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Abstract—The preparations and structures of four new mixed chloro-tertiary phosphine
complexes 1, 3-5 of molybdenum(I11) are reported, as well as the structure of two previously

known Mo

complexes 2, 6 and the structure of an [MoClg]*~ compound 7. These results

are discussed along with data for other such compounds.

Relatively few complexes of molybdenum(I1I) con-
taining chloride ions and tertiary phosphines have
been structurally characterized. In the course of
a synthetic program having other goals, we have
chanced to make and identify by X-ray crys-
tallography several such compounds. In this paper
we report the syntheses and structures, as well as
comparisons with other structural data on com-
pounds of this type. Also included is one Mo"
compound, namely, [PCIMe,Ph],[MoCl].

EXPERIMENTAL
The compounds MoCl,(CH;CN,),! MoCl,
(THF),.  [PPh,[MoCl(THF),’ and [PPh,]

[MoCl,(PMe,Ph).]* were prepared according to
literature procedures. All manipulations were
carried out in an argon atmosphere.

Preparation of [PPh,][MoCl,(PMePh,)] (1)

The method is similar to that used to prepare the
PMe,Ph analogue.” To a solution of [PPh,][MoCl,
(THF),] (0.2 g, 0.28 mmol) in dichloromethane
(15 cm®) was added PMePh, (0.26 cm?, 1.4 mmol)
and the mixture was refluxed for 12 h. After cooling
to room temperature, the mixture was concentrated
in vacuo to ca 8 cm® and then 30 cm? of ether was

* Author to whom correspondence should be addressed.

added to give a vyellow solid, [PPh,[MoCl,
(PMePh,),]. The compound was washed with ether,
filtered, vacuum dried and then recrystallized from
CH.CI, with ether. Yield 0.19 g, 69%.

Preparation of [PPh,][MoCl,(PEt;)] (3)

To a slurry of MoCI(THF), (0.58 g, 1.52 mmol)
in dichloromethane (10 cm?) was added (0.7 cm’,
4.74 mmol) PEt; and the mixture stirred for 1 h.
The red homogeneous solution thus obtained was
filtered and then treated with PPh,Br (0.96 g, 2.26
mmol). The solution turned dark brown. It was
reduced to half its volume and then treated with 20
cm’ of ether to give the bright yellow powder of 3.
This was washed with 4 x 20 cm’® of ether, vacuum
dried and recrystallized from CH,Cl,/hexane. Yield
1.05 g, 85%.

Preparation of [PHEt,Ph][MoCl,(PEt,Ph),]- C;H,,
4)

To a slurry of MoCL(THF), (0.3 g, 0.79 mmol)
in dichloromethane (10 cm®) was added PEt,Ph
(0.31 ¢cm?, 1.57 mmol) and the mixture stirred at
room temperature for 1 h to give a red homo-
geneous solution. The red solution was filtered and
layered with hexane. As this did not lead to the
formation of any crystals, the solvents were
removed in vacuo to leave behind an oily residue.
This was dissolved in benzene (25 cm®) and layered
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with hexane, which led to the formation of a few
crystals of compound 4. Yield <5%.

Preparation of [PHMe,Ph],[MoCI;PMe,Ph] (5)

A mixture of MoCL(THF), (0.25 g, 0.65 mmol),
PMe,Ph (0.18 g, 1.3 mmol) and CH,Cl, (30 cm?)
was stirred at room temperature, filtered and then
layered with hexane. After complete diffusion of
solvents an oily residue was obtained. The Schlenk
tube was placed in the refrigerator. After 1 month,
a few needle-like crystals of 5 were obtained.

Preparation of MoCl,(CH;CN)(PEtPh,),- C,H, (6)

To a slurry of MoCL(CH,CN), (0.5 g, 1.3 mmol)
indichloromethane (10 cm®) was added PEtPh, (0.6
cm?®, 2.6 mmol) and the mixture stirred at room
temperature for ca 2 h. The resulting red solution
was filtered and then evaporated in vacuo. The resi-
due was redissolved in benzene and this solution
layered with hexane. A few crystals of 6 were
obtained.

