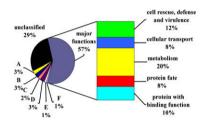
ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Phytochemistry Vol. 70, No. 5, 2009


Contents

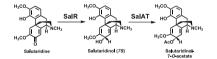
PROTEIN BIOCHEMISTRY

Comprehensive proteome analysis of lettuce latex using multidimensional proteinidentification technology

Won Kyong Cho, Xiong-Yan Chen, Nazim Mohamad Uddin, Yeonggil Rim, Juyeon Moon, Jin-Hee Jung, Chunlin Shi, Hyosub Chu, Suwha Kim, Seon-Won Kim, Zee-Yong Park, Jae-Yean Kim*

Each of the unique proteins was classified according to the FunCat groups. Functional classification of the 587 latex proteins were identified. A: transcription, B: protein synthesis, C: interaction with the environment, D: development, E: cellular communication, and F: cell cycle and DNA processing.

METABOLISM


RNA*i* suppression of the morphine biosynthetic gene *salAT* and evidence of association of pathway enzymes

pp 579-589

pp 570-578

Katja Kempe, Yasuhiro Higashi, Susanne Frick, Khaled Sabarna, Toni M. Kutchan*

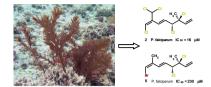
Yeast two-hybrid and co-immunoprecipitation analyses indicate an interaction between the morphine biosynthetic enzymes SalR and SalAT, and SalAT RNAi suppression leads to an accumulation of the substrate of SalR.

Biosynthesis of antimalarial lignans from Holostylis reniformis

pp 590-596

Gisele B. Messiano, Tito da Silva, Isabele R. Nascimento, Lucia M.X. Lopes*

Radiolabelled precursor administrated experiments showed that lignans from *Holostylis reniformis* are derived from isoeugenol and that *H. reniformis* exhibits regioselective control of radical-radical coupling (isoeugenol radical). Regiospecific control over propenylphenol-derived lignan biosynthesis was observed, together with diastereoselective control of C2–C7′ bond for aryltetralone lignans (7′R).


BIOACTIVE PRODUCTS

Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum

pp 597-600

Anthonia F. Afolayan, Maryssa G.A. Mann, Carmen A. Lategan, Peter J. Smith, John J. Bolton, Denzil R. Beukes*

An investigation of the antiplasmodial organic extracts of *Plocamium cornutum* resulted in the isolation of three known and two halogenated monoterpenes. Compounds bearing the 7-dichloromethyl substituent showed significantly higher antiplasmodial activities compared to a 7-methyl substituent.

Antimalarial sesquiterpene lactones from Distephanus angulifolius

pp 601-607

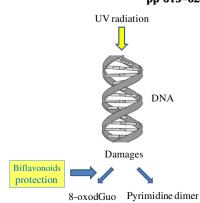
Martin M. Pedersen, Jude C. Chukwujekwu, Carmen A. Lategan, Johannes van Staden, Peter J. Smith, Dan Staerk*

Two sesquiterpene lactones (65,7R,8S)-14-acetoxy-8-[2-hydroxymethylacrylat]-15-helianga-1(10),4,11(13)-trien-15-al-6,12-olid and (5R,6R,7R,8S,10S)-14-acetoxy-8-[2-hydroxymethylacrylat]-elema-1,3,11(13)-trien-15-al-6,12-olid as well as vernodalol, vernodalin and 11,13 β -hydroxyvernodalin were isolated from *Distephanus angulifolius*. Antiplasmodial activity of the isolated compounds is reported.

Leishmanicidal effect of LLD-3 (1), a nor-triterpene isolated from Lophanthera lactescens

pp 608-614

M.G.M. Danelli, D.C. Soares, H.S. Abreu, L.M.T. Peçanha, E.M. Saraiva*


Leishmanicidal activity of 6α , 7α , 15β , 16β , 24-pentacetoxy- 22α -carbometoxy- 21β , 22β -epoxy- 18β -hydroxy-27,30-bisnor-3,4-secofriedela-1,20 (29)-dien-3,4 R-olide (LLD-3 (1)) was demonstrated against intramacrophage amastigotes forms (IC $_{50}$ of 0.41 μ g/mL). The in vitro leishmanicidal effect of Glucantime, the first choice drug for leishmaniasis treatment, was increased by the LLD-3 (1) association. The leishmanicidal effect of LLD-3 (1) was not due to stimulation of nitric oxide production by macrophages.

