

0277-5387(95)00108-5

Polyhedron Vol. 14, No. 23–24, pp. 3389–3472, 1995 Elsevier Science Ltd Printed in Great Britain 0277–5387/95 59-50-40.00

POLYHEDRON REPORT NUMBER 57

STEREOCHEMICAL ASPECTS OF PHOSPHOR-1,1-DITHIOLATO METAL COMPLEXES (DITHIOPHOSPHATES, DITHIOPHOSPHINATES): COORDINATION PATTERNS, MOLECULAR STRUCTURES AND SUPRAMOLECULAR ASSOCIATIONS—I

IONEL HAIDUC*

Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Coyocan, 04510 Mexico, D.F., Mexico and †Facultatea de Chimie, Universitatea Babes-Bolyai, RO-3400 Cluj-Napoca, Roumania

D. BRYAN SOWERBY*

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

and

SHAO-FANG LU

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R.C.

CONTENTS

A.	IN	TROD	UCTION																	3391
B.	CC	ORDI	NATION	РАТ	TE	RNS	5													3392
C.	SU	PRAM	OLECUL	AR	ASS	SOC	IAT	ГЮ	NS											3394
D.	SI	NGLE .	AND DO	UBL	ΕP	ΉО	SPF	IOF	RUS	S–SU	JLP	HU	RE	BON	DS					3395
E.	PH	OSPHO	ORODITH	1IO/	ATE	ES (I	Л	HIC	OPE	IOS	PH.	ATI	ES)							3397
	1.	Group	1 : Alkali	meta	als. (Othe	er ic	onic	pho	osph	ioro	dio	hio	ates						3397
	2.	Group	2: Alkalir	ne ea	rths	5				•								•		3400
	3.	Group	3 : Sc, Y																	3404
	4.	Group	4: Ti, Zr,	Hf																3404
		a. Tita	.nium .																	3404
		b. Zirc	onium .																	3404
	5.	Group	5: V, Nb,	Та																3405
		a. Van	adium .																	3405
		b. Nio	bium .																	3405
	6.	Group	6: Cr, Mc	5, W																3405
		a. Chr	omium .																	3406
		b. Mo.	lybdenum																	3406
		(i)	Mononuc	clear	con	nple	xes													3406
		(ii)	Binuclear	con	nple	xes														3409
		(iii)	Trinuclea	r co	mpl	exes														3415

* Authors to whom correspondence should be addressed.

† Present address for correspondence.

IONEL HAIDUC et al.

	(iv) Tetranucle	ear c	omj	plex	es							•	•			•		3420
	(v) Heteromet	allic	c mo	olyb	den	um	n ph	ospł	orc	dith	iioa	tes						3422
	c. Tungsten .																	3423
7.	Group 7: Mn, Tc,	Re																3425
8.	Group 8: Fe, Ru,	Os																3425
	a. Iron																	3425
	b. Ruthenium																	3427
	c. Osmium .																	3427
9.	Group 9: Co, Rh,	lr																3427
	a. Cobalt																	3427
	b. Rhodium .																	3429
	c. Iridium .																	3429
10.	Group 10: Ni, Pd	, Pt																3430
	a. Nickel																	3430
	b. Palladium .																	3435
	c. Platinum .																	3435
11.	Group 11: Cu, Ag	g, A1	ı															3436
	a. Copper .	•																3436
	b. Silver																	3438
	c. Gold																	3441
12.	Group 12: Zn, Cd	H_{1}	z															3441
	a. Zinc																	3441
	b. Cadmium .																	3443
	c. Mercury .																	3445
13.	Group 13: Al, Ga	, In,	Τl															3447
14.	Group 14: Si, Ge,	Sn,	Pb															3447
	a. Silicon																	3447
	b. Germanium														•			3447
	c. Tin																	3449
	d. Lead										•							3450
15.	Group 15: As, Sb,	Bi																3453
	a. Arsenic .																	3453
	b. Antimony .																	3454
	c. Bismuth .																	3456
16.	Group 16: Se, Te																	3456
	a. Selenium				-													3456
	b. Tellurium .																	3457
17.	Lanthanides .																	3461

ABBREVIATIONS

Me	methyl
Et	ethyl
Pr	propyl
Bu	butyl
Су	cyclohexyl
Ph	phenyl
Bz	benzyl
Ar	aryl
Mes	mesityl, 2,4,6-Me ₃ C ₆ H ₂ -
phen	1,10-phenathroline
bipy	2,2'-bipyridyl
Ln	lanthanide
THF	tetrahydrofuran
Ру	pyridine
Ac	acetyl
DMSO	dimethylsulphoxide, Me ₂ SO
DMF	dimethylformamide, HC(O)NMe ₂
DMA	dimethylacetamide, MeC(O)NMe ₂
quin	quinoline

diazabicyclooctane, N(CH ₂ CH ₂) ₃ N
tetramethylethylenediamine, Me ₂ NCH ₂ CH ₂ NMe ₂
diphenylethylenediamine, PhHNCH ₂ CH ₂ NHPh
ethylenediamine, H ₂ NCH ₂ CH ₂ NH ₂
$Ph_2AsCH_2CH_2P(=S)Ph_2$
terpyridyl
1,11-diamino-3,6,9-triazaundecane, HN(CH ₂ CH ₂ NHCH ₂ CH ₂ NH ₂) ₂
urotropine, hexamethylenetetramine, $(CH_2)_6N_4$
menthyl
biphenylyl
binaphthyl

A. INTRODUCTION

Organodithio-derivatives of phosphorus have important industrial and agricultural applications, e.g. additives to lubricant oils, solvent extraction reagents for metals, flotation agents for mineral ores, insecticides and pesticides, to name only the major ones. The understanding of the chemistry of their metal derivatives is important in relation with these uses. Pure academic interest is also great, since the broad diversity of compositions and structures of metal compounds of dithiophosphorus ligands illustrates the richness of metal–sulphur bonding interaction modalities and also may serve as models for biological metal–sulphur interactions.

An up-to-date review of the subject is highly desirable, since the last comprehensive surveys covering phosphorodithioates¹ and phosphinodithioates² were published many years ago, and more recent ones cover only particular aspects of the field : main group derivatives,³ tin derivatives.^{4.5} The diversity of coordination patterns was reviewed⁶ in 1981 ; since then many new structures have been determined and even new coordination modes have been discovered.

The continuous interest towards dithiophosphorus ligand metal compounds produced a large volume of literature and a comprehensive coverage, including synthesis, spectroscopic characterization and uses, would require a whole book. Therefore, we will limit ourselves to a discussion of only structural aspects, as an expansion of the earlier review.⁶ Much of the preparative chemistry and spectroscopic information is covered in the references cited here and the reader will have thus a door open to the aspects not discussed in this review. The emphasis will be on the dithiophosphorus ligands, rather than the metal coordination centres, but these will not be completely ignored.

The ligands to be dealt with in this review are mostly mononegative anions of monoprotic acids of the following general types, known under the names shown:

phosphorodithioic acid* dithiophosphoric acid (0,0'diesters)

phosphinodithioic acid* dithiophosphinic acid

phosphonodithioic acid dithiophosphonic acid (O-esters)

Di- and trithiophosphorus ligands derived from diprotic acids as dinegative anions are also possible but few examples of metal complexes or organometallic derivatives are known.

^{*} Chemical Abstracts nomenclature.

Still less important, so far, are the related ligands derived from fluorophosphonodithioic acids (fluorodithiophosphonic acids) R(F)P(S)SH, dihalogenodithiophosphoric acids $X_2P(S)SH$ (X = F, Cl, Br), or amidophosphonodithioic acids R(R'R''N)P(S)SH, and other similar compounds.

This review covers the literature available up to September 1994. The first part will deal with phosphorodithioates (dithiophosphates), and phosphinodithioates, phosphonodithioates and other related complexes (much less investigated) will be treated in Part II. This will also contain the concluding remarks for the whole review. The chapters and subchapters, tables, formulae and literature references will be numbered consecutively, the second part continuing the numbering from Part I.

Our aim was to provide a comprehensive review of the molecular and crystal structure of phosphor-1,1-dithiolato and related complexes, to stress the broad structural diversity and to reveal gaps where new research is possible or needed. We hope that the readers will find new ideas for the synthesis and/or structural investigations of this type of compound. Although it cannot be said that phosphor-1,1-dithiolato ligands were neglected, their versatility has not been fully exploited and can offer a field of fruitful future investigations.

All compounds are numbered in the text and can be found under the same numbers in Tables. Not all structures are graphically illustrated, and this explains the apparent discontinuity in illustrations, but the numbers corresponding to missing structure diagrams can be located in the Tables. The Tables contain much unpublished or difficultly available material from Chinese journals, not listed even in the Cambridge Crystallographic Centre Data Base, and is made available here for the first time. These data were collected from the original publications or were calculated for this review by the Chinese colleagues.

B. COORDINATION PATTERNS

The deprotonation of the acids listed above produces anions which can be described by two resonance structures:

Either one of them can predominate in certain cases. Thus, soft metals tend to interact with hybrid **a** to form primary, covalent metal-sulphur bonds. In these cases the second phosphorus-sulphur bond does not participate in any interaction with the metal (monodentate coordination, pattern 1) and retains double bond character, or may participate in a dative bond (pattern 2) or secondary interaction (pattern 3) with the metal (anisobidentate coordination). This second metal-sulphur connection may affect to a certain extent the double bond character of the P=S bond. In the anisobidentate coordination pattern 2 the dative S-M bond length is of the same order of magnitude, but somewhat larger than the covalent M-S bond. The distinction between the two-electron covalent bond and two-electron dative bond is useful and its rationale has been recently discussed.⁷

In the anisobidentate coordination pattern 3 there is an $M \dots S$ "secondary interaction", reflected in an interatomic distance intermediate between the sum of covalent radii of M and S, and the sum of van der Waals radii of the same metal atoms.⁸ It can also be described as "semibonding interaction". These interactions can cover a broad range of $M \dots S$ interatomic distances in this range and sometimes are difficult to recognize, because the van der Waals radii are not very exactly defined.⁹

Hard metals seem to prefer the hybrid **b** and display metal-ligand interactions with a more pronounced ionic character, leading to isobidentate coordination (pattern 4), in which the metalsulphur bonds are roughly equal in strength (reflected in equal or nearly equal bond lengths). In this case the phosphorus-sulphur bonds are also equalized (or nearly so), corresponding to a delocalization of the negative charge over the S—P—S fragment. However, it should be mentioned that even in alkali metal or other salts the discrete anionic dithiophosphorus ligand is not always totally symmetric, as shown by significantly different P—S bond lengths, measured by X-ray diffraction in the solid state. This may be due to crystal packing effects, especially when the two sulphur atoms do not occupy equivalent positions due to the cation.