Preparation of [PCIMe,Ph],[MoCl] (7)

Our attempts to synthesize MoCl,(PMe,Ph). by
oxidizing Mo(CO),(PMe,Ph), with chlorine, as
reported in the literature,? have led to the formation
of red solid 7. Mo(CO),(PMe,Ph), was obtained as
a white powder by refluxing a mixture of Mo(CO),
(1 g), NaBH, (0.39 g), PMe,Ph (1.1 cm?) and EtOH
(20 cm®) for 5 h and then allowing it to cool to
room temperature.® The white powder was washed
with water and EtOH.

X-ray crystallography

A crystal of each of the compounds 1-7 was
mounted on the end of a glass fiber and covered
with epoxy glue. Pertinent crystallographic data are
given in Table 1. Geometric and intensity data were
gathered with an automated diffractometer (as
given in Table 1) by following procedures described
previously.” Lattice dimensions and Laue symmetry
were verified by axial photography. Intensity data,
gathered by the 26—w method, were reduced by
routine procedures.® Absorption corrections were
applied, based on azimuthal scans of several reflec-
tions with the diffractometer angle ¥ near 90°.7 In
the case of compound 3, an additional correction
was applied for the average decay of 11% observed
in the three periodically monitored standard reflec-
tions during the 106 h of data collection. The choice
of space group from systematic absences, for each
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compound except 2, was unambiguous. For 2, suc-
cessful refinement justified C2/c rather than Ce.

The molybdenum, chlorine and phosphorus
atoms were located via Patterson maps for almost
all the seven compounds. In some cases, the entire
structure was found from Patterson maps. The total
structure (if not found) was developed by an alt-
ering sequence of least-square refinements and
difference Fourier maps. Selected bond distances
and bond angles are given in Tables 2-8. Tables of
positional parameters have been deposited with the
Editor as supplementary material.

[PPh,][MoCl,(PM¢Ph,),] (1). Two independent
trans anions, [MoCl,P,]™, residing on inversion
centres were found in the asymmetric unit. The
hydrogen atoms, found from the difference Fourier
maps, were refined isotropically but with fixed B
values. The principal bond lengths and angles are
given in Table 2 and a drawing of the anion in
Fig. 1.

{[PPh,][MoCl,(PMe,Ph),] (2). The trans anion
was found to reside on a crystallographic twofold
axis. The hydrogen atoms were refined isotropically
with their thermal displacement parameters con-
strained to the same value. The principal bond
lengths and angles are given in Table 3, and a
drawing of the anion in Fig. 1.

{PPh,][MoCl,(PEt;),] (3). The trans anion sits on
a general position. Terminal carbons of the PEt,
groups have large thermal parameters, indicating a
large freedom of motion. In fact, one terminal car-
bon is disordered over two sites, C(6) and C(6)".
The restraints imposed on the thermal parameters
of hydrogen atoms in the refinement are similar to
those for compound 2. The principal bond lengths
and angles are given in Table 4, and a drawing of
the anion in Fig. 1.

[PHE,Ph][MoCl,(PEt,Ph),] - C¢H, (4). The cis
anion sits on a general position. The solvent
molecule, n-hexane, was found on an inversion cen-
tre with the carbon atom C(32) disordered over two
sites. The principal bond lengths and angles are
given in Table 5, and a drawing of the anion in
Fig. 1.

[PHMe,Ph],[MoClsPMe,Ph] (5). The anion sits
on a general position. The constraints used on the
B values of hydrogen atoms are similar to those for
2. The principal bond lengths and angles are given
in Table 6, and a drawing of the anion in Fig. 2.

