

0277-5387(94)00501-6

THE REACTION OF COPPER(I1) HALIDES AND TETRAALKYLTHIURAM MONOSULPHIDES

LUIS I. VICTORIANO,* XIMENA A. WOLF AND HERNÁN CORTÉS

Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 3-C, Concepción, Chile

(Received 27 September 1994 ; *accepted 28 November 1994)*

Abstract—Tetraalkylthiuram monosulphides reacted with copper(II) chloride and bromide to yield $3,5-bis(N,N-dialkylimonium)-1,2,4-trithiolane trihalocuprate(I) and a neutral$ halogenobis- $(N, N$ -dialkylthiocarbamoyl)sulphidocopper(I). The products were characterized by elemental analyses, IR spectroscopy and magnetic susceptibility measurements.

Bis(N,N-dialkylthiocarbamoyl)sulphides, also known as tetraalkylthiuram sulphides, R_4 tms, \dagger are potential bidentate ligands to metal ions, and although they have been less extensively used than the related disulphides in rubber vulcanization, agriculture and medicine, there is still an advantage in comparing the chemistry of both classes of compounds.

Both ligands form simple coordination compounds. Examples of these in the case of the mono-

*Author to whom correspondence should be addressed.

TExcept where relevant to the chemistry under discussion, tetraalkylthiuram monosulphides and dithiocarbamates are abbreviated as tms or dtc, with no specification of the alkyl substituents. Abbreviations used :

[bitt-41 2+ , bis-(dialkylimonium)tetrathiolane. *General*

sulphide are the cationic $[CrR₄tmsX₂]+¹$ and the neutral MR_4 tms X_2 (M = Zn,² Hg,³ Ni and Co⁴) and MR_4 tmsX (M = Cu and Ag⁵).

Metal-containing fragments also insert oxidatively into the C-S linkage of a monosulphide to yield mixed dithiocarbamato-thiocarboxamido complexes. Examples of metal moieties that undergo such transformation are $MCI(PPh_3)$, $(M = Rh)$ and Pt⁶) and Mo(CO)₃(CH₃CN)₃.⁷

An ubiquitous reaction of thiuram disulphides and metal ions involves scission of the S-S bond and formation of metal dithiocarbamates. This transformation has become a standard preparative route to metal dithiocarbamates. We have recently reviewed this topic.⁸ In contrast, monosulphides offer only one example of dithiocarbamate formation. Reaction of Me₄tms and CuCl₂ in boiling ethanol yields $Cu(Me_2dtc)_2$.⁹

Novel rection products have now been isolated from reactions similar to the one just described. These products are formed through the twoelectron oxidation of the ligand, with reduction of the Cu" salt and stabilization of the Cu' species as trihalocuprate(1) anion. This behaviour parallels the chemistry described for the disulphides.⁸

EXPERIMENTAL

 Et_4 tms and iPr₄tms were prepared by standard literature procedures.¹⁰ Carrying out the desul-

phurization of the corresponding disulphide with alcoholic KCN (CAUTION: acid hydrolysis of potassium cyanide generates HCN, an exceedingly poisonous gas). The methyl derivative (Fluka) was recrystallized from EtOH. CuCl₂ $2H₂O$ (Merck) was oven dehydrated at 115°C and kept under nitrogen. Solvents (THF, acetone, CH₃CN, EtOH) were dried with CaCl₂ which had been activated at 350° C and then filtered and distilled under nitrogen. All synthetic manipulations involving the copper complex were carried out under dry nitrogen, using Schlenk or cannulation techniques.¹¹ Anhydrous CuBr, was prepared from CuBr and an excess of bromine under nitrogen. The excess $Br₂$ was allowed to evolve and the resulting microcrystalline solid was pumped dry to give CuBr, in theoretical yield.

spectroscopy

IR spectra were obtained as KBr pellets in the range 4000-500 cm⁻¹ using a Nicolet Magna 550 spectrometer and as Nujol mulls over polyethylene film below 500 cm⁻¹, using a Perkin-Elmer FTIR 2000 spectrometer.