In all cases cited the ligand is attached to only one metal atom and these coordination patterns are called *monometallic monoconnective* or *biconnective*, according to the number of metal-ligand interactions. Quite often this does not exhaust the donor ability of the ligand, and a second metal atom can become involved. Thus, dithiophosphorus ligands may bridge two metal atoms in various ways. The simplest, but rare (see Section F.15) is bridging through one sulphur connecting two metal atoms. In this type of coordination one sulphur atom forms a primary bond to a metal atom, a dative (pattern 5) or a secondary (pattern 6) bond to another metal atom and leaves the second sulphur independent (non-involved), doubly-bonded to phosphorus.

Much more frequent is *biconnective bridging* through both sulphur atoms. Again, several variations can be distinguished. Thus, the bridging ligand may be symmetric, with equal (or nearly equal) P—S and M—S bonds (pattern 7) or asymmetric, with one of the phosphorus–sulphur bonds retaining a high degree of double bond character and further coordinating through either dative (pattern 8) or secondary bonding (pattern 9). This coordination of the ligand can be described as *bimetallic biconnective*.

When the ligand is attached to a metal-metal bond coordination centre, five-membered rings 10, 11 and 12 result.

This distinction is not always so clear-cut and sometimes structures intermediate between those depicted may occur, making a rigid classification rather difficult.

Bimetallic triconnective bridging (patterns 13 and 14) and bimetallic tetraconnective bridging (patterns 15 and 16) are also possible. While the coordination patterns 13 and 14 are well illustrated by several known structures (to be discussed below) we have yet to find examples for patterns 15 and 16.

Trimetallic triconnective coordination of dithiophosphorus ligands are rare, but some examples are known. In pattern 17 a four-membered chelate ring is involved in further secondary interactions with two neighbouring metal atoms. Pattern 18 seems to be confined to coordination of the ligand to a triangular face of a polymetallic cluster. Both types are seldom observed. Thus, the coordination

pattern 17 was found in organothallium compounds (see Sections E.13 and F.12), while pattern 18 was observed in a tetrahedral Cu_4^I cluster derivatives (see Section E.11.a).

A *tetrametallic tetraconnective* coordination pattern 19 was only imaginary a dozen years ago^6 but in the meantime it has been discovered in a cubic Cu₈ cluster derivative (see Section E.11.a).

C. SUPRAMOLECULAR ASSOCIATIONS

The metal complexes containing dithiophosphorus ligands coordinated as monometallic monoconnective (unidentate, 1) or biconnective (bidentate, 2–4) are molecular compounds, i.e. consist of discrete molecules both in solution and in solid state. Other coordination patterns, in which the ligand connects two or more metal atoms, lead to *supramolecular associations*. According to Lehn, supramolecular chemistry is defined as "*the chemistry of molecular assemblies and of the intermolecular bond*" and deals with "*organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces*".^{10–12} Such associations are mostly observed in Main Group metal complex compounds, when the coordination centre is an organometallic moiety of low functionality and the metal requires a high coordination number. In such cases the ligand participates in *primary bonds* which satisfy the "normal" valence state of the metal, and is also involved in additional *secondary interactions* leading to dimeric, trimeric, tetrameric, hexameric or polymeric supramolecular associations.^{13,14} Numerous dithiophosphorus ligand metal complexes which seem to be discrete molecular compounds in solution, are associated in the solid state in a mode which falls under the definition cited above.

The simplest example is offered by the dimerization of four-membered ring chelates formed with either monodentate or iso- and anisobidentate ligands (coordination patterns 1–4). Dimerizaton may occur through either dative bonds or weak secondary ("semibonding") interactions. Thus, dimerization of monodentate ligand complexes (coordination pattern 1) leads to eight-membered cyclic dimers 20 (with dative bond bridging of type 8) and 21 (with secondary bond bridging of type 9).

The structural motif 20 is illustrated by a dinuclear copper compound (see Section E.11.a) and structure 21 by organomercury compounds (see Sections E.12.c and F.11.c), and an organoantimony phosphinodithioate (See Section F.14.b). By forming such dimers the dithiophosphorus ligand changes the coordination pattern to 8 and 9, respectively.

The four-membered chelate rings formed by aniso or isobidentate coordination (patterns 2–4) dimerize to form (quasi)tricyclic systems 22, 23, and 24, based on eight-membered rings with strong (dative) or weak (secondary or "semibonding") *transannular interactions*. This process makes the ligand trimetallic triconnective, as shown in 13 and 14. Usually, the eight-membered ring displays a chair conformation.

3394

The two-step ladder structures of type 22–24 are rather common and are illustrated by dithiophosphorus ligand complexes of manganese and rhenium (see Sections F.7), platinum (see Section F.10.c), silver (see Section E.11.b), zinc, cadmium (see Section E.12.a,b and F.11.a,b), tin^{II} (see Section E.14.c), lead (see Section E.14.b), arsenic (see Section F.14.a) and antimony (see Section F.14.b). Still more complex supramolecular structures are formed when these dimers interact further and associate in polymeric ribbons, through secondary M...S bonds, as in $Pb(S_2PMe_2)_2$ (see Section F.13.d).

Four-membered chelate rings, e.g. 3, can form polymeric chains by association through secondary bonds, as in 25. Examples are offered by $[Ph_2SbS_2P(OPr^i)_2]_n$ (see Section E.15.b) and $[Me_2SbS_2PMe_2]_n$ (see Section F.14.b). In the polymer the ligand becomes bimetallic triconnective (pattern 14). Other types of supramolecular associations involving trimetallic triconnective bridges are known, e.g. for lead (see Sections E.14.d and F.13.d).

The symmetric and asymmetric bridges 7-9 give rise to polymeric structures 26 and 27. These polymers are illustrated by zinc bis(diethylphosphorodithioate) (see Section E.12.a) and mercury bis(diisopropylphosphorodithioate) (see Section E.12.c).

Bridging patterns 5 and 6 can also be expected to form supramolecular dimers, higher oligomers or polymers (see Section F.15.b).

It is quite obvious that the diversity of supramolecular associations involving bimetallic biconnective or triconnective, trimetallic triconnective or other types of bridging dithiophosphorus ligands, is much broader and it is not possible to list here all imaginable types. Some other examples will be found in the forthcoming discussion and we can also expect the discovery of new structural motifs.

D. SINGLE AND DOUBLE PHOSPHORUS-SULPHUR BONDS

To identify coordination patterns it is necessary to distinguish between phosphorus-sulphur single and double bonds, as reflected in interatomic distances. Reliable theoretical calculations are scarce. Electron correlated *ab initio* calculations (6–31G* level) predict for H_3P =S a double bond length of 1.944 Å, for H—P=S a bond length of 1.951 Å and for H_2P -SH a single bond length of 2.128 Å.^{15,16} Experimental values available for comparisons are numerous. The best candidates seem

to be phosphorus sulphides, where the phosphorus-sulphur bond lengths are not influenced by

Scheme 1. Molecular structures of binary phosphorus sulphides.

other substituents. Crystal structure data for the known phosphorus sulphides^{17–29} (Scheme 1) are collected in Table 1. It can be seen that single P—S bonds are in the range of 2.08–2.14 Å and double P—S bonds in the range of 1.89–1.98 Å (average values are not larger than 1.95 Å).

Another useful collection of phosphorus-sulphur bond lengths, for comparison with the values observed in dithiophosphorus ligand complexes, are those measured in dithiophosphoryl- and dithiophosphinyl disulphides (and trisulphides) (Table 2), which contain both single and double bonds. These compounds are closely related to the dithiophosphorus ligands and, in fact, are produced in the oxidation of $X_2PS_2^-$ (X = OR, R) anions (with formation of S—S bonds). The values found in these compounds range from 2.072 to 2.158 Å for single P—S bonds and 1.900 to 1.944 Å for double P=S bonds.³⁰⁻⁴⁰ It is also noteworthy to remember the values of the S—P-S bond angles in these compounds, which range from 103 to 116°.

In compounds containing only P=S double bonds, as in dithiophosphines, $R_2(S=)P-P(=S)R_2$ (Table 3), the corresponding interatomic distances range between 1.94 and 1.98 Å.⁴¹⁻⁴⁷ Among other related compounds investigated (Table 4) it is worth noting the very short P=S double bonds in (PhS)₃P=S (1.899 Å)⁴⁸ and 1,3,5-Bu₃'C₆H₂P(=S)₂ (1.90 Å),⁴⁹ but more "normal" values in P{P(=S)Me₂}₃ (1.96 Å).⁵⁰ The single P-S bond length does not seem to be much affected by coordination of a metal to phosphorus⁵¹ (see Table 4).

For comparisons with dimensions of four-membered chelate rings, crystal structure data for cyclic phosphorus-sulphur compounds are collected in Table 5. Exocyclic double bonds are short : 1.92–1.94 Å, compared with the single P—S bonds in the ring (2.11–2.14 Å).^{52–56} When the double P==S bond is associated with an exocyclic anionic P—S⁻ bond, in a PS₂ group, it becomes longer (1.984–1.991 Å) as in the cyclic anions P₂S₆²⁻ present in some salts.^{57,58} In the PS₄³⁻ anion, where the negative charge and the π -bond are distributed over four P—S bonds, P—S interatomic distances are in the range 2.02–2.06 Å.^{59,60}

All these data seem to indicate that we can safely assume that phosphorus-sulphur bonds of ca 2.0 Å and longer can be described as single, and bonds shorter than 1.95 Å as double. Intermediate values, often observed in dithiophosphorus ligand complexes (see below) can be taken to represent delocalized units, as in patterns 4 or 7.