MoCL(CH,CN)(PEtPh,),- C.H, (6). The mol-
ecule sits on a general position and the solvent
molecule, benzene, on an inversion centre. Con-
straints on the B values of hydrogen atoms are
similar to those for 2. The principal bond lengths
and angles are given in Table 7, and a drawing of
the anion in Fig. 3.
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Table 2. Selected bond distances (A) and angles (*) for [PPh,][MoCL(PMePh.),] (1)
Mo (1)—ClI(1) 2.434(1) P(1)—C(1) 1.824(5) P(3)—C(27) 1.786(5)
Mo(1)—Cl(2) 2.429(1) P(1)—C(7) 1.834(4) P(3)—C(33) 1.798(5)
Mo(1)—P(1) 2.591(1) P(1)—C(13) 1.821(5) P(3)—C(39) 1.798(5)
Mo(2)—ClI(3) 2.421(1) P(2)—C(14) 1.826(6) P(3)—C(45) 1.798(4)
Mo (2)—Cl(4) 2.438(1) P(2)—C(20) 1.825(4)
Mo (2)—P(2) 2.589(1) P(2)—C(206) 1.815(6)
Cl(1H)—Mo(1)—CK2) 89.90(5) Mo(1)—P(1H—C(13)  111.0(2) C(14)—P(2)—C(26) 103.5(3)
Cl(1)—Mo(1)—P(1) 87.32(4) C(H)—P(1)—C(7) 101.4(2) C(20)—P(2)—C(26) 104.0(2)
Cl(2)—Mo(1)—P(1) 88.19(4) C(H)—P(1)—C(13) 104.9(2) C(27y—P(3)—C(33) 107.1(2)
Cl(3)—Mo(2)—Cl(4) 90.90(5) C(7)—P(1)—C(13) 99.7(2) C(27H—P(3)—C(39) 112.0(2)
Cl(3)—Mo(2)—P(2) 93.94(4) Mo(2)—P(2)—C(14)  116.5Q2) CQ7)—P3)—C@45)  110.8(2)
Cl(4)—Mo(2)—P(2) 90.08(4) Mo(2)—P(2)—C(20) 118.3(2) C(33)—P(3)—C(39) 109.7(2)
Mo(1)—P(1)—C(1) 117.7(1) Mo(2)—P(2)—C(26) 112.1(2) C(33)—P(3)—C(45) 111.0(2)
Mo(1)—P(1)—C(7) 119.7(2) C(14)—P(2)—C(20) 100.4(2) C(39)—P(3)—C(45) 106.4(2)

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table 3. Selected bond distances (A) and angles () for [PPh,][MoCl,(PMe,Ph),] (2)
Mo—ClI(1) 2.440(1) P(H—C(1) 1.818(3) P(2)—C(%) 1.802(3)
Mo—CI(2) 2.420(1) P(H)—C(7) 1.820(4) P(2)—C(15) 1.805(3)
Mo—P(1) 2.542(1) P(1)—C(8) 1.819(4)
Cl(1)—Mo—CI(2) 89.16(3) Mo—P(1)—C(7) 114.4(1) C(1H)—P(1H—C(8) 102.7(2)
Cl(1)—Mo—P(1) 87.77(3) Mo—P(1)—C(8) 112.3(1) C(9)—P(2)—C(15) 109.3(1)
Cl(2)—Mo—P(1) 94.06(3) C(1)y—P(1)—C(7) 104.7(2)
Mo—P(1)—C(1) 117.1(1) 104.1(2)

C(1)—P(1)—C(8)

Numbers in parentheses are estimated standard deviations in the least significant digits.

[PCIMe,Ph],[MoCl¢] (7). The anion sits on an
inversion centre. Hydrogen atoms at idealized pos-
itions were included in the final structure factor
calculations. The principal bond lengths and angles
are given in Table 8, and a drawing of the anion in
Fig. 4.

RESULTS AND DISCUSSION

Even though a number of workers have reported
various methods®* '  of synthesizing some
MoCl,(PR,), compounds from a variety of starting
materials such as MoCl,(CH;CN),, MoClL(THF),
and Mo(CO),(PR.), no structural characterization
of these compounds has been reported in the litera-
ture. This is probably due to the difficulty of obtain-
ing crystals suitable for X-ray crystallographic
studies. Synthesis of [MoCl,(PMe,Ph),]~ has been
somewhat recently reported.?