Analyses

Carbon and hydrogen analyses were performed by standard combustion techniques. Other elements were determined titrimetrically. by iodometry (copper) or Volhard (chlorine) methods.

Preparation of the complexes

3,5 - Bis(N,N - dialkylimonium) - 1,2,4 *- trithiolune tribromocuprate*(I), $[R_4$ bitt-3²⁺ CuBr²⁻ (R = Me, Et, iPr). A solution of 0.67 g (3 mmol) of CuBr, in 60 cm³ EtOH was cooled to -10° C (ice-salt bath) and a solution of the monosulphide (5 mmol) in EtOH $(500 \text{ cm}^3 \text{ for the Me}, 100 \text{ for Et}, 60 \text{ for }$ iPr) was added dropwise with stirring. The material precipitated (red-orange for Me, orange for Et, brown for iPr) was filtered, washed with 20 $cm³$ fresh EtOH, pumped dry and ground to a fine powder, which was extracted with three portions of $CH₃CN$ (50 cm³ each for Me, 20 cm³ each for Et) or acetone (five portions of 20 cm^3 for iPr). The solutions contain the thiuram-copper (I) complex (Me, Et) or its decomposition products (iPr). The residual solid was filtered and pumped dry. Attempts to purify the more soluble (Et, iPr) derivatives by crystallization resulted in decomposition. Experiments performed with Me₄tms and $CuCl₂$ resulted in a green solid residue, not further investigated. Yields varied from near-quantitative (Me) to 0.08 g (iPr).

 $[Me₄bitt-3]²⁺CuBr₃²⁻$. Orange amorphous powder, m.p. 192°C (d). Found : Cu, 12.4; Br, 46.5 ; C, 14.1; H, 2.3. Calc. for $C_6H_{12}N_2S_3Br_3Cu$: Cu, 12.4; Br, 46.8; C, 14.1; H, 2.4%. IR (KBr) cm⁻¹: 303Ow, 1587s, 1408s, 1266s, 107Os, 1036s, 885m, 870m, 57Os, 510m.

 $[Et_4bit-3]^2$ ⁺CuBr²⁻. Orange amorphous p0wder.m.p. 181" (d). Found: Cu, 11.3; Br, 42.5; C, 21.1; H, 3.5. Calc. for $C_{10}H_{20}N_2S_3Br_3Cu$: Cu, 11.2; Br, 42.2; C, 21.1; H, 3.6%. IR (KBr) cm⁻¹: 2973m, 2875m, 1552s, 1479s, 1446s, 1387m, 1341m, 1275m, 1203s, 1078m, 841m, 775m, 565m, 507m.

 $[iPr_4$ bitt-3²⁺CuBr²⁻. Light brown, café-au-lait powder, m.p. 155°C (d). Found : Cu, 10.3 ; Br, 38.5 ; C, 26.9; H, 4.4. Calc. for $C_{14}H_{28}N_2S_3Br_3Cu$: Cu, 10.2; Br, 38.43;C,26.9; H, 4.5%. IR (KBr) cm-': 2968~. 2926m, 2849w, 1621s, 1460m, 1383m, 1320m, 1185w, 1137s, 1046w, 625w, 561w.

Halogen0 - bis(N,N - dialkylthiocarbomoyl)sulphido copper(I), CuR_4 tms X ($X = Br$, $R = Me$, Et; also $X = Cl$, $R = Me$). The acetonitrile extracts from the previous experiment were concentrated in a rotary evaporator, keeping the temperature below 35 °C. The resulting solution was cooled to -10 °C and the red crystalline material given off filtered and recrystallized in the same fashion.

