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Abstraet--Metal-ligand distances for hexacoordinate complexes show a mutual inter- 
relation manifested in the fact that with increasing axial distances the equatorial ones 
decrease and vice versa. These R a v s  Re dependences have been registered for certain 
chromophores and also for hexafluoro, hexachloro, hexanitro and hexaaqua complexes. 
Based on the anharmonic shape of the adiabatic potential surface, a theoretical analysis 
yields the form of the Ravs Re dependence which, in the most simple form, is a hyperbolic 
function. 

Accumulation and comparison of a large number 
of structural data for structural units of ABn type 
by various groups led to the following findings. 

(i) In linear fragments of B--A--B' type, the 
lengthening of one bond (say A--B) is 
accompanied by shortening of the second bond 
(A--B') so that the R A B VS RA B' dependence fol- 
lows a smooth descending line. Such behaviour has 
been reported1 for the systems I--I--I ,  
C1--Sb--CI, S--S--S, Mo--O--Mo, X--Cd--Y 
and O---H--O. 

(ii) In tetracoordinate fragments of B'AB3 type, 
correlations of RA B' VS / B ' A B  and RA--B VS 
/__ B'AB have been registered, 2 the former along a 
descending line and the latter along an ascending 
one. OSO3, OPO3, XSO3, XSnC13 and C1A1C13 frag- 
ments serve as examples of this behaviour. 

(iii) In square-bipyramidal complexes having 
{CuO6} , {fuN6}, {NiO6} and {NiN6} chro- 
mophores, an Ra (2x) vs Re (4x) correlation holds 
according to a descending line. 3~ 

(iv) Analogous correlations have been reported 
for cobalt(III), nickel(II) and zinc(II) complexes of 
the trans-[M(LN)4X2] type, (LN) 4 being a nitrogen 
donor macrocyclic ligand.1°'11 

(v) In uranyl complexes of [ U O a t n ]  type (n = 4, 
5 and 6) the mean axial, U--O, distances correlate 
with the mean equatorial, U--L, distances. 12'13 

(vi) Similar correlations also occur in complexes 

with homogeneous ligand spheres, namely in those 
having [MF6] 3-, [ME6]  4 - ,  [ M f l 6 ]  4 , [ M ( N O 2 ) 6 ]  4 -  

a n d  [M(H20)6] 2+ units, where M covers the whole 
first transition metal row but also magnesium, zinc 
and cadmium as central atoms. ~4 ~g 

(vii) In Group IV and V halides, having collinear 
homoligand L,--M--Lb trans bond pairs, the inter- 
relation of the conjugated bond lengths is expressed 
by an empirically chosen functional form of Ra - R0 
= K / ( R  e -  R0)" , with the parameter c ranging from 
0.47 to 1.57.19 

(viii) In Werner clathrates of [Ni(4- 
MePy)4(NCS)2] • nG type, a guest-to-host influence 
has been registered; it manifests itself in a sys- 
tematic correlation of R a v s  R e type. 2°'2~ 

(ix) The concept of equatorial-axial inter- 
actions, originally reported for hexacoordinate com- 
plexes, has been extended to be operative also for 
pentacoordinate complexes having {NiNs} and 
{NiN4X} chromophores. Again, an R~ vs Re cor- 
relation holds true. 22 

The above correlations can be rationalized in 
terms of the structural path concept. 23 Our under- 
standing of this concept is that the units of ABn 
or AB.Cm type (with a single central atom A and 
peripheral atoms B and C) have an internal dis- 
position to prefer a definite type of distortion ; this 
disposition is encoded in the shape of the adiabatic 
potential surface (APS). 
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THEORY 

Starting from an equilibrium geometry of the free 
AB, system, a variation (stretching) of one bond 
generates a relaxation of the remaining bonds. This 
variation may originate, for example, in setting the 
system into the environment of the solid state so 
that the perturbation of one A--B bond may be 
caused by a counterion or other particles Z com- 
posing the crystal : Z. • • B- -A- -B .  