-		а	α			
	Space	b	β			
Compound	group	С	γ	P—S	P==S	Ref.
P ₄ S ₃	Pmnb	9.660		2.089-2.097		17–19
		10.597				
		13.671				
$\beta - P_4 S_4$	C2/c	9.771		2.106-2.112		20–22
		9.047	102.67			
		8.746	—			
				av. 2.108		
$\alpha - P_4 S_5$	$P2_1$	6.41	—	2.08-2.14	1.94	23
		10.94	111.7			
		6.69				
				av. 2.11		
$\beta - P_4 S_5$	$P2_1/m$	6.389	—	2.105-2.129		24
		10.966	115.65			
		6.613				
				av. 2.114		
$\alpha - P_4 S_7$	$P2_1/n$	8.87		2.04-2.13	1.93-1.97	25, 26
monoclinic		17.35	92.7			
		6.83				
				av. 2.08	av. 1.95	
$\beta - P_4 S_7$	Pbcn	8.14		2.05-2.13	1.89	27
othorhombic		11.43				
		11.39				
				av. 2.09		
P_4S_9	Ia3	17.60	90	2.10-2.14	1.93	28
		17.60	90			
		17.60	90			
				av. 2.12		
P_4S_{10}	ΡĪ	9.07	92.4	2.04-2.13	1.91-1.98	26
		9.18	101.2			
		9.19	110.5			
				av. 2.08	av. 1.95	

Table 1. Crystal structure data for binary phosphorus sulphides⁴

^a The structure diagrams are given in Scheme 1. See also Ref. 29.

It would be of interest to know more about the molecular dimensions in the parent phosphorodithioic and phosphinodithioic acids. Unfortunately, only the crystal structure of diphenyl phosphinodithioic acid, $Ph_2P(=S)SH$, determined both at 140 K and room temperature,⁶¹ has been fully described. The bond lengths are: P—S 2.076 Å (2.077 Å), P=S 1.954 Å (1.950 Å) (at 140 K and room temperature, respectively), and the S—P—S bond angle (108.2°) is practically tetrahedral. Other phosphinodithioic acids, $R_2P(=S)SH$, and phosphorodithioic acids, (RO)₂P(=S)SH, have also been investigated, but only the space group and unit cell dimensions are available.^{62,63}

E. PHOSPHORODITHIOATES (DITHIOPHOSPHATES)

1. Group 1: Alkali metals. Other ionic phosphorodithioates

Two potassium salts, $K^+[S_2P(OR)_2]^-$ (R = Me⁶⁴ and CH₂Ph⁶⁵) have been investigated by X-ray diffraction. In the anions the P—S interatomic distances are intermediate between single and double bond lengths, suggesting delocalization of the negative charge over the S—P—S fragment. However,

Compound	Space group	a b c	α β γ	PS	P=S	S—P==S	Ref.
(MeO) ₂ PSSP(OMe) ₂ S S	C2/c	21.949 10.381 12.384	100.26	2.086 2.091	1.903 1.898	105.4 106.7	30
(EtO) ₂ PSSP(OEt) ₂ S S	ΡĪ	8.388 11.128 12.518	62.34 71.93 84.97	2.098 2.100	1.906 1.912	106.4 105.4	31
(Pr ⁱ O) ₂ PSSP(OPr ⁱ) ₂ S S	ΡĪ	8.412 8.471 8.259	110.70 94.86 97.91	2.072 2.007	1.908 1.89	104.8	32 33
(Bu ^I CH ₂ O) ₂ PSSP(OBu ^t) ₂ S S	ΡĪ	9.137 9.143 9.887	72.26 73.21 82.58	2.080	1.911	106.7	30
(PhO) ₂ PSSP(OPh) ₂ S S	P2 ₁ 2 ₁ 2 ₁ P2 ₁ 2 ₁ 2 ₁	6.618 11.584 34.533 6.629 11.584 34.536		2.075 2.076 2.079 2.080	1.900 1.898 1.900 1.901	108.4 108.0 107.7 108.3	34 35
Ph B S S Ph	P2 ₁ 2 ₁ 2 ₁	17.083 10.952 9.586		2.101	1.926	not given	36
	C2	14.913 6.847 11.427	 120.18 	2.082	1.908	103.3	37
$\begin{array}{c c} MeO \\ & PSSP \\ Bu^t \\ S \\ S \\ S \\ Bu^t \end{array} \begin{array}{c} OMe \\ Bu^t \\ Bu^t \end{array}$	ΡĪ	7.916 10.501 12.461	110.11 98.77 99.96	2.093 2.139	1.923 1.913	101.2 115.3	35
Me ₂ PSSPMe ₂ S S	Pna2,	22.046 6.226 8.480		2.099 2.094	1.938 1.941	103.7 103.7	38

Table 2. Crystal structure data for bis(thiophosphoryl) and bis(thiophospinyl) di(and tri-)sulphides

3399

Compound	Space group	a b c	$egin{array}{c} lpha \ eta \ \gamma \end{array}$	P—S	P=S	S—P=S	Ref.
$ \begin{array}{c} \operatorname{Et_2PSSPEt_2} \\ \parallel & \parallel \\ & \mathrm{S} & \mathrm{S} \\ \end{array} $	P2 ₁ /c	11.998 12.678 12.181	115.96 —	2.116 2.112	1.944 1.937	103.8 103.6	39
Pr ⁱ 2PSSPPr ⁱ 2 S S	₽Ī	7.661 11.378 12.403	68.33 72.61 85.53	2.156 2.158	1.931 1.935	115.9 115.1	38
Bu ^t PhPSSPPhBu ^t S S	C2/c	20.035 9.231 12.978	102.30 —	2.153	1.938	114.1	35
Ph ₂ PSSPPh ₂ S S	C2/c	22.268 9.039 12.361	100.27	2.139	1.930	114.4	34
$\begin{array}{c} Cy_2 PSSPCy_2 \\ \parallel & \parallel \\ S & S \\ monoclinic \end{array}$	C2/c	16.887 14.860 12.574	100.22	2.158	1.935	114.8	40
Cy ₂ PSSPCy ₂ S S triclinic	ΡĪ	20.392 12.302 12.749	68.66 103.25 107.26	2.111 2.155 2.109 2.151	1.943 1.932 1.946 1.938	105.5 105.0	40

Table 2-continued.

the P—S bond distances seem significantly different [e.g. 1.945(2) and 1.969(2) Å in the benzyl derivative]. The S—P—S bond angle ($ca 120^{\circ}$) is larger than the tetrahedral value.

A tetraphenylarsonium salt,⁶⁶ [AsPh₄]⁺[S₂P(OMe)₂]⁻, and a dimethylammonium salt,⁶⁷ [NMe₂H₂]⁺[S₂P(OPrⁱ)₂]⁻, have also been studied. The anions display similar features to those in potassium salts, namely slight differences in the P—S bond lengths and an enlarged S—P—S bond angle. Crystal structure data are collected in Table 6.

Transition metal phosphorodithioates containing the anion 28, are listed below and are discussed under the appropriate metal and the literature references are cited there.

$$[Mo_{3}S_{4} \{S_{2}P(OEt)_{2}\}(L)_{3}]^{+} [S_{2}P(OEt)_{2}]^{-} \quad (L = imidazole)$$
$$[Mn(phen)_{3}]^{2+} [S_{2}P(OEt)_{2}^{-}]_{2}$$
$$[Ni(bipy) \{S_{2}P(OBu)_{2}\}]^{+} [S_{2}P(OBu)_{2}]^{-}$$

	Space group	a b c		P==S	Bond angle PPS	Ref.
$Me_2P \qquad \qquad$	C2/m	18.882 10.703 6.984	94.42	A 1.951 B 1.965 1.970	111.2 112.1 111.9	41
MePhP — PMePh S	Рьса	17.104 10.629 8.592		1.98	111.8	42
S S S S S S S S S S S S S S	ΡĪ	8.98 6.45 6.15	113.0 85.2 102.5	1.94	112.8	43a
$\Pr_{p_2} \Pr_{p_2} \Pr_{p_2} \Pr_{p_2} \Pr_{p_2}$	$P2_1/n$	6.491 10.152 13.358	100.74	1.953	112.2	43Ъ
$Ph_2P - PPh_2$ H S	P2 ₁ /c	9.628 15.798 14.304	96.29 —	1.952 1.950	112.3 112.0	44
	ΡĪ	7.65 6.90 5.88	75.30 104.15 92.36	1.95	111.1	45
	P2 ₁ /n	9.44 6.85 6.02	120.1 99.0 82.4	1.95	112.7	46
Me ₂ P — PMe ₂ S	P2 ₁ /n	6.314 16.252 8.120	97.64	A 1.970 B 1.979	115.8	47

Table 3. Crystal structure data for tetraorganodithiodiphosphines

 $[Ni(NH_{2}Bu)_{4} \{S_{2}P(OCy)_{2}\}]^{+} [S_{2}P(OCy)_{2}]^{-}$ $[Ni(phen)_{3}]^{2+} [S_{2}P(OMe)_{2}^{-}]_{2}$ $[Ln \{S_{2}P(OR)_{2}\}_{2}(L)_{3}]^{+} [S_{2}P(OR)_{2}]^{-}$

with Ln = Sm, R = Et, $L = OPPh_3$; Ln = Tb and Er, $R = Pr^i$, $L = PhCONH_2$.

2. Group 2: Alkaline earths

No X-ray structure determination has been reported for any alkaline earth metal phosphorodithioate.