CuMe₄tmsBr. Bright red needles, m.p. 174– 176° C (d). Found: Cu, 18.1; Br, 22.6; C, 20.4; H, 3.4. Calc. for $C_6H_{12}N_2S_3BrCu$: Cu, 18.1; Br, 22.7; C, 20.5; H, 3.4%. IR (KBr) cm⁻¹: 2941w, 1524s, 1383s. 125Os, 123Os, 1143s, 1050m, 987s, 943s, 867m, 570m, 445m.

CuEt₄tms Br. Orange plates, m.p. $115-117^{\circ}C$ (d). Found: Cu, 15.7; Br, 19.2; C, 29.3; H, 4.9. Calc. for $C_{10}H_{20}N_2S_3BrCu$: Cu, 15.6; Br, 19.6; C, 29.4; H, 4.9. IR (KBr) cm⁻¹: 2980m, 2921m, 2862w, 1499s, 144Os, 1348s, 1267s, 119Os, 1143m, 1071s, 982m, 959m, 9OOs, 833s, 781w, 568w, 550~.

CuMe,tmsCl. Red orange plates, m.p. 135- 137°C (d). Found : Cu, 20.7 ; Cl, 11.5 ; C, 23.3 ; H, 4.0. Calc. for C,H ,,N,S,ClCu : Cu, 20.7 *; Cl,* 11.5 ; C, 23.4; H, 3.9%. IR (KBr) cm⁻¹: 2941w, 1531s, 1389s, 1245s, 1227s, 1143s, 1049m, 985s, 943s, 867m, 527m.

CuiPr,tmsBr. The preparative method outlined above failed to yield the iPr derivative. However, this was obtained from CuBr (from aqueous CuSO₄, 2 N H_2SO_4 and Na₂SO₃ in the presence of KBr) and iPr₄tms, by the method of Willemse and co-workers.^{5a} Orange-brown needles, m.p. 148° C (d). Found: Cu, 13.6; Br, 17.3; C, 36.2; H, 6.1. Calc. for $C_{14}H_{28}N_2S_3BrCu$: Cu, 13.7; Br, 17.2; C, 36.2; H, 6.1% . IR (KBr) cm⁻¹: 3011w, 2968m, 2926m, 2858w, 1495s, 1430s, 1371m, 1329s, 1310s, 1187m, 1144s 101 lm, 935w, 89Ow, 85Ow, 77lw, 583m.

RESULTS AND DISCUSSION

Reaction hetbveen copper(I1) halides CuX, and tetraalkylthiuram monosulphides

The reaction generates $3,5-bis(N,N-dial$ kylimonium)-1,2,4-trithiolane which, for the case $X = Br$, can be isolated as the corresponding tribromocuprate(1) :

of these features follows trends similar to those noted for the disulphides.⁸

Thiuram sulphides display a strong IR absorption at *ca* 1500 cm^{-1}. This band corresponds to a stretching of the R_2N —C bond and its abnormally high position is related to an important contribution of the polar $-S_2C=N^+$ form to the overall structure of the ligand.¹² Complexation of thiuram sulphides to metal ions shifts electron density away from the sulphur atoms and enhances the importance of the polar form to the total resonance hybrid, thus shifting the corresponding absorption to higher wavenumbers.¹⁻⁵ This effect is noted in the

The Cu' halide is stabilized as a thiuram-copper(I) complex, CuR₄tmsX. All three alkyl derivatives of the organic cation, Me, Et and iPr, can be prepared in this manner. As the alkyl substituent size increases, so does the solubility of the tribromocuprate(1) in the reaction solvent. The solution stability of the newly formed species is limited, which results in lower yields of isolable tribromocuprate(1).

In some cases the complexes $CuR₄tmsX$ can be isolated from the reaction mixture. The procedure is tedious and these compounds are more easily accessible through the direct preparative route of Willemse and co-workers.^{5a} When CuCl₂ is used as the oxidizing agent, no tetraalkylimonium trithiolane is isolated. The course of the reaction is therefore inferred from the isolation of the $CuR₄tmsX$ species. The rapid decomposition of the (presumed) Cu(iPr)tmsBr derivative prevents its isolation, and its formation is inferred from the isolation of $[iPr_4$ bitt-3]²⁺CuBr₃⁻.