Biflavonoids from Araucaria angustifolia protect against DNA UV-induced damage

pp 615-620

Lydia F. Yamaguchi*, Massuo J. Kato, Paolo Di Mascio*

Amentoflavone-type biflavonoids, obtained from needles of *Araucaria angustifolia*, protect calf thymus DNA from UV-radiation induced damage by prevention of pyrimidine dimerization and nucleotide oxidation.

Antiparasitic activity of prenylated benzoic acid derivatives from Piper species

pp 621-627

Ninoska Flores, Ignacio A. Jiménez, Alberto Giménez, Grace Ruiz, David Gutiérrez, Genevieve Bourdy, Isabel L. Bazzocchi*

Three prenylated hydroxybenzoic acids 3-[(2*E*,6*E*,10*E*)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxy benzoic acid, 3-[(2*E*,6*E*,10*E*)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2*E*,6*E*,10*E*)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadeca tetraenyl]-4,5-dihydroxy benzoic acid, along with six known compounds, were isolated from the leaves of *Piper heterophyllum* and *P. aduncum*. The compounds have been tested against three strains of *Leishmania* spp., *Trypanosoma cruzi* and *Plasmodium falciparum*.

CHEMISTRY

Cycloartane-type glycosides from Astragalus amblolepis

pp 628-634

Emre Polat, Ozgen Caliskan-Alankus*, Angela Perrone, Sonia Piacente, Erdal Bedir*

Five cycloartane-type glycosides, together with a known compound were isolated from the roots of *Astragalus amblolepis*. 3-0-[β -D-glucuronopyranosyl-($1 \rightarrow 2$)- β -D-xylopyranosyl]-25-0- β -D-glucopyranosyl-3 β ,6 α ,16 β ,24(S),25-pentahydroxy-cycloartane represents the first member of cycloartane-type glycosides possessing a glucuronic acid moiety.

Labdane diterpenes from Marrubium thessalum

pp 635-640

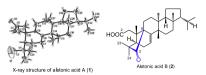
Catherine Argyropoulou, Anastasia Karioti, Helen Skaltsa*

From the aerial parts of *Marrubium thessalum*, four labdane diterpenes, 13S-preperegrinine, 3α -hydroxymarrubiin, 9α ,13R-15,16-bisepoxy-15 β -methoxy-3-oxo-labdan- 6β ,19-olide and 15-methoxyvelutine C, have been isolated together with four known diterpenes and one flavone. The structures of the isolated compounds were established by means of NMR [1 H- 1 H-COSY, 1 H- 13 C-HSQC, HMBC, NOESY, and ROESY] and MS spectral analyses. Complete NMR assignments are reported for 13*R*-preperegrinine.

Phenolic compounds from *Bursera simaruba* Sarg. bark: Phytochemical investigation and quantitative analysis by tandem mass spectrometry

pp 641-649

Mariateresa Maldini, Paola Montoro, Sonia Piacente, Cosimo Pizza*

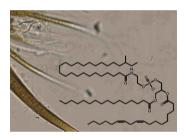

Phytochemical investigation of the methanolic extract of *Bursera simaruba* bark led to the isolation of 11 compounds, including lignans, phenolic compounds and three natural compounds namely 3,4-dimetoxyphenyl-1-O-β-D-(6-sulpho)-glucopyranoside, 3,4,5-trimetoxyphenyl 1-O-β-D-(6-sulpho)-glucopyranoside and 3,4-diidroxyphenylethanol-1-O-β-D-(6-sulpho)-glucopyranoside.

Alstonic acids A and B, unusual 2,3-secofernane triterpenoids from Alstonia scholaris

pp 650-654

Fei Wang, Fu-Cai Ren, Ji-Kai Liu*

2,3-Secofernane triterpenoids, alstonic acids A (1) and B (2), were isolated from leaves of Alstonia scholaris together with an indole alkaloid, N^1 -methoxymethyl picrinine. Their structures were established from MS and NMR spectroscopic analysis and confirmed by single crystal X-ray diffraction analysis.