		а	α			Bond	
	Space	b	В			angle	
Compound	group	С	γ	P—S	P=S	SPS	Ref.
PhS SPh	P2 ₁ /n	10.141 10.195 18.870	97.25	2.099 2.103 2.103 av. 2.102	1.899	SP=S 117.7 117.0 116.7 SPS 100.2 100.9 101.5	48
$\overset{Bu^{t}}{\longrightarrow} \overset{Bu^{t}}{\longrightarrow} \overset{P}{\underset{Bu^{t}}{\swarrow}} \overset{S}{\underset{S}{\checkmark}}$	$P2_1/n$	10.217 10.324 19.102	98.4 —		1.890 1.891	S <u>P</u> S 126.0	49a
$Bu^{t} \longrightarrow P \overset{Bu^{t}}{\swarrow} P \overset{S}{\underset{Me}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{$	Pna2,	15.277 11.364 9.659			1.894 1.900	S==P==S 126.3	49b
$Me_2P \qquad \qquad PMe_2 \\ \parallel \\ S \qquad \parallel \\ S \qquad S $	P2 ₁ /n	7.028 17.089 12.850	101.99 —		1.956 1.964		50
$C_p (CO)_2 Mn$ $Mn (CO)_2 C_p$	Iba2	16.65 15.64 17.49		2.13 2.12	_	_	51
∞ ∞ Mn P Me_2 Me_2 Mn Me_2 Mn Mn Mn Mn Mn Mn Mn Mn	C2/c	25.73 8.89 21.23	116.49	2.11 2.16		_	51

Table 4. Cry	stal structure	data for	other phos	phorus-sulphur	compounds
--------------	----------------	----------	------------	----------------	-----------

Table 5. Crystal structure data for other cyclic phosphorus-sulphur compounds

x	Space	a b	$\frac{lpha}{eta}$			SPS bond	
(trans)	group	с	γ	P—S	P=S	angle	Ref.
Me	I2/m	6.793 7.046 9.207	92.25	2.141	1.945	S—P—S 94.5 S—P—S	52, 53
						116.6	
Buʻ	Cmca	9.872 9.594 15.488		2.121	1.921	S—P—S 94.0 S—P—S 116.3	54a
SMe	P2 ₁ /a	8.034 8.181 8.577	 109.98 	endo 2.118 2.115 exo 2.044	1.919	endo SPS 93.0 exo SPS 108.4 SPS 118.5	54b, 54c
SEt	$P2_i/n$	6.45 9.96 10.23	98.16	endo 2.100 2.105 exo 2.047	1.909	endo SP-S 93.1 exo SP-S 110.1 SP=S 118.3	54d
SPh	P2 ₁ /n	6.410 11.701 11.409	 	endo 2.112 2.107 exo 2.080	1.920	endo S—P—S 93.7 exo S—P—S 108.2 S—P—S 116.3	55a
STol-p	ΡĪ	6.276 7.262 10.200	89.81 91.26 93.52	endo 2.113 2.105 exo 2.074	1.916	endo SPS 93.7 exo SPS 108.5 116.0	55b

x	Space	a b	αβ			SPS bond	
(trans)	group	С	γ	PS	P=S	angle	Ref.
S	B2/m	11.210		endo		endo	57
(Ag salt)		6.731 6.998	126.84	2.120 exo 2.003 1.984		S—P—S 93.7 exo 110.8 110.5	
S ⁻ (Zn salt)	B2/m	21.410 6.552 10.680	122.28	endo 2.124 2.117 2.125 2.110 exo 1.991 2.001		118.0	58
NMe ₂	Cmca	7.378 11.021 14.407		2.122	1.926	endo SPS 93.1	56
cis-Mes	Pbcn	17.878 15.134 13.337		endo 2.118 2.139	1.916	endo S—P—S 90.1 exo S—P==S 115.7 118.0	49Ъ

Table 5—continued.

Table 6. Alkali metal, arsonium and ammonium salts

Structure no.	М	R	Space group	a b c	$egin{array}{c} lpha \ eta \ eta \ \gamma \end{array}$	P—S	S—P—S	Ref.
28	K	Me	Fddd	17.21		1.96	118.2	64
				17.50		1.96		
				11.45	_			
28	K	CH ₂ Ph	ΡĪ	11.468	99.48	1.945	120.1	65
				11.735	98.50	1.969		
				6.542	69.09			
28	AsPh ₄	Me	ΡĪ	9.637	66.34	1.944	120.1	66
				11.875	68.62	1.954		
				13.119	78.85			
28	NH_2Me_2	Pr ⁱ	$P2_1/c$	14.213	_	1.965	116.6	67
				14.552	101.14	1.974		
				7.129				

3. Group 3: Sc, Y

No scandium or yttrium phosphorodithioate has been structurally characterized. Lanthanide and actinide (*f*-element) phosphorodithioates are discussed in Section E.17.

4. Group 4: Ti, Zr, Hf

a. Titanium. Crystal structures of a simple titanium or organotitanium phosphorodithioates have not been reported. Attempts to prepare a bis(cyclopentadienyltitanium) phosphorodithioate by reacting $(\eta^5-C_5H_5)_2TiCl_2$ with P_4S_{10} in ethanol produced a derivative **29**, containing P—O—Ti and P—S—S—P moieties,⁶⁸ obviously formed by hydrolysis and oxidation of the phosphorodithioato ligand presumably formed in the first step of the reaction.

b. Zirconium. Zirconium(IV) forms eight-coordinate phosphorodithioates, in which the metal displays distorted dodecahedral geometry, **30**. The ligand is isobidentate, with two practically identical P—S bonds, but the nonequivalent Zr—S bonds can be described as normal covalent (2.653 Å) and dative (2.746 Å) (coordination pattern no. **2**).⁶⁹

The crystal data and molecular dimensions are listed in Table 7.

Table 7. Crystal structure data for Group 4 and 5 metal phosphorodithioates

Struc- ture no.	R	Space group	a b c	$egin{smallmatrix} lpha\ eta\ \gamma \end{bmatrix}$	P–	—S	M-	—S	S—P—S	М—	S—P	Bond type	Ref.
30	P r ⁱ	Fddd	36.850		1.976	1.980	2.653	2.746	107.0	91.2	88.3	chel	69
			14.889										
31	Et	C2/c	8.644		1.971	1.989	2.473	2.446	108.1	85.1	85.8	chel	70
			18.487	93.0	1.986	1.986	2.434	2.434	107.7	85.0	85.0		
			17.688	_									
32	Pr ⁱ	Fddd	37.024	—	1.974	1.982	2.626	2.665	105.8	89.7	88.5	chel	69
			14.702	—									
22	D	Ъī	16.322		1 094	2.017	2 6 5 1	2 522	105.0	071	00.1	-l1	71
33	гі	L I	11 365	77.30 80.08	1.980	2.017	2.031	2.332	105.9	87.4	90.1	cnei	/1
			12 532	72.87									
34	Pr ⁱ	ΡĪ	7.251	102.66	1.985	2.000	2.605	2.576	104.6	86.5	87.0	chel	71
			12.386	103.56							0,10	•••••	
			13.988	94.66									
35	Et	$P2_1/c$	14.564	_	1.935	2.036		2.601	119.5		116.2	uni	72
			17.409	103.62									
			7.506										

3404

5. *Group* 5: V, Nb, Ta

a. Vanadium. Tris(diethylphosphorodithioato)vanadium(III), $V{S_2P(OEt)_2}_3$, contains isobidentate chelating ligands in trigonally distorted octahedral geometry **31**.⁷⁰ The S—P—S bond angle is tetrahedral. Molecular dimensions are given in Table 7,

b. Niobium. A niobium(IV) diisopropylphosphorodithioate, $Nb\{S_2P(OPr')_2\}_4$, has a distorted dodecahedral structure, **32**, like the zirconium(IV) complex **30**, and the four ligands are coordinated as chelating isobidentate (with P—S 1.974 and 1.982 Å).⁶⁹

The coordination pattern of the diisopropylphosphorodithioato ligand becomes more asymmetric in two cyclopentadienyl derivatives, **33** and **34** ($\mathbf{R} = \mathbf{Pr'}$), where both the Nb—S and P—S interatomic distances differ significantly⁷¹ (see Table 7). This suggests a coordination pattern of type **2**, although the "double P—S bonds" are longer (1.98 Å) than normal values.

In bis(cyclopentadienyl)niobium disulphide diisopropylphosphorodithioate the ligand is monodentate, **35**, and the P—S bond lengths differ accordingly (P—S 2.036 Å and P—S 1.935 Å). The S—P—S angle in the monodentate ligand displays a much larger value (119.5°) than in the chelated vanadium complex,⁷² (see Table 7).

35

The Nb—S bonds also differ, the longer being that to the phosphorodithioato ligand (2.602 Å), compared to the bonds to disulphido group (2.457 and 2.529 Å).

6. Group 6: Cr, Mo, W

This triad is well represented and is dominated by molybdenum compounds, which display a great variety of composition and structures.

a. Chromium. All chromium complexes investigated are tris(phosphorodithioato) compounds, $Cr{S_2P(OR)_2}_3$, $R = Et^{73,74}$ and $(OR)_2 = OCHMeCHMeO^{75,76}$ with octahedral coordination geometries and isobidentate ligands, **36** (see Table 8).

The octrahedral geometry is distorted because the S—Cr—S bond angles in the four-membered CrS_2P chelate rings (85°) are smaller than the 90° required by a regular octahedron. A trigonal twist angle (between two parallel triangular faces) of 47° (instead of 60° in the regular octahedron) is also observed.

b. Molybdenum. A large number of mono-, di-, tri- and tetranuclear molybdenum complexes with phosphorodithioato ligands have been investigated structurally. Monodentate, bidentate chelating and bridging coordination patterns were found in molybdenum chemistry. The crystal and molecular dimensions for molybdenum phosphorodithioates are collected in Tables 9–13.

