

0277-5387(95)00006-2

COMMUNICATION

NEW COMPOUNDS WITH NASICON-RELATED STRUCTURES OF THE TYPE NaM'M"P₃O₁₂ (M' = Nb, Sb; M'' = Al, Ga, In, Fe)

FRANK J. BERRY* and MUGA VITHAL

Department of Chemistry, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.

(Received 13 September 1994; accepted 14 December 1994)

Abstract—New compounds of composition NaM'M"P₃O₁₂ (M' = Nb, Sb; M" = Al, Ga, In, Fe) with structures related to that of the fast ion conductor called "NASICON" have been prepared. The X-ray powder diffraction data are presented and the variation in the lattice parameters as aluminium in NaNbAlP₃O₁₂ is replaced by larger gallium, indium and iron ions is discussed. The lattice parameters and the resistivities of the compounds are indicative of the occupation by Na⁺ of only the Type I sites.

Compounds of composition $AM_2^{IV}P_3O_{12}$ have structures which involve the corner sharing of PO₄ tetrahedra with MO₆ octahedra thereby producing a three-dimensional linked channel network in which the A ions can be located.¹⁴ The A ions can occupy two different types of sites within the channels.³ The Type I sites have a distorted octahedral coordination and are situated between two MO_6 octahedra along the *c* axis to produce ribbons of O₃MO₃AO₃MO₃. The Type II sites are larger with eight to ten co-ordinating oxygen ions and are located between the ribbons. The structure is amenable to substitution on the A, M or phosphorus sites and a wide range of isostructural materials can be formed. The occupancy of the Type I and II sites can also be varied from four to zero. For example, the compound Na₃Zr₂Si₂PO₁₂ which is called NASICON has sodium ions in both Type I and II sites and has attracted considerable interest because of its high sodium-ion mobility.^{1,2}

We report here on the preparation and char-

acterisation of new compounds of the type $AM'^{\nu}M''^{\mu\nu}P_3O_{12}$.

EXPERIMENTAL

Compounds of composition $NaM'M''P_3O_{12}$ (M' = Nb, Sb; M" = Al, Ga, In, Fe) were prepared by sequential heating of well ground appropriate stoichiometric mixtures of NaNO₃; Nb₂O₅ or Sb₂O₅; Al₂O₃, Ga₂O₃, In₂O₃ or Fe₂O₃; and NH₄H₂PO₄ at 500 C (6 h), 800 C (14 h), and at 1000°C (5 h). Compounds where M" = Ga and In required treatment at 1000°C for 16 h to achieve monophasic composition.

X-ray powder diffraction data were recorded with a Siemens D5000 diffractometer using $Cu-K_{\alpha}$ radiation. ⁵⁷Fe Mössbauer spectra were recorded with a microprocessor-controlled Mössbauer spectrometer using a ⁵⁷Co—Rh source. The drive velocity was calibrated with a ⁵⁷Co—Rh source and a natural iron foil. All the spectra were computer fitted. The ⁵⁷Fe Mössbauer chemical isomer shift data are quoted relative to metallic iron. Resistivity measurements were recorded with an EG and G

^{*}Author to whom correspondence should be addressed.

Communication

Princeton Potentiostat Model 273A. Pellets of 2 mm thickness were prepared in a KBr press and the conductivity measured using platinum wire electrodes.

RESULTS AND DISCUSSION

The formation of monophasic compounds of composition NaM'M"P₃O₁₂ (M' = Nb, Sb; M" = Al, Ga, In, Fe) was confirmed by X-ray powder diffraction. The X-ray powder diffraction data for NaNbAlP₃O₁₂ are contained in Table 1. The ⁵⁷Fe Mössbauer spectrum recorded from NaNbFeP₃O₁₂ (δ 0.35 mm s⁻¹, Δ 0.96 mm s⁻¹) confirmed the occupation by Fe³⁺ of the octahedral structural site in NaNbFeP₃O₁₂. The lattice parameters for compounds of the type NaNbM"P₃O₁₂ (M = Al, Ga, In, Fe) are shown in Table 2. The systematic increase in lattice parameters is a reflection of the increasing size⁵ of the M" ion as Al³⁺ (r = 0.51 Å) is replaced by Ga³⁺ (r = 0.62 Å), Fe³⁺

