

0277-5387(95)00069-o

TETRAARYL-METHANE ANALOGUES IN GROUP 14-4.t $Ph_{4-n}M(p-Tol)_n$ ($n = 0-4$, $M = Si$, Ge , Sn , Pb). SYNTHESIS, **STRUCTURAL AND SPECTROSCOPIC DATA, AND SEMI-EMPIRICAL CALCULATIONS** : **MUTUAL INTERACTION** OF TETRAHEDRAL σ-ORBITALS (SYMMETRY AND **ELECTRONEGATIVITY) AND DELOCALIZED a*-LUMOS** $(\pi$ -LEWIS ACIDITY)

MICHAEL CHARISSÉ, BERND MATHIASCH and MARTIN DRÄGER[†]

Institut fur Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universitat, D-55099 Mainz, Germany

and

UMBERTO RUSSO:

Istituto di Chimica Inorganica, Metallorganica ed Analitica di Universita degli Studi di Padova, Via Loredan 4, I-35131 Padova, Italy

(Received 25 November 1994 ; *accepted 18 January 1995)*

Abstract-The 20 compounds mentioned in the title have been synthesized by lithium $(M = Si)$ or Grignard methods $(M = Ge, Sn, Pb)$. The crystal structure of $Ph₃Sn(p-Tol)$, a survey of the 10 known structures and spectroscopic data (NMR, Mössbauer, IR, Raman) are given. A change of the symmetry of the formally tetrahedral MC_4 backbone arises if $M = Si$ and Ge (elongation along one S_4 or C_3 axis) are altered to $M = Sn$ and Pb (contraction along one S_4 axis). The order of $\delta(^{13}C$ -ipso) points to a decrease in the electronegativities along Pb \gg Sn $>$ Ge $>$ Si. The ²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb NMR chemical shifts exhibit a "sagging" along each series, which is described analytically in terms of a quadratic equation. The linear part of this equation is interpreted as an inductive contribution which changes its sign if M is changed from silicon to tin and lead. The quadratic part reflects the different population of a low-lying LUMO with charge given by the aromatic groups. This LUMO is slightly antibonding in the case of silicon and slightly bonding for tin and lead. The " π -acceptor" properties of M explain the upfield NMR shifts ²⁹Si/¹¹⁹Sn/²⁰⁷Pb of MAryl₄ compounds in comparison with MAlkyl,.

On the basis of experimental data obtained from closely related series of compounds, the group 14 NMR chemical shifts can be discussed in terms of two main effects, the polarity of the group 14σ bonds and a charge flow into the related σ^* -LUMOs.^{2,3} On condition that in such a series of compounds the polarity contribution of the sub-

stituents and the charge flow situation remain constant, electronegativity values (ENS) for the group 14 elements can be derived from NMR chemical shifts. Two unambiguous results are: $EN(Ge)$ $EN(Si)^4$ and $EN(Pb) \gg EN(Ge, Sn)²$. These results are in accordance with the "thermochemical" Pauling electronegativity scale.^{5a} For group 15, electronegativities have been derived in the same manner $(cf.$ ref. 6).

In order to gain additional support for the chemical shift-based group 14 electronegativity scale, the

tPart 3 : ref. 1.

^{\$}Authors to whom correspondence should be addressed.

series of compounds $Ph_{4-n}M(p-Tol)_n$ ($n = 0-4$, $M = Si, Ge, Sn, Pb$ has been synthesized and investigated. Some results for the compounds with $M = Si$ and Sn were given previously.⁷

In addition to the results concerning the occupied group 14 orbitals, the spectroscopic data of the synthesized series of compounds provide indications of the π -Lewis acidity of the group 14 σ^* -LUMOs. In order to gain an impression of the energetic position of the LUMOs, semi-empirical calculations have been performed.

RESULTS

Syntheses of $Ph_{4-n}M(p-Tol)_n$ (n = 0-4; M = Si, Ge, Sn, Pb)

The mixed germanium and lead compounds have been synthesized via Grignard reactions. Migrations of the substituents (as discussed in ref. 8) did not occur. The syntheses of $Ph_{4-x}M(p-Tol)_n$ $(M = Si, Sn)$ have been described previously.⁷

Molecular structure of Ph,Sn(p-Tol)

The overall C_1 symmetric molecule $Ph_3Sn(p-Tol)$ (Fig. 1, Table 1) crystallizes in the orthorhombic space group *Pbca.* Table 2 gives a survey of the bond and torsion angles of the hitherto described structures of molecules of the type $Ph_{4-n}M(p-Tol)_n$. All the compounds listed in Table 2 undergo a distortion along one of the three S_4 axes of the "ideally" tetrahedral geometry, except $Si(p-Tol)_4$ and $Ge(p-Tol)_4$. These two compounds are distorted along one of the four C_3 axes of the "ideally" tetrahedral geometry (three angles less and three angles greater than the tetrahedral value). In the other silicon and germanium compounds, the for-

Fig. 1. The $Ph_3Sn(p-Tol)$ molecule. The molecule is compressed along the outlined S_4 axis.

mal tetrahedron is elongated along its unique S_4 axis, which is perfect for the homogeneous compounds and approximate for the mixed compounds. The elongation results in two angles less and four angles greater than the tetrahedral value. For the tin and lead derivatives, the tetrahedron is contracted along its S_4 axis (two angles greater and four angles less than the tetrahedral value).