(i) Mononuclear complexes. The octahedral tris(dimethylphosphorodithioato)molybdenum(III) $Mo\{S_2P(OMe)_2\}_3$, 37, is similar to the analogous chromium(III) and vanadium(III) complexes, with isobidentate chelating ligands.⁷⁷

The *p*-tolylimido derivative $Mo\{S_2P(OMe)_2\}_3(N-C_6H_4Me-p)$, **38** (R = Me, Ar = NC_6H_4Me-4), contains two bidentate and one monodentate phosphorodithioato ligands,⁷⁸ displaying significant differences in the P—S bond lengths and S—P—S bond angles (Table 9). Thus, in the bidentate

Struc- ture no.	R	Space group	a b c	$egin{array}{c} lpha \ eta \ eta \ \gamma \end{array}$	P—S	M—S	S—P–	-S M—3	S—P	Bond type	Ref.
36	Et	C2/c	14.374 13.586 14.270	90.51	1.988 1.999	2.423 2.428	106.6	85.7	85.3	chel	73
		C2/c	14.28 13.60 14.35	89.5	1.980 2.000 1.995 1.995	2.423 2.421	106.2 107.0	85.6	84.9	chel	74
36	$(RO)_2 = $	P2 ₁ 2 ₁ 2 ₁ . Me	11.699 12.738 16.827		1.972 1.974 1.973 1.983 1.973 1.979	2.410 2.424 2.438 2.426 2.420 2.423	107.2 107.2 107.2	85.5 85.1 85.4	85.1 85.2 85.2	chel chel chel	75, 76

Table 8. Crystal structure data for chromium phosphorodithioates

Structure no.	R	Space group	a b c	$lpha\ eta\ eta\ \gamma$	P-	—S	M-	—S	S—P—S	M	-S—P	Bond type	Ref.
37	Me	C2/c	14.342 11.239	77.12	1.990 1.994	1.991 1.994	2.521 2.500	2.501 2.500	107.8 107.2	85.9 96.5	86.5 86.5	chel chel	77
38	Me	$P2_1/c$	20.421 8.579	93.92	2.001 1.986	2.008 2.014	2.530 2.645	2.448 2.492	105.6 106.4	86.5 86.4	87.5 90.0	chel uni	78
39	Et	₽ī	18.449 8.421 12.654	87.77 81.36	1.940 1.931	2.035 2.047	—	2.453 2.048	110.7 111.1		107.2	uni	79
40	Et	$P2_t/c$	15.240 17.987 8.219	/4.3/ 104.88	1.984	1.993	2.500	2.478	107.0	84.7	84.4	chel	79
41	Pr ⁱ	Pbca	12.703 16.706		1.992	1.994	2.550	2.559	105.6	89.1	89.8	chel	71
42 43	Et Et	$P2_1/n$	15.479	_	1.986	2.000	2.599 2.588	2.505 2.564	not	87.7	88.1	chel chel	80 81
44	Et R' = I	P21/c Me	16.718 17.156 15.311 10.231	95.56 — 98.76	1.97	2.02	3.06	2.62	given			chel	82
			20.889										

Table 9. Crystal structure data for mononuclear molybdenum phosphorodithioato complexes

ligands P—S bond lengths are in the range 1.986–2.014 Å, while in the monodentate group single (P—S 2.035 Å) and double (P—S 1.940 Å) bonds are clearly distinguished.

Of the two tris(dimethylpyrazolylborato)phosphorodithioato mixed ligand complexes the dioxomolybdenum(VI) derivative **39** contains a monodentate phosphorodithioato ligand, while in the oxomolybdenum(IV) compound, **40**, the ligand is bidentate.⁷⁹ As observed before, in the monodentate ligand the S—P—S bond angle is larger (111°) than in the bidentate ligand (107°). The phosphorus-sulphur bond lengths are 2.047 Å (P—S) and 1.931 Å (P—S) in **39**, and 1.984 and 1.993 in **40**, in agreement with the coordination patterns of the ligands.

The η^5 -cyclopentadienylmolybdenum phosphorodithioato complexes **41** (R = Prⁱ)⁷¹ and **42** (R = Et)⁸⁰ contain isobidentate chelating ligands and in **41** the P—S bond lengths are equal (1.992 and 1.994 Å).

Table 10. Crystal structure data for binuclear molybdenum phosphorodithioato complexes

Struc- ture		0	a	α								D :	
no and R	R' R"	Space group	b c	β γ	P-	S	M	S	S—P—S	М—	-S—P	Bond type	Ref.
45 Me		P2 ₁ /c	8.235 16.544	103.7	2.006 2.018	1.956 1.983	2.504 2.453	2.799 2.549	109.3 105.9	91.4 87.9	84.1 86.0	chel chel	83
45 Et		$P2_1/n$	8.709 24.170	 112.3	1.954 1.988	2.000 2.004	2.800 2.534	2.501 2.457	110.3 105.7	83.4 86.2	90.8 88.0	chel chel	84
45 Et ^a	_	ΡĪ	11.36 13.96	94.9 103.8	1.947 1.983	2.010 2.017	2.801 2.547	2.497 2.442	109.2 105.3	84,4 86.3	91.7 88.4	chel chel	85
45 Pr"		ΡĪ	10.670 13.063	81.7 100.1 92.16	1.967 1.932	2.020 2.002	2.534 2.809	2.444 2.501	105.5 109.5	86.7	88.1 91.7	chel chel	86
45 Pr ⁱ		ΡĪ	8.944 10.898 12.637 8.972	80.88 98.43 98.67 86.78	1.928 1.988	2.012 2.014	2.833 2.529	2.514 2.457	109.8 105.0	83.2 87.1	90.5 88.6	chel chel	87
46 Et [*]	_	Pbca	11.636 18.290 23.904		1.993 1.988	1.996 1.998	2.547 2.522	2.506 2.489	107.1 106.6	86.0 86.7	87.1 87.4	chel chel	88
47 Pr'	_	Pbca	22.679 16.224 15.104		1.993 1.977	1.999 2.010	2.460 2.481	2.491 2.490	103.5 103.9	88.6 87.5	88.0 86.5	chel chel	89
48 Pr'		Pbca	23.021 16.030 14.792		2.015 1.999	2.018 1.999	2.476 2.472	2.505 2.501	103.1 104.8	87.6 88.0	86.7 87.2	chel chel	90
49 Et	_	$P2_1/c$	14.044 10.341 17.821	112.5	1.998 1.980	2.008 2.004	2.477 2.489	2.466 2.475	102.3 104.0	88.9 88.3	89.0 88.2	chel chel	91,92
50 Et	Ar = Ph	ΡĪ	20.026 12.360 12.093	65.46 77.46 77.54	1.995 1.996 1.982	2.008 2.009 2.017	2.524 2.527 2.544 2.527	2.527 2.535 2.545 2.526	105.0 105.5 107.7	87.8 87.7 85.6	87.4 87.2 84.9	chel chel chel	93
50 Me	Ar = <i>p</i> -Tol	Pcab	12.514 13.136 28.009		2.011 1.988	2.007 2.012 1.996	2.505 2.527 2.527	2.320 2.459 0 2.510	103.3 106.1	86.8 86.9	87.2 87.2	chel chel	93
51 Et		ΡĪ	8.773 9.712 13.652	69.24 70.43 66.87	1.964 1.969	2.012 1.999	2.635 2.645	2.459 2.482	106.2 106.2	86.3 86.7	90.2 90.7	chel chel	94
52 Et	$R' = CF_3$ $R'' = H$ $Ar =$ $p-Tol$	$P2_1/a$	23.569 17.176 10.050	111.8	1.987 1.985	1.997 1.998	2.542 2.538	2.577 2.506	106.2 106.7	87.5 87.0	88.1 87.6	chel chel	95
52 Et	$R' = CF_3$ $R'' = Me$ $Ar =$ $p_{2}Tol$	A2/a	33.891 16.169 13.902	90.52 —	1.994 2.000	2.001 2.000	2.526 2.548	2.518 2.493	105.9 106.1	87.8 86.8	87.8 88.3	chel chel	96
52 Et	R' = Me R'' = SEt Ar = $r_{r}Tel$	P2 ₁ /c	13.403 24.817 13.894	116.2 	1.992 1.987	1.996 1.988	2.511 2.520	2.553 2.552	106.4 106.8	87.2 88.0	88.2 87.1	chel chel	97
52 Et	R' = Me R'' = NH_2 Ar = n Tol	ΡĪ	13.781 14.524 10.961	104.48 106.39 107.31	1.995 1.988	1.982 1.988	2.517 2.510	2.550 2.557	106.8 106.7	87.7 87.9	87.1 86.6	chel chel	98
52 Et	R' = Me R'' = $NCHBu^t$ Ar = T = 1	$P2_i/n$	12.473 28.197 13.568	114.81 —	1.996 1.995	1.985 1.985	2.515 2.504	2.515 2.567	106.9 106.7	87.7 88.2	86.9 86.7	chel chel	98
52 Et	$P^{-1 \text{ of}}$ $R' = Me$ $R'' =$ $NCMe_2$ $Ar =$ $Trive$	ΡĪ	15.602 15.618 9.627	91.13 96.25 117.59	1.993 1.990	1.987 1.993	2.517 2.515	2.560 2.557	106.8 106.2	88.2 88.5	87.1 87.3	chel chel	98
53 Et	$p-1 \text{ of } C_7 H_{15}$ $Ar = p-T \text{ of } P$	C2/c	28.664 14.653 32.304	122.1	1.987	1.989	2.552	2.567	106.8	87.9	87.4	chel	99

Struc- ture no and R	R′ R″	Space group	a b c	$egin{array}{c} lpha \ eta \ \gamma \end{array}$	P-	S	M-	S	S—P—S	M—	-SP	Bond typ	Ref.
54 Pr ⁱ	_	$P2_1/n$	17.316 14.560 2.150	93.00	1.987 1.969	1.994 2.003	2.515 2.523	2.525 2.507	105.5 105.8	88.2 88.0	87.8 87.7	chel chel	100
55 Pr ⁱ	_	$P2_1/n$	17.200 12.690 15.448	111.0	2.007 1.997	2.025 2.024	2.538 2.529	2.485 2.495	105.1 104.9	87.0 87.5	88.0 87.9	chel chel	100 101
56 Pr'		Aa	11.85 4 9.000 28.849	93.27 —	2.004 2.008	2.009 2.011	2.512 2.503	2.508 2.498	104.8 104.5	87.9 87.9	87.9 88.0	chel chel	102
57 Et	_	₽Ī	15.279 17.019 11.640	90.17 95.51 74.65	1.988 1.982 1.929 2.000 1.980 1.933	2.014 2.020 2.050 2.012 2.009 2.051	2.544 2.630 2.533 2.663	2.485 2.471 2.461 2.486 2.483 2.466	106.5 106.0 111.3 106.2 108.3 110.5	86.3 86.5 86.1 84.2	87.2 90.1 107.0 87.2 88.6 108.5	chel chel uni chel chel uni	103

Table 10-continued.