Our attempts to crystallize the known com-
pounds MoCl,(PMe,Ph),,* MoCl,(PMePh,)," and
MoCl,(PPh;),"? were not successful. When we
attempted to make MoCl,(PEt;), and MoCl,

(PEt,Ph),, it quickly became apparent that these
two phosphines react with MoCl,(THF), to reduce
the molybdenum from IV to III, thereby forming
compounds containing the [MoCl,(PR;),] ~ ions. For
this reason we introduced PPh,* rather than rely-
ing on the autogenous formation of PHEt;* and
thus obtained a better yield of [MoCl,(PEt;),] .

Synthesis of [PPh,][MoCl,(PR;),] compounds
from [PPh,][MoCl,(THF),] by the method of Hills
et al.? works well for PR; = PMe,Ph, PMePh, but
not for PEt;. The reaction of [PPh,][MoCl,(THF),]
with PEt, gives [Mo,CI,PR,;]*~, as reported else-
where." As the reaction between PEt,Ph and
[PPh,][MoCl,(THF),] showed indications of pro-
ceeding in the same way, we did not bother to
characterize the reaction products.

The compounds 5 and 6 were only minor prod-
ucts of the reactions we used. A better method of
synthesis of 6 is available in the literature.'®

The structures of compounds 1-4 are interesting
chiefly because while the first three have trans-
[MoCl,(PR;),]~ anions, the fourth has a cis struc-
ture. There is no apparent internal reason for this,
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Table 4. Selected bond distances (A} and angles (°) for [PPh,][MoCl,(PEt,),] (3)

Mo—CI(1) 2.452(2) P(1)—C(5) 1.859(13) C(H—C(2) 1.58(2)
Mo—CI(2) 2.441(3) P(2)—C(7) 1.850(12) C(3)—C4) 1.50(2)
Mo—CI(3) 2.434(2) P(2)—C(9) 1.780(15) C(5)—C(6) 1.36(3)
Mo—Cl(4) 2.421(3) P(2)—C(11) 1.844(13) C(5)—C(6)" 1.47(6)
Mo—P(1) 2.574(3) P(3)—C(13) 1.807(8) C(1)—C(8) 1.48(2)
Mo—P(2) 2.560(3) P(3)—C(19) 1.785(8) C(9)—C(10) 1.49(3)
P(H—C(1) 1.851(13) P(3)—C(25) 1.796(7) C(11)—C(12) 1.57(3)
P(1)—C(3) 1.838(12) P(3)—C(31) 1.799(7)

CI(1)—Mo—CI(2) 177.55(9) P(1)>-Mo—P(2) 178.48(9) C(13)—P(3)—C(25) 112.1(4)
CI(1)—Mo—CI(3) 91.25(8) Mo—P(1)—C(1) 111.0(4) C(13)—P(3)—C(31) 111.3(4)
Ci(1)—Mo—Cl4) 89.0(1) Mo—P(1)—C(3) 116.2(4) C(19)—P(3)—C(25) 109.2(4)
Cl(1)—Mo—P(1) 88.95(9) Mo—P(1)—C(5) 116.5(6) C(19)—P(3)—C(31) 109.1(4)
Ci(1)—Mo—P(2) 90.9(1) C(1)—P(1)—C(3) 107.1(7) C(25)—P(3)—C(31) 108.6(4)
Cl(2)—Mo—ClI(3) 90.64(9) C(H)—P(1)—C(5) 103.4(8) P(1)—C(1)—C(2) 115.0(1)
Cl(2)—Mo—Cl(4) 89.1(1) C(3)—P(1)—C(5) 101.4(7) P(1)—C(3)—C4) 110.0(1)
Cl(2)—Mo—P(1) 92.52(9) Mo—P(2)—C(7) 115.8(4) P(1)—C(5)—C(6) 119.0(1)
Cl(2)—Mo—P(2) 87.6(1) Mo—P(2)—C(9) 111.6(6) P(1H—C(5)—C(6)" 117.0(2)
CI(3)—Mo—Cl(4) 178.7(1) Mo—P(2)—C(11) 113.9(5) C(6)—C(5)—C(6)" 94.0(3)
Cl(3)—Mo—P(1) 92.39(9) C(NH—P2)—C©) 106.8(7) P(2)—C(7)—C(8) 114.2(8)
CI(3)—Mo—P(2) 89.13(9) C(1—P2)—C(11) 100.7(6) P(2)—C(9)—C(10) 118.0(2)
Cl(4)—Mo—P(1) 86.4(1) CO)—P2)—C(11) 107.1(9) P(2)—C(11)—C(12) 118.0(1)
Cl(4)—Mo—P(2) 92.1(1) C(13)—P(3)—C(19) 106.5(4)