Table 1. X-ray powder diffraction data for NaNbAlP₃O₁₂

h k l	$d_{ m obs}$ (Å)	$d_{\rm cal}$ (Å)
1 0 2	6.099	6.097
1 0 4	4.377	4.377
1 1 0	4.248	4.248
1 1 3	3.665	3.666
2 0 4	3.046	3.048
116	2.758	2.759
1 0 8	2.552	2.553
2 1 4	2.475	2.476
3 0 0	2.452	2.452
2 0 8	2.189	2.188
119	2.103	2.103
2 1 7	2.071	2.073
2 2 3	2.040	2.038
3 0 6	2.030	2.032
3 1 2		2.005
2 1 8	1.945	1.945
3 1 4	1.911	1.910
2 0 10	1.869	1.874
2 2 6	1.833	1.833
4 0 2	1.813	1.814
2 1 10	1.715	1.715
317		1.706
1 1 12	1.668	1.669
3 1 8	1.632	1.633
324	1.611	1.612
4 1 0	1.605	1.605
3 2 5	1.576	1.574
4 1 3	1.566	1.567
4 0 8	1.524	1.524
3 1 10	1.489	1.489

Table 2. Lattice parameters for compounds of the type $NaM'M''P_3O_{12}$ (M' = Nb, Sb; M'' = Al, Ga, In, Fe)

Μ″	$a = b \pm 0.01 \text{ Å}$	с <u>+</u> 0.01 Å
M' = Nb		
Al	8.49	21.78
Ga	8.54	21.98
In	8.65	22.62
Fe	8.61	22.11
M'' = Sb		
Al	8.29	21.87
Ga	8.29	22.12
In	8.34	23.08
Fe	8.38	22.22

(r = 0.64 Å) and $\ln^{3+} (r = 0.81 \text{ Å})$. This is depicted in Fig. 1 which shows the increase in the *c* lattice parameter to exceed that of the *a* and *b* lattice parameters. The trend is similar to that recently observed^{6.7} when the structurally related Nb^vTi^{Iv}P₃O₁₂ phases, which contain empty Type I and Type II sites, were reacted with iron and tin. The results were interpreted in terms of the incor-

Fig. 1. Variation in lattice parameters for compounds of the type $NaNbM''P_3O_{12}$ (M'' = Al, Ga, In, Fe).

poration of the large Fe²⁺ and Sn²⁺ ions in the Type I sites with concomitant reduction of niobium in the host structure. We envisage that in materials of the type NaNb^vM"^{III}P₃O₁₂ the small sodium ions, which maintain electrical neutrality in the phases, are also located in the octahedral Type I sites as opposed to being distributed over both the Type I and Type II sites as in NASICON. The preliminary measurement of the resistivities of compounds of the type NaNbM"P₃O₁₂ recorded from pelleted samples were found to be $>10^8$ ohms at 298 K which contrasts with the fast sodium ion conduction properties of NASICON. We also associate this with the structural evidence for the occupation by sodium of only the Type I sites in NaNbM" P_3O_{12} .

Compounds of the type NaSbM" P_3O_{12} were similar. The lattice parameters (Table 2) showed similar variations according to the size of the M" ion.

Hence new compounds of the type NaM'M"P₃O₁₂ (M' = Nb, Sb; M" = Al, Ga, In, Fe) with NASICON type structures have been prepared. It appears however that, in contrast with NASICON, the small sodium ions are incorporated

only within the octahedral Type I sites and that this influences the ionic conduction properties of the materials.

Acknowledgement—We thank the EEC for the award of a Fellowship (MV).

REFERENCES

- 1. P. Hagenmuller and W. van Gool (Eds), *Solid Electrolytes*. Academic Press, New York (1978).
- P. Vashista, J. N. Mundy and G. K. Shenoy (Eds), Fast Ion Transport in Solid Electrodes and Electrolytes. North Holland, New York (1979).
- 3. L. O. Hagman and P. Kierkegaard, *Acta Chem. Scand.* 1968, **22**, 1822.
- 4. R. Masse, A. Durif, J. C. Guitel and I. Tordjman, Bull. Soc. Fr. Mineral. Cristallogr. 1972, 95, 47.
- 5. R. C. Weast (Ed.), *Handbook of Chemistry and Physics*, 53rd Edn. The Chemical Rubber Co., Ohio (1973).
- G. V. Subba Rao, U. V. Varadaraju, K. A. Thomas and B. Sivasankar, J. Solid State Chem. 1987, 70, 101.
- F. J. Berry, C. Greaves and J. F. Marco, *J Solid State Chem.* 1993, 96, 408.