^aC₆H₄Cl₂ solvate.

^bTHF solvate.

In a bimetallic molybdenum-tin complex 43 (R = Et) the dithiophosphorus ligand is coordinated as monometallic biconnective (isobidentate) only to molybdenum; the tin atom participates only in a secondary interaction (Sn...S 2.999 Å) with the sulphur atom of Cy₃PCS₂ ligand.⁸¹ In a related bimetallic compound 44 (R = Et, R' = Me) the phosphorodithioato ligand is bimetallic triconnective, with two bonds to molybdenum (Mo—S 2.62 and 2.65 Å) and a weak secondary interaction to tin (Sn...S 3.06 Å).⁸² The P—S bonds differ slightly (P—S1 2.02 Å and P—S2 1.97 Å), the longer being that involved in the secondary bond to tin.

Crystal data and molecular dimensions for mononuclear molybdenum phosphorodithioates are given in Table 9.

(ii) Binuclear complexes. There are at least three types of binuclear molybdenum phosphorodithioato complexes: (a) single bridged (oxo), (b) doubly bridged (oxo/oxo, oxo/thio, oxo/ imino) and (c) complexes with a spacer group separating the two metal atoms. Crystal data for binuclear phosphorodithioates are listed in Table 10.

Trioxodimolybdenum(V) phosphorodithioates, $Mo_2O_3\{S_2P(OR)_2\}_4$, are binuclear compounds containing a single oxo bridge and four chelating phosphorodithioato ligands in a *trans*-configuration, as in 45 (R = Me,⁸³ Et,^{84,85} Pr^{*n*},⁸⁶ and Pr^{*i*87}). The difference in the P—S interatomic distances

Struc-													
ture			а	α									
no.		Space	b	β								Bond	
and R'	L	group	С	γ	P-	–S	M-	—S	S—P—S	М-	-SP	type	Ref.
		_											
59	imidazole"	ΡĪ	14.465	99.36	1.981	1.989	2.580	2.550	107.1	87.1	87.3	chel	104
			14.653	93.11	1.981	1.998	2.597	2.563	107.1	87.8	88.4	chel	
			14.886	114.29	1.976	1.989	2.569	2.567	107.4	87.9	87.7	chel	
					1.952	1.946			118.7			ionic	
60	H ₂ O	$P2_1/c$	13.553		1.998	1.971	2.564	2.578	107.5	87.66	87.5	chel	105-
			10.066	95.00	2.007	1.977	2.588	2.594	108.5	86.5	85.7	chel	107
			31.014		1.966	2.013	2.568	2.533	107.7	86.3	86.3	chel	
					1.979	1.969	2.585	2.586	116.6	109.3	109.2	bridge	
60	BzCN	ΡĪ	15.941	76.41	1.973	1.996	2.597	2.564	106.8	88.0	88.5	chel	108
			15.957	83.87	1.982	1.983	2.564	2.553	108.3	86.3	86.6	chel	
			20.240	74.41	1.980	2.000	2.587	2.580	106.9	88.3	88.0	chel	
					1.989	1.972	2.641	2.655	115.3	105.5	105.9	bridge	
60	oxazole ^b	$P2_1/n$	16.579		2.001	1 986	2 565	2 578	106.4	not	not	chel	109
00	onazone	· -1/ ···	16 9 59	94 44	1 999	1 985	2 568	2 591	106.4	given	øiven	chel	107
			16 867		1 997	1 971	2.500	2 582	108.7	Brien	Brien	chel	
			10.007		1 969	1 943	2 639	2 594	117.0			bridge	
60	PPh. ^c	РĪ	10 472	74 04	1.982	2 001	2.589	2.574	107.8	86.6	86.7	chel	110
00	11113	11	14 375	76.50	1.980	1 979	2.505	2.574	107.0	85.9	85.6	chel	111
			21 605	70.50	1.070	1.076	2.500	2.575	107.8	87.0	88.4	chel	111
			21.075	12.22	1.979	1.970	2.008	2.000	107.8	105.1	106.0	bridge	
60	ollulthi	ЪĪ	12 044	77 25	1.965	1.904	2.399	2.304	107.4	105.1	00.9	oriuge	112
00	anynni	ΓI	13.944	(0.04	1.975	1.909	2.551	2.360	107.4	0/.3	00.2	chel	112
	ourea		14.145	69.94	1.993	1.987	2.377	2.392	100.9	88.3	88.0	chei	
			14.255	03.30	1.9/8	1.989	2.382	2.003	109.3	80.0	80.3	chei	
		D 7	12 (02	05.57	1.0.42	1.948	2.583	2.632	117.0	110.4	111.2	bridge	
61	ыру	PI	13.683	95.57	1.943	1.976	2.585	2.571	107.2	88.3	88.0	chel	115
			13.983	91.87	1.985	1.961	2.544	2.571	107.8	86.7	86.4	chel	
			14.699	117.40	1.976	1.969	2.655	2.674	115.7	105.7	105.3	bridge	
					1.998	1.901	2.573		120.8	118.0		ionic	
62	oxazole	P1	11.931	78.17	1.990	1.992	2.542	2.570	107.1	88.0	87.2	chel	116
			13.203	91.34	1.982	1.992	2.541	2.574	106.7	88.4	87.6	chel	
			15.014	109.63	1.978	1.990	2.543	2.582	107.2	88.3	87.4	chel	
					1.964		2.644			106.1		bridge	
		_								(oxo)			
63	Ру	P1	10.519	93.27	1.981	1.987	2.510	2.561	106.0	88.4	86.8	chel	117
Н			12.121	94.63	1.978	1.996	2.559	2.520	106.8	87.1	87.8	chel	
		_	15.757	105.2	1.977	1.988	2.573	2.549	107.0	87.8	88.2	chel	
63	Ру	ΡĪ	9.556	101.41	1.989	1.985	2.531	2.559	107.1	87.9	87.2	chel	117
Me			14.067	101.44	2.000	1.991	2.515	2.563	105.7	88.8	87.6	chel	
			15.914	74.26	1.997	1.983	2.549	2.576	107.9	87.3	86.9	chel	
63	$\mathbf{P}\mathbf{y}^d$	$P2_1/n$	13.158		1.995	1.985	2.526	2.554	105.8	88.7	88.2	chel	118
Me			23.153	112.7	2.006	1.986	2.515	2.548	106.5	87.8	87.3	chel	
			16.175		2.001	1.985	2.540	2.540	106.6	88.5	87.6	chel	
63	MeCN	ΡĪ	12.877	108.70	1.989	1.974	2.537	2.560	107.0	87.8	87.5	chel	119
Me			12.954	102.05	1.987	1.990	2.571	2.549	106.6	87.8	88.3	chel	
			12.807	71.62	1.998	1.987	2.514	2.549	106.3	88.2	87.4	chel	
63	Ру	ΡĪ	12.972	66.22	1.980	1.997	2.549	2.567	108.5	86.8	86.0	chel	120
Et	-		13.763	101.72	1.996	1.979	2.541	2.567	107.3	87.4	87.1	chel	
			14.515	118.90	1.976	1.998	2.549	2.522	106.5	87.5	87.8	chel	
64		$P2_1/c$	12.748	_	1.991	1.994	2.547	2.567	107.7	87.4	86.8	chel	121
			14.320	101.07	1.994	2.012	2.487	2.463	104.0	87.5	87.8	chel	
			23.118		1.987	2.023	2.540	2.467	105.2	87.3	87.3	chel	
65	oxazole	ΡĪ	13.175	117.87	1.966	1.975	2.568	2.568	108.8	87.1	86.9	chel	109
			13.372	60.09	1.981	1.981	2.555	2.673	107.0	90.6	87.2	chel	
			16.656	109.03	1.979	1.971	2.559	2.616	108.7	87.1	85.7	chel	
					1.980	1.980	2.581	2.586	115.1	104.9	102.7	bridge	
65	imidazole	C2/c	14.954		1.961	1.991	2.604	2.561	108.0	87.4	88.0	chel	122
		'	22.323	98.23	1.969	1.994	2.665	2.571	107.9	87.2	89.3	chel	
			27.003		1.963	1.989	2.593	2.592	109.5	86.9	86.4	chel	
					1.983	1.978	2.636	2.607	113.2	102.6	104.8	bridge	
												<i>u</i>	

Table 11. Crystal structure data for trinuclear phosphorodithioato molybdenum complexes (R = Et in compounds 59–74)