A relaxed coordinate R~ will be proportional to / 

the displacement Rp, e.g. 

R~ = DjrR p + DjppRp + "'" (1) 

The adiabatic potential may be written in the form 
of a Taylor expansion : 

E = E ° -+ ZF~R,+ (1/2) ~ F ~ j R , R j  
i i i 

+ ( 1 / 6 ) ~ F ~ j k R , R j R k + ' " ,  (2) 
i i k 

where the individual orders mean a gradient (van- 
ishing in the equilibrium), harmonic and cubic- 
anharmonic contributions. Restricting ourselves to 
the linear proportionality (first term) in eq. (1) and 
the harmonic approximations of eq. (2) the evalu- 
ation of Dip is straight forward :24,25 

Dip = C/p/fpp,  ( 3 )  

where C~p are the matrix elements of the compliance 
matrix C = F ~, which is the inverse of the har- 
monic constant matrix F. The above interaction 
displacement coordinates Dip represent a degree of 
relaxation and thus they may be accepted as quan- 
titative criteria of the coordination sphere plas- 
ticity. 

For a particular case of a tetragonal distortion 
of [ML6] type complexes, two axial (R~) and four 
equatorial (Re) metal-ligand distances describe the 
geometry of the system. Then the APS may be con- 
sidered in the following functional form : 

E = Eo +F.R~ +FcR~ + ( l /2)F~R~ 

+(I/2)F¢eR~ +F~R~R¢. (4) 

The condition for the local energy minima (mini- 
mum energy path) is 

(SE/ORa)R~ = F~ + F..R~ + F~¢R~ = 0 (5) 

and thus 

R a = - (Fa/Q.) - (Fa¢/Q.)R e = A + DaeR e. (6) 

This is a linear equation: as far as Re is stretched 
the R. parameter relaxes proportionally and the 

proportionality constant is simply the interaction 
displacement coordinate D,c. 

Analogously, for a fixed distortion of Ra we get 

o r  

Re = - ( Q / Q c ) - ( Q c / Q e ) R ~  = B+DeaR~ (7) 

R~, = - ( Fe / Q e ) - ( Q e / Ede ) Re  = C +  D L '  Re. (8) 

Now it is evident that within the harmonic approxi- 
mation the R a v s  Re dependence is represented by a 
pair of descending straight lines, eqs (6) and (8), 
with differing, slopes, given by interaction dis- 
placement coordinates.~8 

In large displacements, however, unphysical pre- 
dictions are obtained : either R, ~< 0 for large dis- 
placements of Re or Re ~< 0 in the opposite case. This 
artifact of the harmonic approximation disappears 
when more complex forms of  the APS are 
considered. For example : 

E = Eo+FaRa+FeRe+(1/Z)raa R2 

+ (l/2)FeeR~ +FdeRaRe 

+ (1/6)F,,a~,R,3a -k (3/6)FaaeR~Re 

+ (3/6)F~ecRaR 2 + (1/6)F~eeR~ (9) 

yields the condition 

(SE/SRa)R~ = F~ + F, aRa + F=Re 

+(1/2)F. . .R2+F.aeRaRe+(1/Z)FaeeR 2 = 0. (10) 

By neglecting the quadratic dependence of Ra (or 
F~.. = 0) we get 

R~, = - (F~ + F, eRe+ I/2 EaeeRZ)/(Fda -}- Faaege). 

(11) 

The omission of higher order terms in R~ is possible 
because we are dealing with small displacements 
from the equilibrium. The last expression is a gen- 
eralization of eq. (6), which is obtained in the limit 
of F,¢~ = Fa~ = 0. This expression shows that the 
R~ vs Re dependence, for fixed displacements of R~, 
is given by the ratio of two polynomials. 