All compounds in the $[R_4$ bitt-3²⁺ series are orange, diamagnetic non-crystalline solids. This is consistent with their formulation as Cu' species. Limited solubility of the Me derivative and lack of solution stability of the Et and iPr derivatives in acetone or acetonitrile have so far prevented NMR characterization and conductivity measurements, while at the same time frustrating attempts at crystal growth.

IR spectroscopy

Table 1 summarizes the characteristic IR bands of the compounds prepared. In general, the analysis values reported in Table 1. Complexation of thiuram sulphides to $Cu¹$ produces a shift of some 5- 25 cm^{-1} in the position of the band. The C-N stretch is also sensitive to the oxidation state of the attached metal. In a series of copper dithiocarbamates,¹² Cu^{III} compounds show the IR band some $50-80$ cm⁻¹ higher than the corresponding Cu^H compounds. Thus, the high C—N stretching frequencies observed in the series of R_4 bitt²⁺ compounds reported in Table 1 would also be consistent with structures containing Cu^{III}-dithiocarbamate units.

The latter alternative is ruled out on inspection of the 900–1000 cm⁻¹ region of the spectra. Thiuram sulphides display two bands in this region, assigned to $C=$ S stretching modes. The intensity of these bands is greatly enhanced in dithiocarbamate compounds.¹³ The corresponding stretches for the $C-S$ bands are located near 850 cm^{-1} . Both spectral features are apparent in the IR of the $CuR₄tmsX$ complexes. However, in those compounds formulated as R_4 bitt²⁺, the C=S stretch is conspicuously absent. This is in full agreement with the structure proposed.

As noted elsewhere,⁸ the five-membered cyclic organic cation $3,5-bis(N,N-dialkylimonium)$ -1,2,4trithiolane $[R_4$ bitt-3]²⁺ has been reported in oxidation reactions of metal dithiocarbamates. Thus, the reaction of $Fe(Et_2dtc)$, or $Fe(Et_2dtc)$, Cl with halogens yields $[R_4bit-3]^2+2FeCl_4$, also accessible through oxidation-desulphurization of Et_4 tds with anhydrous $FeCl₃$.¹⁴ The same report gives details on the preparation of $[nBu_4bit-3]^2$ ⁺Cu₂X₆² (X = Cl, Br) from halogens and the cuprous dithiocarbamate. An oxidation-desulphurization reac-

	$v(C-N)$	$v(C-S)$	$v(C-S)$
$Me4$ tms	1523	961	863
$Et4$ tms	1500	1000, 970	919
$iPr4$ tms	1479, 1446	959	890, 850
CuMe ₄ tms Br	1524	987, 943	867
CuEt ₄ tms Br	1508	990, 970	900, 830
$CuiPratms$ Br	1495, 1430	1011, 935	890, 850
CuMe ₄ tms Cl	1531	985, 943	867
$[Me4bitt]2+CuBr32-$	1587		877, 866
$[Et_4bitt]^2$ ⁺ CuBr ²⁻	1552		841
$[iPrbitt]^2$ ⁺ CuBr ²⁻	1621		850

Table 1. Selected IR frequencies for the compounds synthesized

All figures in cm^{-1} . See Experimental section for band intensities.

tion also yields $[Et_4bitt-3]^2$ ⁺ $Hg_2l_6^2$ from $HgEt_4tdsl_2$ and iodine. This affords the only known crystal structure of R_4 bitt-3 compounds.¹⁵ Very relevant to this series of reports is the recent observation¹⁶ in the mass spectrum of solutions of $(Et₂dtc)₃Fe$ oxidized with $NO⁺$, where the highest mass is assigned to the molecular ion of (Fedtc₃)₂[Et₄bitt-3]²⁺, of unknown structure.