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table 5. Selected bond distances (A) and angles () for [PHEt,Ph][MoCL(PEt,Ph),] - n-CH,, (4)

Mo—Cl(1) 2.427(4) P(1)—C(3) 1.841(15) P(3)—C(25) 1.806(15)
Mo—Cl(2) 2.450(4) P(1)—C(5) 1.842(14) C(1)—C(2) 1.61(2)
Mo—Cl(3) 2.433(4) P(2)—C(11) 1.850(8) C(3)—C(4) 1.65(2)
Mo—Cl(4) 2.455(4) P(2)—C(13) 1.850(10) C(IH—C(12)  1.51(2)
Mo—P(1) 2.558(4) P(2)—C(15) 1.856(12) C(13)—C(14)  1.50(3)
Mo—P(2) 2.596(4) P(3)—C(21) 1.813(13) C@eN—C(22)  1.50(4)
P(1)—C(1) 1.85(2) P(3)—C(23) 1.82(2) C(23)—C(4)  1.51(4)
Cl(1)—Mo—Cl(2) 90.3(1) Cl(4)—Mo—P(1) 176.8(2) C(1)—P@2)—C(13)  108.6(8)
Cl(1)—Mo—ClI(3) 176.7(2) Cl(4)—Mo—P(2) 86.3(1) C(1)—PQ2)—C(5)  105.4(7)
Cl(1)=Mo—Cl(4) 91.2(1) P(1)>~Mo—P(2) 94.3(1) C(13)—P(2)—C(15)  105.3(6)
Cl(1)—Mo—P(1) 91.9(1) Mo—P(1)—C(1) 110.7(5) CH—P(3)—C(23)  106.5(9)
Cl(1)—Mo—P(2) 86.6(1) Mo—P(1)—C(3) 116.1(6) C2H—P(3)—C(25)  109.7(7)
Cl(2)—Mo—ClI(3) 89.2(1) Mo—P(1)—C(5) 117.0(5) C(23)—P(3)—C(25)  109.0(1)
Cl(2)—Mo—Cl(4) 90.7(2) C(1)—P(1)—C(3) 106.1(8) P(1)—C(1)—C(2) 110.0(1)
Cl(2)—Mo—P(1) 88.9(1) C(1)—P(1)—C(5) 102.2(7) P(1)—C(3)—C(4) 109.0(1)
Cl(2)—Mo—P(2) 175.7(2) C(3)—P(1)—C(5) 103.3(7) PQ)—C(11)—C(12)  116.0(1)
Cl(3)—Mo—Cl(4) 92.1(1) Mo—P(2)—C(11) 107.2(5) P(2)—C(13)—C(14)  111.0(1)
CI(3)—Mo—P(1) 84.8(1) Mo—P(2)—C(13) 113.5(5) P(3)—CQ21H—C(22)  106.0(1)
Cl(3)—Mo—P(2) 94.1(1) Mo—P(2)—C(15) 116.4(4) P(3)—C(23)—C(24)  126.0(2)

Numbers in parentheses are estimated standard deviations in the least significant digits.