Another expression of eq. (11) is possible: 

R a = ( K  I - ~ - K 2 R e ~ - K 3 R ~ ) / ( K 4 - ~ R e )  , ( 1 2 )  

where K~ = -- F~/ F~.e, K2 = - F~ff F~a~, K3 = - F~¢/ 

2F~e and K4 = F~a/Faa~. Here, only K~ and K4 are 
expected to have relevant values as they contain the 
diagonal force constants (F~, F.a) in the numerator. 
The constants K2 and K3 containing the off-diagonal 
force constants (F.~, F ~ )  in the numerator will have 
much lower values. Thus, an approximation of  

Ra = KI/(K4-~- Re) (13) 
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may be fulfilled satisfactorily. This is simply the 
equation of  a shifted hyperbola. Then K4 is expected 
to be negative ( -  K4 = -F~a/E,,~ = Reo) and it has 
the meaning of the lowest possible value of R~ : 

R a = K, / (Re  - -  R~o). (14) 

This function can be expanded using the relation- 
ship for 

C / ( A - B )  = ~ 1 - - ~ - - A ~  - . . . .  (15) 

when A > B holds true. Hence we arrive at the 
expression 

K1 Ki Kl Reo 
. . . . . . . . .  , (16) 

R~ Re - R~0 Re R~ 

which can be satisfactorily terminated after the 
second term. The last form is suitable for an appli- 
cation of bilinear regression of the type 

R a = a ( 1 / R ~ ) + b ( 1 / R ~ )  2. (17) 

Alternatively, we can rewrite eq. (14) in the form 

Re = Reo+K~ (1/R,), (18) 

which is a linear function of (1/Ra). 
Analogously, the second basic equation is 

obtained for fixed displacements of  Ra : 

R~ = - (F e + FaeR a + !/2 FeaaR2)/(Fee + F~.R~) 

and, eventually, 

(19) 

R e = L l / (R  a - R a o  ) (20) 

or after simple reordering 

R a = L , / R e + R a o  , (21) 

the w i t h  R a o  = - -  L 4 = - Fee/Fee a > 0 adopting 
meaning of the lowest possible value of R,. 

It may be concluded that the Ravs R~ dependence 
deviating from linear behaviour may be expressed 
either by a pair of polynomial functions (11) and 
(19) or, more simply, by a pair of hyperbolae (13) 
and (20) or equivalently by eqs (14) and (21). A 
simple modelling of this situation is presented in 
Fig. 1. 

A generalization of eq. (11) is still possible when 
using the biquadratic form of the APS : 

E = E o + E ~ R ~ + < R ¢ + ( 1 / 2 ) E ~ , R  2 

+ (I/2)F~R 2 +F.eR~R~ + ( l /6)FaaaRa 3 

+ (3/6)F~eR2Re + (3/6)FaeeR~R 2 

+ (1/6)F~R 3 + (1/24)FaaaaR4a 

Cy c 

Fig. 1. 
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+ (1/6)FaaaeR ~ R e -[- (1/4)F~oe R~ R~. 

+ (1/6)F~ee~R~R~ + (1/24)Feeee R 4  . (22) 

Using the condition of  

(?~E/~R~)R. = 0 (23) 

and considering only the linear terms in R~ (or 
F,,, = F,~,, = F~,,~ = 0), we obtain 

Fa + F~eRe + 1/2F, e~R~ - k  1/6F~eeeR 3 
Ra = - 

Faa + f aaeRe-}- l /ZFaaeeRe 

(24) 

Strictly speaking, the above equations hold true 
for a free particle (complex) of the ML,, type. We 
derived that the disposition to follow a certain type 
of distortion with minimum energy requirements, 
i.e. the minimum energy path, is encoded in the 
values of the force constants. When passing to the 
solid state we expect that an additional environ- 
mental potential V acts on the coordination poly- 
hedron. This influence can be viewed as a 
perturbation which, in terms of the Rayleigh- 
Schr6dinger perturbation theory, yields the fol- 
lowing first-order result : 

E I I '  = (~olfl01oo)+<~olVl~o). (25) 

Here, the first term describes the zero-order (unper- 
turbed) contribution E ~°), corresponding to the APS 
of the free system, whereas the second term 
accounts for the perturbation I2. Thus, the adiabatic 
potential surface of the free system is modified by 
a non-spherical (tensor) solid-state potential which 
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Table I. Calculated parameters of the R. vs Re correlation curves 