Table 2 shows three general trends. Firstly, for $Ph₄M$, the bond angle 1 is less and the bond angle 2 is larger than for $M(p-Tol)_4$ (except for $M = Ge$). Secondly, in both of the series $Ph_{4-n}M(p-Tol)_n$ $(M = Si, Sn)$, the bond angles do not depend linearly upon n . Thirdly, the bond angle 1 increases and the bond angle 2 decreases in the order $Si > Ge > Sn > Pb$.

An analysis of the data by logarithmical regression showed that this increase of bond angle 1 is parabolically correlated with the increase of the M —C bond length. For Ph₄C, with the smallest M—C bond length of 1.553 Å, angle 1 is 106.7°, and for $Pb(p-Tol)₄$, with the greatest M--C bond length of 2.217 Å, this angle is 115.4° . The point of inversion, i.e. the ideal tetrahedral value of 109.5", is at a bond length of 2.0 A. The tetrahedron in compounds with a bond length M—C smaller than this value ($M = C$, Si, Ge) is always elongated and the tetrahedron in compounds with $d(M-C) > 2.0$ \AA (M = Sn, Pb) is always contracted.

'C *NMR chemical shifts*

Table 3 shows the 13 C NMR chemical shift data for the phenyl and p -tolyl groups in CDCl₃. Contrary to the non-linear behaviour of the NMR data of the central atoms, the 13 C NMR chemical shifts show a strongly linear dependence on the number of p -tolyl groups n . The increments when changing one phenyl group into a p-tolyl group are within the range ± 0 to ± 0.3 ppm and have the highest value for the *'3C-ipso* atoms (increments in ppm for 13 C-ipso Ph/p-Tol : Si, 0.26/0.26; Ge, 0.20/0.23; Sn, 0.20/O. 16 ; Pb, 0.10/0.07). The chemical shifts of the methyl-¹³C atoms are not affected by the different nature of the central atom or a different number of p-tolyl groups, and vary statistically at a value of 21.4 ± 0.1 ppm.

¹³C *NMR coupling to* ²⁹Si, ¹¹⁹Sn *and* ²⁰⁷Pb

The averages of the "J values $[(\Sigma({}^n J)/4$; full tables of the coupling constants " $J(^{13}C^{-8}M)$, the calculated¹⁸ reduced coupling constants K^1K and the average values $(\Sigma^1 K)/4$ in CDCl₃ are deposited as supplementary material with the Editor, from whom copies are available on request] are nearly

Bond lengths (A)		Torsion angles $(°)$	
$Sn-C(11)$	2.135(8)	Four small angles (angle 1)	
$Sn-C(21)$	2.125(8)	$C(21)$ —Sn—C(31)—C(32)	$+0.5(6)$
$Sn-C(31)$	2.122(8)	$C(31)$ —Sn—C(11)—C(12)	$-1.5(6)$
Sn—C(41)	2.116(8)	$C(11)$ -Sn- $C(41)$ - $C(42)$	$-4.6(7)$
		$C(41)$ —Sn—C(21)—C(22)	$-6.8(6)$
$Sn—C$ (average)	2.125		
$C-C_{\text{arom}}$ (average)	1.365	Four medium angles (angle 2)	
$C(44)$ —Me(4)	1.506(13)	$C(11)$ -Sn- $C(21)$ - $C(22)$	$-53.3(7)$
		$C(31)$ —Sn—C(41)—C(42)	$-57.8(7)$
		$C(11)$ —Sn—C(31)—C(32)	$-58.7(7)$
Bond angles $($ ^c)		$C(21)$ —Sn— $C(11)$ — $C(12)$	$-58.7(7)$
Two angles widened (angle 1)			
$C(31)$ —Sn—C(41)	110.7(3)	Four high angles (angle 3)	
$C(11)$ —Sn— $C(21)$	111.1(3)	$C(41)$ —Sn— $C(31)$ — $C(32)$	$+59.7(7)$
		$C(41)$ -Sn- $C(11)$ - $C(12)$	$+61.8(7)$
		$C(21)$ —Sn—C(41)—C(42)	$+63.1(7)$
		$C(31)$ —Sn— $C(21)$ — $C(22)$	$+65.2(7)$
Four angles compressed (angle 2)			
$C(11)$ —Sn—C(31)	107.4(3)		
$C(11)$ —Sn— $C(41)$	108.6(3)		
$C(21) - Sn - C(41)$	109.5(3)		
$C(21)$ —Sn—C(31)	109.6(3)		

Table 1. Bond lengths and angles for the $Ph_3Sn(p-Tol)$ molecule

constant along each series and are, on that basis, independent of the substitution of phenyl by p -tolyl groups.