ture and R' Space a b c x β x β b β x β b β x β b β k β k β k β	Struc-													
no. Space group b c γ P—S M—S S—P—S M—S—P Bond Nume Ref. 66 thiourea P2,/π 15.355 — 1.966 1.992 2.574 2.636 109.1 88.0 85.7 chel 123 67 Py PT 1.2718 90.57 1.974 1.992 2.582 2.581 108.2 87.0 86.9 chel 123 67 Py PT 1.2921 97.54 1.989 1.954 2.562 2.546 106.9 87.4 8.61 124 7 Py PT 11.704 109.94 1.99 2.562 2.544 106.9 87.4 8.61 125 68 Py' PT 11.704 109.94 1.99 2.533 2.534 107.7 87.18 8.60 chel 125 69 X = CI PT 11.570 102.62 1.983 1.982 2.492 9.050 88.0	ture			а	α									
and R' L group c γ PS MS SPS MSP type Ref. 66 thiourea P2,/n 15.355 1.974 1.990 2.585 2.585 108.2 86.4 87.3 6.64 12.3 67 Py PT 12.291 97.54 1.989 1.954 2.568 2.563 108.2 85.8 6.06 124 Me 12.291 97.54 1.989 1.954 2.566 2.54 106.2 87.8 86.0 chel 124 Me PY PT 11.704 10.94 1.99 2.56 2.54 107.7 8.68 87.9 chel 125 68 PY PT 11.704 109.94 1.998 2.549 2.549 105.0 88.0 88.0 chel 125 69 X = CI PT 11.507 10.52 1.983 1.995 2.545 2.499 105.0 <td< th=""><th>no.</th><th></th><th>Space</th><th>b</th><th>β</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Bond</th><th></th></td<>	no.		Space	b	β								Bond	
	and R'	L	group	С	γ	P-	–S	M-	—S	S—P—S	M—	-S—P	type	Ref.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	thiourea	P2 ₁ /n	15.355		1.966	1.992	2.574	2.636	109.1	88.0	85.7	chel	105,
67 Py PĪ 1,294 2,578 2,578 108,9 87.0 86.9 chel Me PY PĪ 12,921 97.54 1989 1,554 2,562 2,562 108,2 85.8 86.0 chel 12,480 Me 12,800 100,10 2000 1,957 2,562 2,544 106,9 87.4 87.8 chel 12,480 10,10 10,80 2,566 2,544 107.7 86.5 87.5 chel 12,680 10,10 12,600 10,167 87.1 86.7 chel 12,68 Me PJ 11,569 1.597 10,17 87.1 87.5 chel 12,6 CH,Ph 13,052 105.97 2,101 1999 2,545 2,496 105.1 88.1 89.2 chel 12,6 69 X = U PĪ 1,050 10,369 1,944 2,004 2,552 2,515 10,5< 89.1 ehel 12,8 <td< th=""><th></th><th></th><th></th><th>12.718</th><th>90.57</th><th>1.974</th><th>1.990</th><th>2.585</th><th>2.585</th><th>108.2</th><th>86.4</th><th>87.3</th><th>chel</th><th>123</th></td<>				12.718	90.57	1.974	1.990	2.585	2.585	108.2	86.4	87.3	chel	123
67 Py Pī 12.9 1.912 2.592 1.6.3 108.7 106.4 bridge bridge Mc Pī 12.900 101.00 2.000 1.999 2.562 2.563 108.2 88.8 86.0 chel 124 68 Py' Pī 11.704 109.94 1.99 1.98 2.56 2.54 86.7 87.1 87.5 chel 125 Me Pi 1.305 10.57 — 1.978 1.959 2.533 2.54 107.7 87.1 87.5 chel 126 CH_JPh 1.3052 105.97 2.010 1.968 1.998 2.549 2.496 105.1 88.1 89.2 chel 92 69 X = Cl Pī 11.570 102.62 1.881 1.992 2.545 2.499 105.0 88.0 89.0 chel 123 69 X = 1' Pī 10.350 10.369 1.994 2.042 2.557				22.806		1.973	1.974	2.578	2.578	108.9	87.0	86.9	chel	
67 Py PI 12.921 97.54 1.989 1.954 2.562 2.563 108.2 85.8 86.0 chel 12.4 Me 12.800 100.10 2.000 1.967 2.562 2.544 10.0 85.7 chel 68 Py' PI 11.704 109.94 1.99 1.982 2.562 2.54 86.7 87.1 chel 125 68 Py P2./c 15.057 - 1.978 1.959 2.533 2.534 107.7 87.1 87.5 chel 126 CH_Ph 13.052 105.97 2.010 1.969 2.547 2.541 107.2 86.8 87.9 chel 127 16.30 103.69 11.877 19.84 1.994 2.496 105.1 88.1 89.0 chel 127 14.399 11.18.7 1.984 1.994 2.542 2.151 105.2 88.1 89.0 chel 127 <tr< th=""><th></th><th></th><th>_</th><th></th><th></th><th>1.946</th><th>1.912</th><th>2.592</th><th>2.592</th><th>116.3</th><th>108.7</th><th>106.4</th><th>bridge</th><th></th></tr<>			_			1.946	1.912	2.592	2.592	116.3	108.7	106.4	bridge	
Me 14.260 116.66 1.994 1.999 2.562 2.546 10.00 87.8 chel 68 Py ^e PĪ 11.704 109.94 1.99 2.56 2.54 87.7 86.7 87.1 chel 125 Me 11.688 91.93 2.00 2.33 2.54 87.8 86.7 chel 125 68 Py P2 ₁ /c 15.057 - 1.978 1.959 2.533 2.541 107.7 87.1 87.5 chel 126 CH ₃ Ph 13.052 105.97 2.010 1.969 2.547 2.649 105.0 88.0 89.0 chel 127 13.052 103.50 103.69 1.994 2.004 2.549 2.502 105.3 88.0 89.1 chel 128 13.931 86.62 1.994 2.552 2.515 105.5 89.1 89.0 chel 129 70 X = Cl P2 ₁ /n 8.	67	Ру	ΡĪ	12.921	97.54	1.989	1.954	2.568	2.563	108.2	85.8	86.0	chel	124
68 Py" PT 11.704 109.94 1.99 1.96 2.56 2.54 107.7 86.5 87.5 chel 125 Me PT 11.704 109.94 1.99 1.98 2.56 2.54 86.7 87.1 chel 125 68 Py P2 ₁ /c 15.057 1.959 2.533 2.534 107.7 87.1 87.5 chel 126 69 X = CI PT 11.570 102.62 1.983 1.998 2.549 2.406 105.1 88.1 89.2 chel 92. 69 X = I' PT 10.350 103.69 1.994 2.004 2.549 2.512 105.5 88.0 89.0 chel 128 69 X = I' PT 10.350 103.69 1.994 2.004 2.542 2.512 105.5 89.0 89.0 chel 70 X = CI P2 ₁ /n 8.233 - 1.994	Me			14.260	116.66	1.994	1.999	2.562	2.546	106.9	87.4	87.8	chel	
68 Py ^c PI 11.704 109.94 1.98 2.56 2.54 86.7 87.1 chel 125 Me P1 11.704 109.94 1.96 2.00 2.53 2.54 87.8 86.7 chel 125 68 Py P2 ₁ /c 15.057 - 1.978 1.959 2.533 2.534 107.7 87.1 87.6 86.7 chel 126 69 X = Cl PI 11.570 102.62 1.983 1.995 2.545 2.499 105.1 88.1 89.2 chel 92 69 X = I' PI 10.350 1.994 2.042 2.549 2.499 105.3 88.0 89.0 chel 128 69 X = I' PI 10.350 1.994 2.040 2.549 2.511 105.5 89.1 8.00 chel 128 70 X = Cl P2 ₁ /n 8.253 1.997 2.003 2.517			_	12.800	100.10	2.000	1.967	2.566	2.554	107.7	86.5	87.5	chel	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	68	Py ^e	ΡĪ	11.704	109.94	1.99	1.98	2.56	2.54		86.7	87.1	chel	125
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Me			14.169	91.53	1.96	2.00	2.53	2.54		87.8	86.7	chel	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				11.688	91.93									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68	Ру	$P2_1/c$	15.057		1.978	1.959	2.533	2.534	107.7	87.1	87.5	chel	126
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH_2Ph			13.052	105.97	2.010	1.969	2.547	2.541	107.2	86.8	87.9	chel	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				21.662										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69	X = Cl	ΡĪ	11.570	102.62	1.983	1.998	2.549	2.496	105.1	88.1	89.2	chel	92,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				13.093	102.15	1.985	1.995	2.545	2.499	105.0	88.0	89.0	chel	127
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				14.399	111.87	1.984	1.996	2.550	2.502	105.3	88.0	89.1	chel	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69	$\mathbf{X} = \mathbf{I}^{f}$	ΡĪ	10.350	103.69	1.994	2.004	2.549	2.512	105.2	88.1	88.9	chel	128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				13.931	86.62	1.982	2.001	2.506	2.556	105.4	89.0	88.0	chel	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				16.369	111.99	1.984	1.994	2.552	2.515	105.5	89.1	89.0	chel	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	X = Cl	$P2_1/n$	8.253		1.997	2.003	2.520	2.541	106.0	88.2	87.5	chel	129
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				21.018	90.89	2.017	1.959	2.517	2.563	107.6	85.9	85.9	chel	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				21.531		2.003	2.003	2.515	2.557	106.1	87.3	88.4	chel	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	70	X = I	$P2_1/n$	16.570		1.980	1.990	2.543	2.519	107.6	86.7	87.2	chel	130,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				12.370	99.97	1.979	1.999	2.540	2.498	105.8	87.6	88.4	chel	131
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				20.007		1.983	2.002	2.537	2.512	106.4	87.4	87.7	chel	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71		$P2_1/n$	17.378		1.994	1.981	2.513	2.549	106.3	87.1	86.4	chel	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				19.752	84.50	1.973	2.003	2.498	2.555	106.1	87.5	88.4	chel	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				23.845		1.991	1.997	2.506	2.551	105.3	89.1	87.7	chel	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.982	1.980	2.507	2.533	105.3	88.8	88.2	chel	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.999	1.983	2.497	2.550	105.1	89.2	88.0	chel	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.992	2.007	2.500	2.542	105.0	88.9	88.1	chel	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72		$P2_1/n$	17.282		1.986	1.989	2.529	2.493	105.9	87.4	88.4	chel	133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				19.543	91.89	1.984	1.991	2.526	2.491	107.0	86.5	87.3	chel	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				23.997		2.000	1.999	2.532	2.489	106.2	96.8	88.0	chel	
1.984 1.996 2.533 2.503 106.7 86.5 87.1 chel 73 P63/m 15.492 - 1.978 1.978 2.492 2.492 105.5 88.0 88.0 chel 134 74 P1 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 134 74 P1 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 135 13.578 114.25 1.985 1.992 2.567 2.510 106.7 86.7 88.2 chel 14.135 101.49 2.004 2.003 2.459 2.548 105.6 88.7 85.7 chel 1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge						1.984	1.977	2.487	2.535	106.3	88.3	87.1	chel	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.984	1.996	2.533	2.503	106.7	86.5	87.1	chel	
73 P6 ₃ /m 15.492 - 1.978 1.978 2.492 2.492 105.5 88.0 88.0 chel 134 74 PI 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 135 74 PI 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 135 13.578 114.25 1.985 1.992 2.567 2.510 106.7 86.7 88.2 chel 14.135 101.49 2.004 2.003 2.459 2.548 105.6 88.7 85.7 chel 1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge						1.981	1.993	2.542	2.479	106.3	86.7	88.2	chel	
74 PI 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 135 13.578 114.25 1.985 1.992 2.567 2.510 106.7 86.7 88.2 chel 135 14.135 101.49 2.004 2.003 2.459 2.548 105.6 88.7 85.7 chel 1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge	73		P6 ₃ /m	15.492		1.978	1.978	2.492	2.492	105.5	88.0	88.0	chel	134
74 PI 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 135 13.578 114.25 1.985 1.992 2.567 2.510 106.7 86.7 88.2 chel 135 14.135 101.49 2.004 2.003 2.459 2.548 105.6 88.7 85.7 chel 1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge				15.492										
74 P1 12.971 100.62 1.980 1.996 2.565 2.546 107.8 86.7 86.9 chel 135 13.578 114.25 1.985 1.992 2.567 2.510 106.7 86.7 88.2 chel 14.135 101.49 2.004 2.003 2.459 2.548 105.6 88.7 85.7 chel 1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge			- 7	8.530	120									
13.578114.251.9851.9922.5672.510106.786.788.2chel14.135101.492.0042.0032.4592.548105.688.785.7chel1.9892.0052.5662.536112.2106.8106.3bridge	74		P1	12.971	100.62	1.980	1.996	2.565	2.546	107.8	86.7	86.9	chel	135
14.135 101.49 2.004 2.003 2.459 2.548 105.6 88.7 85.7 chel 1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge				13.578	114.25	1.985	1.992	2.567	2.510	106.7	86.7	88.2	chel	
1.989 2.005 2.566 2.536 112.2 106.8 106.3 bridge				14.135	101.49	2.004	2.003	2.459	2.548	105.6	88.7	85.7	chel	
						1.989	2.005	2.566	2.536	112.2	106.8	106.3	bridge	

