-1478). A.A.A. thanks the Alexander von Humboldt Stiftung for financial support for the HPLC instrument. The authors are grateful to Dr. Gazi Sultana (NCNPR, University of Mississippi) for the NMR analyses.

References

Ahmed, A.A., 1991. Daucanes and other constituents from Ferula sinaica. Phytochemistry 30, 1207–1210.

- Bicudo-De-Almeida, M.L., Dias, G.R., Sasaki, R., 1998. Determination of proto vitamine A of green leafy vegetables by HPLC and open column chromatography. Boll. Chim. Farm. 137, 290–294.
- Bishayee, A., Sarkar, A., Chatterjee, M., 1995. Hepatoprotective activity of carrot (*Daucus carota* L.) against carbon tetrachloride intoxication in mouse liver. Ethnopharmacology 47, 69–74.
- Ceska, O., Chaudhary, S.K., Warrington, P.J., Ashwood-Smith, M., 1986. Furocoumarins in the cultivated carrot, *Daucus carota*. Phytochemistry 25, 81–84.
- Dhillon, R.S., Gautam, V.K., Kalsi, P.S., Chabra, B.R., 1989. A new sesquiterpene ether, carota 1,4-β-oxide from the essential oil of the seeds of carrot (*Daucus carota*). Phytochemistry 28, 639– 640.
- Driss, L., Bernard, B., Marie-Therese, M., Darius, M., 1987. Ferulenol and ω-hydroxy ferulenol, Toxic coumarins from *Ferula communis* var. *genuina*. Phytochemistry 26, 1613–1616.
- Emilio, L.G., 1994. The daucane (carotane) class of sesquiterpenes. Phytochemistry 37, 597–632.
- Galal, A.M., Abourashed, E.A., Ross, S.A., ElSohly, M.A., Al-Said, M.S., El-Feraly, M.S., 2001. Daucane sesquiterpenes from *Ferula hermonis*. J. Nat. Prod. 64, 399–400.
- Garg, S.N., Agarwai, S.K., Mahaian, V.P., Rastogi, S.N., 1987.
 Feruginidin and ferugin, two new sesquiterpenoids based on the carotane skeleton from *Ferula jaeschkeana*. J. Nat. Prod. 50, 253–255
- Gupta, K.R., Niranjan, G.S., 1982. A new flavone glycoside from seeds of *Daucus carota*. Planta Med. 46, 240–241.
- Lund, E.D., 1992. Polyacetylenic carbonyl compounds in carrot. Phytochemistry 31, 3621–3623.
- Majumder, P.K., Dasgupta, S., Mukhopadhaya, R.K., Majumdar, U.K., Gupta, M., 1997. Anti-steroidogenic activity of the petroleum ether extract (fatty acids) of carrot (*Daucus carota* L.) seeds in mouse ovary. Ethnopharmacology 57, 209–212.
- Mazzoni, V., Tomi, F., Casanova, J., 1999. A daucane-type sesquiterpene from *Daucus carota*. J. Favour Frag. 14, 268–272.
- Miski, M., Mabry, T.J., 1985. Daucane ester from Ferula communis subsp. communis. Phytochemistry 24, 1735–1741.
- Miski, M., Mabry, T.J., 1989. A new daucane esters from Ferula tingitana. J. Nat. Prod. 49, 657–660.
- Padual-Desai, S.R., Ghanekar, A.S., Screenirasan, A., 1976. Studies on Aspiragillus flavus factors influencing radiation resistance of non- Germinating conidia. Environ. Expt. Botany 16, 45–47.
- Paré, P.W., Zajicek, J., Ferracini, V.L., Melo, I.S., 1993. Antifungal terpenoids from *Chenopodium ambrosioides*. Biochem. Systematics Ecol. 21, 649–653.
- Porchezhian, E., Ansari, S.H., Ali, M., 2000. Analgesic and antiin-flammatory activity of volatile oil from *Daucus carota* L. seed. Indian J. Nat. Prod. 16, 24–26.
- Vesna, K., Rada, I., Katiea, S., Mitan, M., 1989. Fatty oil from the fruitof wild (*Daucus carota* ssp. *carota*) and cultivated carrot (*Daucus carota* L. ssp. *sativus*) (Hoffm). Acrang. Pharmazie 44, 166–167.