"Si, "'Sn *and* "'Pb *NMR data*

By plotting the NMR chemical shifts of 29Si ,⁷ 119 Sn⁷ and 207 Pb (Fig. 2, Table 4) versus the number of p-tolyl groups in the series $Ph_{4-n}M(p-Tol)_n$ $(M = Si, Sn, Pb; n = 0-4)$, a "sagging" is observed that can be fitted by numerical equations :

$$
\delta(n) = (n-2)^2 * a + (n-2) * b + c
$$

$$
n = 0, 1, ..., 4.
$$
 (1)

Miissbauer parameters

The Mössbauer parameters in Table 5 have been obtained for Ph₄Sn and the three series $Ph_{4-n}Sn$ $(o\text{-}Tol)_n$, $Ph_{4-n}Sn(m\text{-}Tol)_n$ and $Ph_{4-n}Sn(p\text{-}Tol)_n$ $(n = 1-4)$ under the same respective conditions for the 13 compounds.

The isomeric shifts exhibit no systematic order and vary insignificantly from 1.35 to 1.39. The trends Ph₄Sn versus $Sn(o-Tol)_4$ and $Sn(m-Tol)_4$ parallel those from the literature; 19 the trend versus $\text{Sn}(p\text{-}\text{Tol})_4$ is reversed. The overall sensitivity of the Mössbauer isomeric shift is too low for the definite

inductive changes $\Delta\delta/4$ of the NMR chemical shifts in Table 4 to be mirrored.

No quadrupole splitting was found for the heterogeneous compounds. Firstly, with regard to the geometry, the perfect S_4 symmetry of the homogeneous compounds remains nearly perfect for the heterogeneous compounds (Table 2). Secondly, with regard to the electronic imbalance of the additional methyl group, the sensitivity of the Mössbauer quadrupole splitting is too low to mirror the definite excess populations of the LUMOs in terms of the NMR chemical shifts (Table 4, Fig. 2).

The only data with significant variations are those for the peak area A . Obviously, different Debye temperatures for the different members of each compound series exist. Unfortunately, all available crystal structure determinations were undertaken at room temperature and a direct comparison with the determined equivalent isotropic displacements of tin is not possible. Further, no direct connection to the vibrational data could be recognized.

Vibrational data

IR and Raman data of $Ph_{4-n}Si(p-Tol)_n$, Ph_{4-n} $Ge(p-Tol)_n$, $Ph_{4-n}Sn(p-Tol)_n$ and $Ph_{4-n}Pb(p-Tol)_n$

racise 2. Survey of the known geometric data concerning the S, symmetry of the MC, backbone in phenyl/p-tolyl-substituted compounds Ph₄ μ M(p-Tol), (M = Si, Ge, Sn,

 S^{\cdot} a Perfect or approximate point symmetry : e, e, e, $\sum_i C_i$; C_i ; c, contracted along $\sum_i C_i$ " Perfect or approximate point symmetry: e, elongated along "S₄" or "C₃"; c, contracted along "
"Calculated from the data given in the literature.

b Calculated from the data given in the literature.

'Average values. 'Average values.

dNo regularity of torsion angles (12 different values).

^{*4*}No regularity of torsion angles (12 different values).

^{*e*} Isostructural with $Ph_3Si/Sn(p-TOI)$, always twinned crystals. 'Isostructural with Ph,Si/Sn(p-Tol), always twinned crystals.

 $\overline{1}$

	Phenyl			p -Tolyl					
	C(1)	C(2,6)	C(3,5)	C(4)	C(1)	C(2,6)	C(3,5)	C(4)	C(Me)
Ph_4Si	134.3	136.5	127.9	129.6					
$Ph_3Si(p-Tol)$	134.5	136.4	127.8	129.5	130.5	136.4	128.8	139.6	21.4
$Ph_2Si(p-Tol)_2$	134.8	136.5	127.8	129.4	130.8	136.4	128.7	139.5	21.5
$PhSi(p-Tol)$ ₃	135.1	136.5	127.8	129.4	131.1	136.5	128.7	139.4	21.5
$Si(p-Tol)a$					131.3	136.4	128.7	139.3	21.5
Ph_4Ge	136.2	135.4	128.3	129.1					
$Ph_3Ge(p-Tol)$	136.4	135.4	128.3	129.1	132.4	135.4	129.1	139.0	21.4
$Ph_2Ge(p-Tol)_2$	136.6	135.4	128.2	129.1	132.6	135.4	129.1	138.9	21.4
$PhGe(p\text{-}Tol)_3$	136.7	135.4	128.2	129.1	132.8	134.2	129.4	138.8	21.5
$Ge(p-Tol)4$					133.1	135.4	129.0	138.7	21.4
Ph_4Sn	138.0	137.3	128.6	129.1					
$Ph_3Sn(p-Tol)$	138.2	137.3	128.6	129.1	134.0	137.3	129.6	139.0	21.4
$Ph_2Sn(p-Tol)_2$	138.4	137.2	128.6	129.0	134.2	137.2	129.5	138.9	21.4
$PhSn(p-Tol)$ ₃	138.6	137.2	128.6	129.0	134.4	137.2	129.5	138.9	21.4
$Sn(p\text{-}Tol)_4$					134.5	137.2	129.4	138.8	21.5
Ph _a Pb	150.1	137.7	129.5	128.6					
$Ph_3Pb(p-Tol)$	150.3	137.6	129.4	128.5	146.2	137.6	130.3	138.4	21.3
$Ph_2Pb(p-Tol)$,	150.3	137.6	129.4	128.4	146.3	137.5	130.3	138.3	21.3
$PhPb(p-Tol)$ ₃	150.4	137.6	129.4	128.5	146.4	137.5	130.3	138.3	21.3
$Pb(p-Tol)4$					146.4	137.4	130.1	138.1	21.3