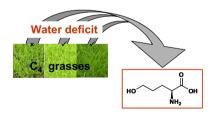


Very-long-chain *iso* and *anteiso* branched fatty acids in *N*-acylphosphatidylethanolamines from a natural cyanobacterial mat of *Calothrix* sp.

pp 655-663

Tomáš Řezanka*, Linda Nedbalová, Josef Elster, Tomáš Cajthaml, Karel Sigler

A combination of TLC, ESI-MS/MS and GC-MS was used to identify unusual molecular species of *N*-acylphosphatidylethanolamines containing very-long-chain *anteiso* branched fatty acids (VLCFAs) from *Calothrix* sp. collected in Antarctica and determine their component VLCFA up to 33-methyltetratriacontanoic acid as picolinyl ester derivatives using GC-MS.



Drought stress increases the production of 5-hydroxynorvaline in two C₄ grasses

pp 664-671

Ana E. Carmo-Silva*, Alfred J. Keys, Michael H. Beale, Jane L. Ward, John M. Baker, Nathaniel D. Hawkins, Maria Celeste Arrabaça, Martin A.J. Parry

Metabolite profiling demonstrated the presence of 2-amino-5-hydroxypentanoic acid (5-hydroxynorvaline) in some C_4 grass leaves. The production of this unusual amino acid was enhanced in the dehydrated leaves of two drought tolerant species, suggesting a beneficial role for drought resistance.

An unusual acylated malvidin 3-glucoside from flowers of *Impatiens textori* Miq. (Balsaminaceae)

Fumi Tatsuzawa*, Norio Saito, Yuki Mikanagi, Koichi Shinoda, Kenjiro Toki, Atsushi Shigihara, Toshio Honda

An unusual acylated malvidin 3-glucoside was isolated from a purple flowers of *Impatiens textori* Miq. as a major anthocyanin component along with malvidin 3-(6-malonyl-glucoside). The structure of this pigment was elucidated to be malvidin 3-0-[6-0-(3-hydroxy-3-methyl-glutaryl)-β-glucopyranoside] by chemical and spectroscopic methods.

pp 672-674

Malvidin 3-O- $\{6$ -O- $\{3$ -hydroxy-3-methylglutaroyl)- β -glucopyranoside] isolated from the flower of *Impatiens textori*.

Pregnane glycosides from Hoodia gordonii

pp 675-683

Yatin J. Shukla, Rahul S. Pawar, Yuanqing Ding, Xing-Cong Li, Daneel Ferreira, Ikhlas A. Khan*

Pregnane glycosides (1, 2, 5–9) were isolated from the aerial parts of *Hoodia gordonii*. These constituents consisted of five pregnane derivatives namely hoodigogenin A, isoramanone, calogenin, and two unprecedented skeletons, hoodistanal and dehydrohoodistanal as the aglycones.

Antibacterial endiandric acid derivatives from Beilschmiedia anacardioides

pp 684-688

Jean Rodolphe Chouna, Pepin Alango Nkeng-Efouet*, Bruno Ndjakou Lenta, Krishna Prasad Devkota, Beate Neumann, Hans-Georg Stammler, Samuel Fon Kimbu, Norbert Sewald

Three endiandric acid derivatives, beilschmiedic acids A, B and C were isolated from the stem bark of *Beilschmiedia* anacardioides. Their structures were established by stpectroscopic means. Beilschmiedic acid C showed strong antibacterial activity against *Bacillus subtilis* and *Micrococcus luteus* with MIC \leq 5.60 μ M for both strains.

1. $R^1 = \beta$ -OH, $R^2 = H$ 2. $R^1 = \beta$ -OH, $R^2 = OH$

3. $R^1 = \alpha$ -OH, $R^2 = H$

OTHER CONTENTS

Book review p 689

Announcement: The Phytochemical Society of Europe

pp I-II

* Corresponding author

The Editors encourage the submission of articles online, thus reducing publication times. For further information and to submit your manuscript, please visit the journal homepage at http://www.elsevier.com/locate/phytochem

INDEXED/ABSTRACTED IN: Current Awareness in Biological Sciences (CABS), Curr Cont ASCA. Chem. Abstr. BIOSIS Data, PASCAL-CNRS Data, CAB Inter, Cam Sci Abstr, Curr Cont/Agri Bio Env Sci, Curr Cont/Life Sci, Curr Cont Sci Cit Ind, Curr Cont SCISEARCH Data, Bio Agri Ind. Also covered in the abstract and citation database SCOPUS®. Full text available on ScienceDirect®.

ISSN 0031-9422

Available online at

www.sciencedirect.com