and it may well relate to the relative solubilities 2.542-2.574 A and the Mo—Cl distances range
and/or packing forces. In these four compounds, from 2.420 to 2.455 A. Even for the Mo—Cl bonds
there is no distinct indication of differing trans in 4 which are c¢is and trans to the Mo—P bonds,
influences. All Mo—P distances are in the range there is little difference, namely ca 0.02 A. There
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Table 6. Selected bond distances (A) and angles (“) for [PHMe,Ph],[MoCl;PMe,Ph] (5)
Mo—CI(1) 2.456(2) P(I)—C(li 1.829(9) P(2)—H(1) 1.29(9)
Mo—Cl(2) 2.433(2) P(1)—C(2) 1.806(9) P(3)—C(17) 1.781(10)
Mo—CI(3) 2.436(2) P(1)—C(3) 1.821(7) P(3)—C(18) 1.775(10)
Mo—Cl(4) 2.438(2) P(2)—C(9) 1.779(9) P(3)—C(19) 1.798(7)
Mo—CI(5) 2.477(2) P(2)—C(10) 1.773(9) P(3)—H(2) 1.39(8)
Mo—P(1) 2.538(2) P(2)—C(11) 1.777(8)
CI(1)—Mo—Cl1(2) 177.14(7) Cl(3)—Mo—P(1) 88.67(7) C(O)—P2)—C(11) 110.3(4)
Cl(1)—Mo—ClI(3) 88.80(7) Cl(4)—Mo—CI(5) 92.01(7) C(9)—P(2)—H(l) 107.0(4)
CI(1)—Mo—<Cl(4) 90.41(7) Cl(4)—Mo—P(1) 87.54(7) C(10)—P(2)—C(11) 110.8(4)
Cl(1)—Mo—ClI(5) 90.24(7) Cl(5)—Mo—P(1) 175.25(7) C(10)—P(2)—H(1) 112.0(4)
CI(1)—Mo—P(1) 85.04(7) Mo—P(1)—C(1) 113.2(3) C(11)—P(2)—H(1) 108.0(4)
Cl(2)—Mo—CI(3) 90.28(7) Mo—P(1)—C(2) 114.8(3) C(17H)—P(3)—C(18) 110.9(4)
Cl(2)—Mo—Cl(4) 90.33(7) Mo—P(1)—C(3) 118.6(3) C(1H—P(3)—C(19) 110.2(4)
Cl(2)—Mo—ClI(5) 92.50(7) C(H—P(1)—C(2) 101.6(4) C(17—P(3)—H(2) 112.0(4)
Cl(2)—Mo—P(1) 92.23(7) C(1)—P(1)—C(3) 104.5(4) C(18)—P(3)—C(19) 110.0(4)
CI(3)—Mo—Cl(4) 176.18(7) C(2)—P(1)-—C(3) 102.2(4) C(18)—P(3)—H(2) 107.0(3)
Cl(3)—Mo—CI(5) 91.72(7) C(9)—P(2)—C(10) 109.4(4) C(19)—P(3)—H(2) 106.0(3)
Numbers in parentheses are estimated standard deviations in the least significant digits.
Table 7. Selected bond distances (A) and angles (*) for MoCl;(CH,CN)(PEtPh,),* C;H, (6)
Mo—ClI(1) 2.413(1) Mo—N 2.14703) P(2)—C(21) 1.824(4)
Mo—Cl(2) 2.387(1) P(1)—C(1) 1.822(4) P(2)—C(27) 1.838(5)
Mo—CI(3) 2.404(1) P(1)—C(7) 1.830(4) N—C(29) 1.114(5)
Mo—P(1) 2.600(1) P(1)—C(13) 1.846(4) C(29)—C(30) 1.500(7)
Mo—P(2) 2.594(1) P(2)—C(15) 1.836(4)
Cl(1)—Mo—Cl(2) 94.74(4) Cl(3)—Mo—P(2) 88.65(3) C(7)—P(1)—C(13) 103.0(2)
Cl(1)—Mo—CI(3) 171.06(4) CI(3)—Mo—N 84.98(9) Mo—P(2)—C(15) 118.5(1)
Cl(1)—Mo—P(1) 86.63(3) P(1)—Mo—P(2) 173.95(3) Mo—P(2)—C(21) 111.0(1)
CI(1)—Mo—P(2) 87.53(3) P(1)—-Mo—N 87.63(9) Mo—P(2)—C(27) 115.6(2)
CI(1)>-Mo—N 86.98(9) P(2)—Mo—N 90.52(9) C(15)—P2)—C(21) 102.7(2)
Cl(2)—Mo—ClI(3) 93.52(4) Mo—P(1)—C(1) 110.7(1) C(15)—P(2)—C(27) 103.3(2)
CI(2)—Mo—P(1) 89.04(4) Mo—P(1)—C(7) 120.6(1) C2H)—P(2)—C(27) 104.2(2)
Cl(2)—Mo—P(2) 93.00(4) Mo—P(1)—C(13) 113.6(2) Mo—N—C(29) 175.0(3)
Cl(2)—Mo—N 176.15(9) C(H—P(1H—C(7) 104.2(2) N—C(29)—C(30) 177.8(5)
Cl(3)—Mo—P(1) 96.91(4) C(H)—P(H—C(13) 103.0(2)
Numbers in parentheses are estimated standard deviations in the least significant digits.
Table 8. Selected bond distances (A) and angles () for [PCIMe,Ph], [MoCl{] (7)
Mo—Cl(1) 2.358(1) Cl(4)—P 1.989(2) P—C(8) 1.763(5)
Mo—Cl(2) 2.374(1) P—C(1) 1.780(4)
Mo—ClI(3) 2.398(1) P—C(7) 1.769(5)
Cl(1)—Mo—Cl(2) 90.54(4) Cl(4)—P—C(1) 107.5(2) C(1)—P—C(7) 111.4(2)
ClI(1)—Mo—CI(3) 90.22(4) Cl(4)—P—C(7) 106.9(2) C(1)—P—C(8) 111.2(2)
Cl(2)—Mo—CI(3) 89.98(5) 107.1(2) C(7)—P—C(8) 112.4(2)