Table 3. ¹³C NMR chemical shift data in CDCl₃ for the series Ph_{4,n}M(p-Tol)_n (n = 0–4, M = Si, Ge, Sn, Pb) (ppm)

 $(n = 0-4)$ were collected (1100-200 cm⁻¹ for IR and $1100-50$ cm⁻¹ for Raman: full tables are deposited as supplementary material with the Editor, from whom copies are available on request).

Previous work on mono- and disubstituted derivatives of benzene and specifical on group 14 phenyl compounds²¹ provided enough information to obtain assignments for nearly all the peaks observed. The assignments are limited by degeneration of certain modes, splitting of the ring modes (caused by multiple aryl substitution on the same central atom) and mixing of ring and skeletal modes below 300 cm^{-1} . The nomenclature for phenyl derivatives²² and for p-tolyl derivatives²³ was followed.

The stretching vibration v_7 of p-tolyl occurs only a few wavenumbers below *q* of phenyl. In all cases a small decrease from Ph_4M to $M(p-Tol)_4$ is found: Si, 1113-1107 cm⁻¹; Ge, 1088-1087 cm⁻¹; Sn, 1076–1070 cm⁻¹; Pb, 1062–1060 cm⁻¹. In no case was a splitting of both vibrations observed.

DISCUSSION

Symmetry

The $\pi-\pi$ interactions between aromatic groups occur as the sum of π -electron repulsions and attractive interactions between the π -system and the σ -framework.²⁴ In the series of compounds of Table 2, these interactions depend on the bond distance M-Aryl. At a hypothetical bond distance $d(M-C)$ of 2.0 A (see Results), attraction and repulsion between the phenyl and p-tolyl groups are well balanced, so that an ideal tetrahedral geometry would be realized. In compounds with $d(M-C) < 2.0$ Å $(M = C, Si, Ge)$, the increased repulsion is outweighed by an elongated tetrahedron; for $d(M-C) > 2.0$ Å $(M = Sn, Pb)$, the increased attractive interactions are compensated by a compression of the tetrahedron. For a discussion on the influence of an even greater repulsion, see ref. 25.[†]

These changes of the $C-M-C$ bond angles, altering the inductive influence of the substituents on the central atom through the σ -bonding orbitals, can be noticed in the ²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb NMR spectroscopic data. The linear term " $(n-2) * b$ " *(see* Results) mirrors the extent and direction of the tetrahedral distortion by a negative coefficient *"6"* in the case of elongation (Si) and a positive coefficient *"b"* in the case of compression (Sn, Pb).

 \dagger Both tetrahedra of the described S_4 symmetric molecules $Ge(C_6F_5)_4$ and $Sn(C_6F_5)_4$ are elongated along the S_4 axis, the bond angles C—M—C (2x/4x) are $105.4^{\circ}/111.5^{\circ}$ and $105.0^{\circ}/111.7^{\circ}$, the bond lengths are Ge—C 1.957(4) \AA and Sn—C 2.126(8) \AA .

Fig. 2. ^{29}Si , ^{119}Sn and ^{207}Pb NMR chemical shifts of $Ph_{4-x}M(p-Tol)$, versus *n* with quadratic fits.