Fur-IR characterization

Table 2 shows the low frequency region of the IR spectrum for the compounds reported here. Copper dithiocarbamates and thiurams are characterized by medium intensity bands in the 300–400 cm^{-1} region ascribed to Cu-S stretching. The position of these bands is sensitive to the oxidation state of the metal. Thus, Cu^{III}-S stretches are found between 345 and 410 cm^{-1 12} and Cu¹-S vibrations span the region 310–365 cm⁻¹,^{5b} while Cu¹¹—S stretches have been assigned at ca 350 cm⁻¹ in a series of Cu^H -dithiocarbamates.⁹ The series of CuMe₄tmsX compounds prepared in the course of this work show bands consistent with their formulation as

Cu'-tms compounds. The spectral features in this series are explained on the basis of a dimeric, halogen-bridged structure of D_{2h} symmetry, in which two Cu-S and two Cu-X IR-active modes are apparent. The low frequencies found for the Cu —X vibrations denote the bridging nature of the halogens." Dramatic changes in coordination must occur in the Et derivative, since a third feature appears in the Cu-S region. More importantly, the absorptions which could be assigned as Cu-Br stretches have moved considerably, indicating a higher bond order. Thus, the site symmetry in the solid must be much lower than D_{2h} , and perhaps involves a loose polymer. In the absence of additional data, no more speculation is warranted.

The solid state structure of these compounds formulated as $[R_4bitl]^2 + CuBr_3^2$ is more complicated than such simple formulation would imply. The featureless spectra between 300 and 400 cm^{-1} negate coordinative interactions between the metal and the ligand, and supports the correctness of the structural assignment as ionic. However, the nature of the anion is unclear. The far-IR is inconsistent with CuBr²⁻, for which a strong 185 cm⁻¹ absorp-

Table 2. IR frequencies below 500 cm^{-1} for the compounds synthesized

	$Cu-S$	$Cu - X$
CuMe ₄ tms Br	345w, 300s	193s, 161sh
$CuMe4$ tms Cl	347s, 310m	284w, 224m
$CuEt4$ tms Br	343s, 329s, 311s	255s, 232s, 219s
$[Me4bitt]2+CuBr32-$		211m, 179m, 158w, 103vs
$[Et_4bitt]2+CuBr32-$		203m, 174m, 151w, 100vs
$[iPr_4$ bitt] ²⁺ CuBr ₃ ⁻		202m, 170m, 161w, 100vs

All figures in cm^{-1} .

tion would be expected.¹⁸ The possibility of $CuBr₂$ plus Br⁻ must also be considered and then rejected on the basis of the absence of a feature at 313 cm^{-1} , as present in the spectra of [Ph₃MeP] $[CuBr₂]Br¹⁸ Other structural possibilities of over$ all stoichiometry Cu¹Br²⁻ involve a polymeric chain of tetrahedra sharing one corner,¹⁹ as found in the structures of materials of composition M_2CuX_3 $(M = alkali metal)$. A polymeric ionic form would be consistent with the lack of solubility of the materials.

The behatliour of monosulphides and disulphides towards copper(H) halides

Monosulphides react with copper(H) halides according to reaction (1). This behaviour is similar to that described recently⁸ for the disulphides. Both mono- and disulphides undergo a two-electron oxidation of the ligand to form large organic cations which act as counterions of cuprous haloanions. Some differences must be noted.

(a) The oxidation of the disulphides by Cu^H salts is the result of an equilibrium which may be displaced by adequate manipulation of the solubilities of the species involved; oxidation of the monosulphides proceeds irreversibly in THF. Spectroscopy and reaction chemistry fail to give any evidence for the presence of unreacted species in mixtures of CuX_2 (X = Cl, Br) and R₄tms $(R = Me, Et, iPr)$. It seems that subtle changes in the packing of the solid lattice on going from a fivemembered to a six-membered ring in the cation are enough to influence the solubility and therefore the position of the oxidation-reduction equilibrium.