Cl(4)—P—C(8)

Numbers in parentheses are estimated standard deviations in the least significant digits.
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can

Fig. 1. ORTEP drawings of [MoCl(PR;)]™
PR, = (a) PMePh,, (b) PMe,Ph, (¢) PEt; and (d) PEt,Ph.
In the case of PEt,, the sizes of the carbon atoms have

been arbitrarily reduced.

ions.

has been a previous report of the *'P NMR spectra

of the anions in 1-4.'°

In the [MoCls(PEtPh,)]” ion the Mo—Cl bond
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Fig. 1. Continued.

trans to the Mo—P bond is 0.036 A longer than the
mean of the four cis Mo—CIl bonds. Again, the
trans influence is very small.

There are several previous compounds con-
taining the [MoCl]’~ ion with which the structure
of compound 7 can be compared. In one the counter
cation is quite similar, namely PPh;C1*."” The two
cations are very similar, having P—Cl and mean
P—C distances of 1.989(2) and 1.771(5) A in the
present case and 1.998(1) and 1.784(1) A in the
PPh;Cl* compound. The previously reported
Mo—Cl distance is 2.3825(5) A."” while in this work
we find 2.377(12) A. The mean of these two results,
2.38 A, can be compared with the Mo—Br distance,
2.532(4) A, found in [PPh;Me],[MoBr,]."® The
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Fig. 2. An ORTEP drawing of the [MoCl;PMe,Ph]~ ion.
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Fig. 3. An ORTEP drawing of the MoCI,(CH,CN)(PEtPh.), molecule. Carbon atoms have been
arbitrarily reduced in size.
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Fig. 4. ORTEP drawing of both (a) the cation and (b)
the anion of the compound [PCIMe,Ph],[MoCl].

difference, 0.15 A, agrees exactly with the difference
in the Br and ClI covalent radii, 0.15 A. One other
interesting comparison is with the mean Mo—Cl
distance in the [MoCl¢]*~ ion,' namely 2.452(7) A.
The observed difference, 0.075(14) A, is appreciably
greater than that expected, 0.04 A, from tabulated
radii for six-coordinate Mo** and Mo*+.%
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