Electronegativities

Figure 3 illustrates the development of the phenyl and p-tolyl *"C-ipso* NMR chemical shifts for the four series of compounds. It gives a clear sequence of increasing electronegativity in the order

Table 5. Mössbauer effect parameters at 80.0 K $(\delta, \text{iso-})$ meric shift; Γ , half-width value; A, peak area)

	δ^a	г	A
Compound	$(mm s^{-1})$	$(mm s^{-1})$	$(mm s^{-1})$
Ph.Sn	1.38	0.90	0.088
$Ph3Sn(o-Tol)$	1.38	0.87	0.052
$Ph_2Sn(o-Tol)$,	1.38	0.87	0.064
$PhSn(o-Tol)$,	1.38	0.90	0.076
$Sn(o-Tol)$	1.39	0.91	0.057
$Ph_3Sn(m-Tol)$	1.37	0.87	0.056
$Ph\text{-}Sn(m\text{-}Tol)$,	1.37	0.89	0.051
$PhSn(m-Tol)$	1.36	0.86	0.056
$Sn(m-Tol)4$	1.37	0.87	0.056
$Ph_3Sn(p-Tol)$	1.39	0.94	0.103
$Ph_2Sn(p-Tol)$,	1.35	0.92	0.084
$PhSn(p-Tol)$	1.35	0.96	0.105
$Sn(p-Tol)4$	1.37	0.96	0.076

" Relative to room temperature $SnO₂$. Reference data from the literature¹⁹ (converted from CaSnO₃ into SnO₂ reference by adding 0.1 mm s⁻¹):²⁰ Ph₄Sn, 1.36; Sn(o -Tol)₄, 1.37; $\text{Sn}(m\text{-}\text{Tol})_4$, 1.35; $\text{Sn}(p\text{-}\text{Tol})_4$, 1.38 mm s⁻¹.

 $Si < Ge < Sn \ll Pb$ in terms of a reduction of the shielding of the ^{13}C -ipso atoms. The thermochemical EN values of Pauling are in the order : C, 2.55; Si, 1.90; Ge, 2.01; Sn, 1.96; Pb, 2.33.^{5a}

'"Si, "'Sn *and* 207Pb *NMR : inductive contribution*

In the equations used for the fit of the observed "sagging" (see Results), the constant term " c " is an indicator of the different sensitivities of the 29Si, 119 Sn and 207 Pb NMR chemical shift scales. The linear term \cdot (*n*-2) $* b$ " represents the difference between the inductive influence of the phenyl and p-tolyl groups. It reflects the shifting of charge between the respective aromatic groups and the

Table 4. NMR chemical shifts δ^{29} Si, δ^{119} Sn and δ^{207} Pb in CDCl₃ (ppm)], "inductive correction"^{*a*} $\Delta\delta/4$ and " $[\delta(\text{Ph}_4\text{M}) + n \times (\Delta\delta/4)] - \delta^{n}$ (in parentheses)

M	$Ph_{A}M$	$Ph_3M(p-Tol)$	$Ph_2M(p-Tol)$,	$PhM(p-Tol)_2$	$M(p-Tol)a$	$\Delta\delta/4$
S_1	-13.98	-14.29	-14.36	-14.42	-14.55	-0.1425
		(0.168)	(0.095)	(0.013)		
Sn	-128.1	-129.1	-127.7	-126.1	-124.6	$+0.875$
		(1.88)	(1.4)	(0.63)		
Pb	-179.0	-179.5	-176.3	-174.0	-171.3	$+1.925$
		(2.43)	(1.15)	(0.78)		

'Sum of inductive contribution and "difference of the basic populations of the LUMOs".

 h Excess population of the LUMOs (Fig. 4).

Fig. 3. ^{13}C -ipso NMR chemical shifts for the four series $Ph_{4-n}M(p-Tol)$, $(M = Si, Ge, Sn, Pb \text{ and } n = 0-4)$. Phenyl signals : full lines ; p-tolyl signals : broken lines.

central atom along the bonding σ -orbitals. The contribution per group is $\Delta\delta/4$ [$\Delta\delta$ = $\delta(\text{Ph}_4\text{M})-\delta(\text{M}(p\text{-Tol})_4)$; cf. Table 4]. The difference $\Delta\delta$ is negative for M = Si and positive for $M =$ Sn and Pb, and corresponds to the change of symmetry of the $MC₄$ backbone (see above). This parallelism confirms the assumption that the bonding σ -orbitals achieve the main control of $\Delta\delta$. Only a minor contribution arises from the difference of the basic population of the LUMOs (see below).

²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb *NMR*: π -Lewis acidity

The quadratic term " $(n-2)^2 * a$ " represents a charge flow between the aromatic groups. The flow is possible via the formally unoccupied σ^* -orbitals (LUMOs) of the group 14 elements, " π -Lewis acidity" by population with charge from the aromatic groups. To demonstrate the validity of such a model, a semi-empirical calculation of the molecular orbital energies of the 20 compounds was performed (Fig. 4, Table 6). In the case of $M = Si$, the LUMO is slightly antibonding. For $M = Ge$, Sn and Pb, the LUMO is within the bonding region, and a population with charge has a stabilizing effect.[†] Figure 5 shows the excess population of the LUMOs with charge in $Ph_3M(p-Tol)$, $Ph_2M(p-Tol)$ Tol), and PhM(p -Tol), for M = Si, Sn and Pb in addition to the basic population in $Ph₄M$.