Non-linear fit" Linear fie 

System n C (10 _,4 m 2) R~o (pm) R.o (pm) a (pro) b 

[Cu(H20)~] 2+ 35 19,207 115.3 764.0 --2.68 
[Cu(NO,)6] 4 6 19,535 119.1 737.4 -- 2.49 
[CuF6] 4 9 23,931 86.3 653.9 - 2 .22  

[CuCI6]  4 12 23,027 150.3 1030.7 - 3 . 2 2  

[CrCI~] 4 9 26,143 147.0 1001.7 -3.00 
12 4539 201.9 161.6 790.7 -2.12 

"According to the equation R,, = C/(Ro- R~o) + R~0. 
~' According to the equation R ,  = a + bRe.  

results in the shift of  the minimum of E m relative 
to that of  E (°). Our expectation is that the new 
minima follow a valley of  E "° which is determined 
by the minimum energy path. Thus, eqs (14) and 
(21) can be used as correlation curves expressing a 
mutual relationship between R, and R~ parameters 
for solid-state ML6 complexes. 

EXAMPLES 

The equations derived above have been tested 
numerically to fit the structural data collected for 
[ML6] type compounds. 1.16 A set of  R, and R~ 
values has been collected from literature data for 
[Cu(H20)6] 2+, [CuF6] 4-, [CuCl6] 4-, [Cu(NO2)6] 4- 
and [CrCl6] 4 polyhedra-containing compounds. 
All these systems exhibit strong Jahn-Teller  dis- 
tortions to elongated tetragonal bipyramids (with 
a small rhombic component  which has been aver- 
aged). Table 1 presents the calculated parameters 
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Fig. 2. An Ravs R~ dependence for the [CrCl6] 4 chro- 
mophore. Solid, non-linear regression: R, = C /  

(Re-- Re0) + R~o ; dashed, linear regression : R~ = a + bR~. 

of the R, vs Rc correlation curves in the linear as 
well as the hyperbolic approximation. 

In Fig. 2, a n  R a VS R e dependence is shown for 
the [CrCI6] 4- chromophore.  It is seen that the linear 
approximation is quite satisfactorily fulfilled within 
the range of experimental data. Non-linear 
regression, however, yields a curve which passes 
through the experimental data (12 points) more 
closely. 

Figure 3 presents R, vs Ro correlations for various 
{Cu"L6} chromophores.  It can be concluded that 
the above correlations are very similar; the major  
difference is seen in the limiting value of Re0, 
whereas the constant C (equal to K0 alters only 
slightly. Interestingly, the Re0 values correlate with 
the covalent radii of  the donor atoms. Thus, Re0 
reflects the quality of  the ligand or its donor  atom, 
whereas the curvature C is characteristic of  the cen- 

E 2 5 0  

o 

2 0 0  

150  J 
1 5 0  2 0 0  

i i 

2 5 0  3 0 0  

R e / p r o  

Fig. 3. Ra vs Re dependences for [Cu(H20)6] 2+ complexes 
(circles), [Cu(NO2)6] 4- complexes (triangles), [CuF6] 4- 
chromophore (diamonds) and [CuCI6] 4- chromophores 
(squares). Solid, non-linear regression: Ra = K , /  

(Re- R~o) ; dashed, linear regression. 
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Fig. 4. An overall R~ v s  R~e °rr  dependence for copper 
complexes: R. = K/R~°rL 

tral atom. In order  to verify the latter statement, 
the corrected values Re c°rr = Re - R~0 have been gen- 
era ted;  they were used in an overall correlat ion o f  
the Ra = K,/R~e °rr type for all {CunL6} chro-  
mophores .  The results are shown in Fig. 4 and they 
confirm that  the constant  K, may  be considered as 
a characteristic parameter  o f  the central a tom : it 
measures the central a tom plas t ic i ty--a  tendency to 
undergo tetragonal  distortions o f  its coordina t ion  
polyhedra.  
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