(b) All Cu' compounds reported here undergo eventual decomposition to dithiocarbamate-containing compounds when kept at room temperature. This decomposition is essentially instantaneous in boiling EtOH and the rate of decomposition is more pronounced for CuCl₂ than it is for CuBr₂. Thus, previous results⁹ and the present ones are in agreement.

In the $[R_4$ bitt-4]²⁺ series,⁸ all compounds isolated contained chlorine. No Br--containing haloanions were isolated from R_4 tds and CuBr₂. We are unable to explain this difference at the present time.

Acknowledgements-Support was available from a joint fund by International Copper Association and Centro de Investigación Minera y Metalúrgica. We also thank Prof. H. Carbacho, Head of the Department of Analytical and Inorganic Chemistry at Concepción.

REFERENCES

- 1. G. Contreras and H. Cartes, *J. Inorg. Nucl. Chem.* 1971,33, 1337.
- 2. (a) J. A. M. Cleverty and N. Morrison, *J. Chem. Sot., Dalton Trans.* 1976,2169 ; (b) M. C. Brinkhof, J. A. Cras, J. J. Steggerda and J. Willemse, *Rec. Tram. Chim. 1969,88,633.*
- 3. (a) C. F. Barrientos and J. G. Contreras, An. *Quim.* 1979, 75, 245; (b) H. C. Brinkhoff and J. M. A. Dautzenberg, *Rec. Trav. Chim. 1972, 91,* 117.
- 4. G. Contreras and H. Cortés, *Inorg. Nucl. Chem. Lett. 1970, 6, 225, 639.*
- 5. (a) P. J. H. A. M. van de Leemput, J. Willemse, J. A. Cras and L. Groen, *Rec. Trav. Chim. 1979, 98, 413* ; (b) J. G. Contreras, J. A. Gnecco and H. V. Carbacho, *J. Coord.* Chem. 1989, 19, 371.
- 6. A. W. Gal, A. F. J. M. van der Ploeg, F. A. Vollenbroek and W. Bosman, *J. Organomet.* Chem. 1975, 96, 123.
- 7. J. J. Steggerda, J. A. Cras and J. Willemse, *Rec. Trav. Chim. 1981,100,41.*
- 8. L. I. Victoriano and X. A. Wolf, *J. Coord. Chem.* in press.
- 9. I. Ojima, T. Onishi, T. Iwamoto, N. Inamoto and K. Tamaru, *Inorg. Nucl. Chem. Lett. 1970,6, 65.*
- IO. Houben-Weyl, *Methoden der Organische Chemie.* Georg Thieme Verlag, Stuttgart (1964).
- 11. D. F. Shriver, *The Manipulation of Air-Sensitive Compounds.* McGraw-Hill, New York (1969).
- 12. R. M. Golding, C. M. Harris, K. J. Jessop and W. C. Tennant, *Aust. J. Chem. 1972,25,2567.*
- 13. R. N. Jowitt and P. C. H. Mitchell, *Inorg. Nucl. Chem. Lett. 1968, 4, 39.*
- 14. J. Willemse and J. J. Steggerda, *J. Chem. Sot., Chem. Commun. 1969,* 1123.
- 1.5. P. T. Beurskens, W. P. Bosman and J. A. Cras, *J. Cryst. Molec. Struct. 1972, 2, 183.*
- 16. A. M. Bond, R. Colton, A. D'Agostino, J. Harvey and J. C. Traeger, *Inorg. Chem. 1993,32, 3952.*
- 17. D. M. Adams, *Metal- Ligand and Related Vibrations.* St. Martin's Press, New York (1968).
- 18. G. A. Bowmaker, G. R. Clark, D. A. Rogers, A. Camus and N. Marsich, *J. Chem. Sot., Dalton Trans. 1984, 37.*
- 19. *S.* Jagner and G. Helgesson, *Adu. Inorg. Chem. 1991, 37,* 1.