NMR high-field shifts qf aromatic-substituted group 14 *elements*

All NMR signals of the central atom M in MAryl, compounds are shifted considerably upfield

Fig. 4. Semi-empirical calculated LUMO energies of $Ph_{4-n}M(p-Tol)_n$, versus n.†

in comparison with the related signals of the MAlkyl, compounds (Table 7). The only exception is the 13C NMR chemical shift of the compound Ph_4C :²⁶ carbon four times in a short distance to the deshielding "side-on" position of the aromatic ring current. In the literature, $27-31$ the upfield shifts of M in MAryl, are not explained.

The above-considered π -Lewis acidity of M results necessarily in the upfield shifts seen in Table 7. Two demands are necessary to populate the LUMO of M : firstly, a low energy of this LUMO and, secondly, the presence of a "moveable" charge in the substituent. The positions of the LUMOs of the compounds of Table 7 have been obtained from semi-empirical calculations. Their relative orders are visualized in Fig. 6. Except for $M = Pb$, the charge donating power of the aromatic substituents is enhanced by the lower LUMO of the MAryl, compounds. The methyl substituent has a stronger charge-donating capability (the so-called "hyperconjugation") 32 than the ethyl substituent. Accordingly, the MEt_4 signals are always shifted downfield, despite the lower position of the LUMOs of MEt₄.

EXPERIMENTAL

Syntheses

Table 8 gives an overview of the Grignard reactions for the mixed germanium and lead compounds. For the syntheses of the homogeneous compounds MAr_4 see refs 34–37 for silicon, germanium, tin and lead, respectively.

X-ray structure determination

Table 9 contains crystallographic data and structure determination details. Crystals of $Ph_3Sn(p-$ Tol) were obtained by very slow evaporation of a CHCl, solution. Only crystals of small size had adequate quality for structure determination. The

tThe unexpected fact that the calculated LUMO energies for the germanium compounds are lower than the corresponding silicon, tin and lead energies may be the consequence of the incorrectly predicted ground state of the germanium atom by the PM3 method to be $4s¹4p³$ and not $4s^24p^2.^{5b,43}$

		$n =$						
М		Ω		2	3	4		
Si	LUMO	0.15	0.18	0.19	0.20	0.22		
	HOMO	-9.45	-9.24	-9.19	-9.18	-9.17		
Ge	LUMO	-0.39	-0.37	-0.35	-0.37	-0.32		
	HOMO	-9.59	-9.35	-9.31	-9.29	-9.28		
Sn	LUMO	-0.30	-0.27	-0.24	-0.21	-0.19		
	HOMO	-9.66	-9.46	-9.46	-9.46	-9.45		
Pb	LUMO	-0.20	-0.18	-0.16	-0.15	-0.13		
	HOMO	-9.59	-9.36	-9.34	-9.31	-9.33		

Table 6. Semi-empirically calculated HOMO and LUMO energies (eV) for the series $Ph_{4-n}M(p-Tol)_n$

Fig. 5. Excess populations of the LUMOs with charge in $Ph_3M(p-Tol)$, $Ph_2M(p-Tol)$ ₂ and $PhM(p-Tol)$ ₃ for $M = Si$, Sn, Pb in addition to the basic population of $Ph₄M$ in units of relative NMR chemical shifts {scaled on $\delta[\text{Ph}_2^{29}\text{Si}(p\text{-Tol})_2] = 1$ to obtain comparability, values from Table 4 .

Fig. 6. LUMO energies of MAlkyl₄ and MAryl₄ compounds.

Table 7. Heteronuclear NMR chemical shifts $[\delta$ (ppm)] and semi-empirically calculated LUMO energies (eV)

М		MMe ₄	MEt_4	MPh	$M(p-Tol)a$
13 C	δ	$+28.0^{33}$	$+37.1^{33}$	$+65.0^{26}$	
	LUMO	$+3.63$	$+3.33$	$+0.30$	$+0.22$
^{29}Si	δ	Ω	$+8.4^{27}$	-13.98	-14.55
	LUMO	$+1.06$	$+0.82$	$+0.15$	$+0.22$
73 Ge	δ^{28}	Ω	$+17.3$	-31.6	
	LUMO	$+0.33$	$+0.18$	-0.39	-0.32
119 Sn	δ	0	$+1.4^{27}$	-128.1	-124.6
	LUMO	$+0.11$	$+0.03$	-0.30	-0.19
207Pb	δ	0	$+71.9^{31}$	-179.0	-171.3
	LUMO	$\mathbf{0}$	-0.11	-0.20	-0.13

experimental density was determined by flotation in direct methods and treated anisotropically. Hydroan aqueous polytungstate solution. Single crystals gen atoms were treated as riding isotropically (joint were fixed in capillaries for crystallographic inves- U values for the aromatic hydrogen atoms and for tigations by the Weissenberg method and for the the three methyl hydrogen atoms, respectively). All collection of the intensity data. Only small amounts calculations were performed at the Zentrum fur of adhesive were used to enable face indexing. The Datenverarbeitung der Universitat Mainz (VAX tin atom and all carbon positions were found by cluster) with SHELX-76, SHELX-86 42 and local

Table 8. Experimental data for the syntheses of the germanium and lead compounds via Grignard reaction and analytical results

Table 8. Experimental data for the syntheses of the germanium and lead compounds via Grignard reaction and analytical results

"Cand H values were determined in the Institut für Organische Chemie Universität Mainz with a CHN analyser 240 (Perkin–Elmer).
"Cand H values were determined in the Institut für Organische Chemie Universität Mainz with a C *C and H values were determined in the Institut fur Organische Chemie Universitat Mainz with a CHN analyser 240 (Perkin-Elmer).

No melting point given in the literature;^{38,39} compound contaminated with $Ge_2(p-T0)_6$.

No melting point given in the literature ;^{38,39} compound contaminated with $Ge_2(p-101)$

Table 9. Crystallographic data for $Ph_2Sn(p-TOI)$ and structure determination details

programs. Tables of the SHELX input, of final coordinates and thermal parameters, a complete list of bond lengths, bond angles and torsion angles, and a list of $F_{\rm o}/F_{\rm c}$ values have been deposited as supplementary material with the Editor. from whom copies may be obtained.

NMR spectroscopy

A Bruker WP/80 DS spectrometer with DEPT pulse sequence at 30° C was used. Frequencies : 13 C at 20.15 MHz, ²⁹Si at 15.92 MHz, ¹¹⁹Sn at 29.88 MHz and ²⁰⁷Pb at 16.74 MHz. External standards: $(CH₃)₄Si$, $(CH₃)₄Sn$ and $(CH₃)₄Pb$. Concentration : 100-400 mg of compound/3 $cm³$ CDCl₃ (Aldrich No. 15, 182-3).

Mössbauer spectroscopy

Mössbauer effect spectra were obtained on a conventional constant-acceleration spectrometer that utilized a room temperature $Ca^{119m}SnO_3$ source and a liquid nitrogen cryostat equipped with a variable temperature insert. Spectra were recorded at 80 K.

IR and Raman spectroscopy

FT-IR were recorded using a Galaxy 2030 spectrometer (Mattson); $4000-200$ cm⁻¹, CsI pellets. Raman spectra were recorded using a SPEX 1403 spectrometer ; excitation with an He/Ne laser at 633 nm or with a krypton laser at 647 nm; microcrystalline samples in capillaries.

Semi-empirical calculations

All calculations were performed using the MOPAC 6.0 program package on IBM RISC/6000 equipment. The orbital energies have been determined by the use of the PM3 method.^{43,44} The molecular geometry was optimized starting from known or closely related crystal structures.

Acknowledgements-We are grateful for financial assistance from the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, Germany, the CNR, Rome, Italy, and the Fonds der Chemischen Industrie. Frankfurt/Main, Germany.

REFERENCES

- 1. C. Schneider-Koglin, B. Mathiasch and M. Dräger *J. Organomet. Chem.* 1994, 469, 25.
- 2. H.-J. Koglin, K. Behrends and M. Dräger, Organ *ometallics 1994,* 13, 2133.
- 3. U. Kolb, M. Beuter and M. Drager, *Inorg. Chcm. 1994,33,4522.*
- 4. M. Charissé, M. Mathes, D. Simon and M. Dräger, *J. Organomet. Chem. 1993,445, 39.*
- 5. J. E. Huheey, E. A. Keiter and R. L. Keiter, *Inorganic Chemistry, Principles of Structure and Reactivity, 4th* edn. Harper Collins, New York (1993) ; (a) pp. 187 and 884; (b) p. 24.
- E. Brau, R. Falke, A. Ellner, M. Beuter, U. Kolb and M. Drager, *Polyhedron 1994, 13, 365.*
- M. Charisse, V. Gauthey and M. Drager, *J. Organomet. Chem. 1993, 448, 47.*
- *N.* Kleiner and M. Drager, *J. Organomet. Chem. 1985,293, 323.*
- A. Robbins, G. A. Jeffrey, J. P. Chesick, J. Donohue, F. A. Cotton, B. A. Frenz and C. A. Murillo, *Acta Cryst. 1975, B31, 2395.*
- IO. V. Gruhnert, A. Kirfel, G. Will, F. Wallrafen and K. Reeker, Z. *Krist. 1983, 163, 53.*
- 11. M. Charissé, S. Roller and M. Dräger, *J. Organomet Chem. 1992,427,23.*
- 12. P. C. Chieh, *J.* Chem. Sot. *(A)* 1971, 3243.
- 13. A. Karipides and D. A. Haller, *Acta Cryst. 1972, B28,2889.*
- 14. V. K. Belsky, A. A. Simonenko, V. O. Reikhsfel and I. P. Saratov, *J. Organomet. Chem. 1983, 244, 125.*
- 15. A. Karipides and K. Wolfe, *Acta Crvst. 1975, B31, 605.*
- 16. V. Busetti, M. Mammi, A. Signor and A. Del Pra, *Inorg. Chim. Acta 1967,* 1, *424.*
- 17. *C.* Schneider and M. Drager, *J. Organomet.* Chem. 1991) 415, 349.
- 18. J. A. Pople and D. P. Santry, Moles. *Phys. 1964, 8,*
- 19. D. W. Allen, J. S. Brooks and R. Formstone, *J. Organomet. Chem. 1972, 172, 299.*
- 20. *G.* M. Bancroft, *Miisshauer Spectroscop_v,* pp. 72 and 241. McGraw-Hill, London (1973).
- 21. R. D. Kross and V. A. Fassel, *J. Am. Chem. Sot. 1955, 77, 5858* ; E. F. Mooney, *Spectrochim. Acta 1964, 20,* 1343; D. H. Brown, A. Mohammed and D. W. A. Sharp, *Spectrochim. Acta 1965,21,659* ; A. L. Smith, *Spectrochim. Acta 1968, 24A, 695;* K. M.

Mackay, D. B. Sowerby and W. C. Young, *Spectrochim. Acta 1968, 24A, 611* ; J. H. S. Green, *Spectrochim. Acta 1970,26A, 1503* ; M. E. Bishop, C. D. Schaeffer Jr and J. J. Zuckerman, *Spectrochim. Acta* 1976, 32A, 1519; M. Dräger and L. Ross, Z. *Anorg. Allg. Chem. 1980, 207, 460* ; F. Hdfler. *Monatsh. Chem. 1976, 107, 705, 893.*

- 22. D. H. Whiffen, *J. Chem. Sot. 1956,47. 1350.*
- 23. A. Stojiljkovic and D. H. Whiffen, *Spectrochim. Acta 1958, 12, 47.*
- 24. *C.* A. Hunter and J. K. M. Sanders, *J. Am. Chem. Sot. 1990, 112, 5525.*
- 25. A. Karipides, C. Forman, R. H. P. Thomas and A. T. Reed, *Inorg.* Chem. 1974, 13, 811.
- *26.* T. N. Mitchell, *J. Organomet. Chem. 1983, 255, 219.*
- *27.* R. K. Harris, J. D. Kennedy and W. McFarlane, in *NMR and the Periodic Table* (Edited by R. K. Harris and B. E. Mann), p. 309. Academic Press, London (1978).
- 28. J. D. Kennedy and W. McFarlane, in *Multinuclea NMR* (Edited by J. Mason), p. 305. Plenum Press. New York (1987).
- *29.* E. A. Williams, in *The Chemistry of Organic Silicon Compounds,* Part 1 (Edited by S. Patai and Z. Rappoport), p. 511. John Wiley, Chichester (1989).
- *30.* B. Wrackmeyer, *Ann. Rep. NMR Spectrosc. 1985, 16, 13.*
- 31. B. Wrackmeyer and K. Horchler, *Ann. Rep. NM1 Spectrosc. 1989, 22, 249.*
- *32.* J. March, *Adt'anced Organic Chemistrv.* 4th edn, p. 68. John Wiley, New York (1992).
- 33. L. P. Lindeman and J. Q. Adams, *Analyt. Chem. 1971,43, 1245.*
- *34.* Gmelin, *Handbook of Inorganic and Organometallic Chemistry, Organische Silicium- Verbindungen,* Teil C, 8th edn. Springer, Berlin (1958).
- *35.* Gmelin, *Handbook of Inorganic and Organometallic Chemistry, Organogermanium Compounds,* Part 3, 8th edn. Springer, Berlin (1990).
- 36. Gmelin, *Handbook of Inorganic and Organometall Chemistry, Zinnorganische Verbindungen,* Teil 1, 8th edn. Springer, Berlin (1975).
- *31.* Gmelin, *Handbook of Inorganic and Organometallic Chemistry, Organolead Compounds,* Part 3, 8th edn. Springer, Berlin (1992).
- *38.* W. R. Orndorff, D. L. Tabern and L. M. Dennis, *J. Am. Chem. Sot. 1927,49,2512.*
- *39.* R. Schwarz and M. Lewinsohn, *Ber. Dtsch.* Chem. Ges. 1931, 64, 2352.
- *40.* E. Krause and M. Schmitz, *Ber. Dtsch. Chem. Ges. 1919, 52, 2165;* F. B. Kipping, *J. Chem. Sot.* 1928, 2365.
- 41. P. R. Austin, *J. Am. Chem. Sot. 1932, 54, 3726.*
- 42. *G.* Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge, U.K. (1976) ; SHELX-86, Göttingen (1986).
- *43.* J. J. P. Stewart, *J. Comput. Chem. 1991, 12, 320.*
- *44.* J. J. P. Stewart, *J. Comput. Chem. 1989,* 10, 221.