Table 11.—Continued

^{*a*} Acetone solvate. ^{*b*} Acetonitrile solvate. ^{*c*} 0.86 CH₂Cl₂ solvate. ^{*d*} CH₃COOEt solvate. ^{*c*} 0.5 H₂O solvate. ^{*f*} Toluene solvate.

				· · · · ·									
Struc- ture	x	Space	a b	α β								Bond	
no.	or R'	group	с	γ	P-	—S	M	—S	S—P—S	M-	-S-P	type	Ref.
75, α	0	ΡĪ	13.387	72.84	1.968	1.987	2.540	2.529		87.9	87.8	chel	138
			13.997	87.92	1.958	1.968	2.570	2.534		89.0	87.6	chel	
			16.281	84.87	1.963	1.972	2.533	2.545		86.7	86.2	chel	
					1.970	1.983	2.586	2.579		107.9	103.8	bridge	
					1.976	1.966	2.607	2.581		107.9	107.0	bridge	
					1.995	1.977	2.584	2.579		107.0	106.3	bridge	
75, α	O 40%	ΡĪ	14.031	92.15	1.972	1.989	2.543	2.562	106.6	88.0	88.2	chel	136a
	S 60%		13.372	72.91	1.964	1.970	2.552	2.559	108.3	87.0	87.1	chel	
			16.272	95.20	1.976	1.988	2.542	2.549	107.7	86.0	86.4	chel	
					1.974	1.990	2.575	2.579	116.7	106.9	97.3	bridge	
					1.987	1.980	2.563	2.588	116.9	108.0	108.5	bridge	
					1.977	1.998	2.565	2.571	116.4	107.3	107.8	bridge	
76 , β	0	$P2_1/n$	13.689	—	1.985	1.965	2.556	2.578	107.7	87.3	87.6	chel	139
			30.903	93.07	1.990	1.975	2.542	2.540	106.2	87.3	87.7	chel	
			14.212	—	1.975	1.981	2.528	2.619	107.6	88.7	86.0	chel	
					1.958	1.986	2.546	2.609	108.4	86.7	87.9	chel	
					1.945	1.950	2.542	2.556	115.5	108.8	109.1	bridge	
					1.934	1.939	2.549	2.584	122.8	106.9	111.6	bridge	
76 , β	S	P 2/n	12.827		1.985	1.989	2.595	2.598	107.3	88.35	88.14	chel	136a
			17.206	97.12	1.981	1.973	2.549	2.545	105.9	88.63	88.89	chel	136b
			13.507		1.900	1.928	2.577	2.551	118.9	111.97	109.36	bridge	
		P2/c	17.374										137
			17.354	93.20									
	0"	D 2	19.963	100.27	1.075	2 000	3 504	2 6 4 9	116.2	107.5	107.1	1 -: 1	1.40
77, α	O.	R3	12.852	108.37	1.975	2.009	2.584	2.548	116.2	107.5	107.1	bridge	140
=0 0	D/ 1/	D 2/	12.176		1.975	1.983	2.549	2.546	106.9	87.9	8/.8	chei	1 4 1
7 8 , β	$\mathbf{R}' = \mathbf{M}\mathbf{e}$	P2/c	13.170		1.9/6	2.008	2.517	2.543	106.1	87.5	88.3	chel	141
			10.599	110.11	1.987	1.9/6	2.508	2.542	100.3	88.7	87.2	chei	
70	D/ M-	Deel	18.526		1 079	1 0 9 7	2 5 50	7 401	106 7	966	00 4	ah al	1.41
78	$\mathbf{K} = \mathbf{M}\mathbf{e}$	Рсаб	18.900		1.9/8	1.982	2.550	2.481	106.7	80.0	88.4	cnei	141, 142
	H adduct		21.678		1.998	1.968	2.563	2.495	107.6	85.6	88.1	chel	
			24.491		1.970	2.006	2.495	2.557	106.7	87.0	87.9		
					1.971	1.997	2.498	2.564	106.0	87.6	87.6		
78	$\mathbf{R}' = \mathbf{M}\mathbf{e}$	P2/n	17.271	_	1.976	2.008	2.553	2.500	106.1	86.7	87.5	chel	143
	Н	,	11.985	105.94	1.987	1.976	2.497	2.557	106.3	87.3	86.8	chel	
	adduct ^b		13.061										
79	Ar =	ΡĪ	24.179	75.78	1.970	1.975	2.551	2.559	109.2	86.2	85.8	chel	144
	<i>p</i> -tol		14.413	59.65	1.976	1.997	2.568	2.541	108.4	85.2	85.5	chel	
	-		12.590	58.35	1.976	1.985	2.557	2.543	108.7	84.3	84.6	chel	
					1.979	1.994	2.567	2.532	107.0	87.4	88.0	chel	
80	Ar = Ph	ΡĪ	20.026	65.46	1.995	2.008	2.524	2.527	105.0	87.8	87.4	chel	93
			12.360	77.46	1.996	2.009	2.527	2.535	105.5	87.7	87.2	chel	
			12.093	77.54	1.982	2.017	2.544	2.545	107.7	85.6	84.9	chel	
					1.985	2.007	2.527	2.526	106.8	85.1	84.7	chel	
81	Ar =	Pcab	15.343		1.997	2.001	2.554	2.498	106.0	88.0	89.3	chel	145
	<i>p</i> -tol		20.787		1.992	2.002	2.550	2.508	105.0	87.3	88.4	chel	
	$\mathbf{R}' = \mathbf{CF}_3$		25.422										
82		A2/a	18.632		1.983	1.993	2.679	2.510	107.8	85.6	90.1	chel	146
			24.384	92.16	1.955	2.020	2.662	2.482	108.7	84.9	88.5	chel	
			12.600		1.990	2.005	2.636	2.508	108.7	84.9	88.1	chel	
					1.979	2.012	2.661	2.495	108.5	84.9	88.8	cheł	

Table 12. Crystal structure data for tetranuclear molybdenum phosphorodithioates (R = Et in compounds 75–85)

"3MeCN solvate. "Acetone solvate.

3412

3

Structure no. and R'	L	Space group	a b c	α β γ	P–	-S	M-	—S	S—P—S	M–	-S-P	Bond type	Ref
83	Ру	PĪ	11.460	112.35	1.976	1.980	2.535	2.567	107.2	88.3	87.3	chel	147
Н			14.237	90.09	1.978	1.993	2.547	2.498	107.5	86.8	85.8	chel	
			15.046	111.77	1.983	1.998	2.498	2.543	106.3	86.9	88.4	chel	
83	H_2O	ΡĪ	10.146	110.42	2.0035	1.982	2.491	2.552	106.4	88.1	86.9	chel	148
Me			12.978	106.86	2.004	1.981	2.495	2.542	105.8	88.5	87.6	chel	
			16.132	91.31	1.977	2.000	2.527	2.558	108.1	84.3	84.8	chel	
83	DMSO	ΡĪ	12.183	72.87	1.980	1.995	2.489	2.550	106.2	87.0	88.4	chel	148
Me			12.551	71.24	1.994	1.977	2.513	2.541	106.4	88.0	87.6	chel	
			15.979	67.48	1.979	1.985	2.577	2.530	109.2	85.1	86.3	chel	
83	DMF	ΡĪ	12.639	108.78	1.966	1.995	2.570	2.542	107.7	87.3	86.7	chel	149
Me			13.722	106.36	1.979	2.002	2.561	2.507	106.3	87.8	86.4	chel	
		_	14.644	102.54	1.987	1.989	2.541	2.501	105.8	87.0	87.7	chel	
83	MeCN	ΡĪ	11.723	75.40	1.996	2.000	2.543	2.504	106.4	86.9	87.9	chel	150
CCl ₃			14.353	69.13	2.006	2.000	2.548	2.553	108.0	86.2	86.2	chel	
			15.333	64.93	1.943	2.029	2.533	2.490	107.1	87.0	86.3	chel	
83	Ру	$P2_1/c$	14.779		1.979	2.001	2.540	2.502	105.9	87.6	88.2	chel	148
Ph			13.736	93.26	2.003	1.981	2.494	2.548	105.8	88.4	87.4	chel	
			23.073		2.000	1.981	2.512	2.578	107.8	87.4	86.0	chel	
84	Ру	ΡĪ	13.781	98.37	1.997	1.960	2.526	2.547	107.9	86.8	86.9	chel	151
Me			14.523	109.41	1.995	1.964	2.525	2.546	108.6	86.2	86.3	chel	
			12.098	105.00	1.999	1.988	2.556	2.564	107.5	87.3	87.4	chel	
84	DMF	ΡĪ	13.215	106.06	1.994	1.998	2.524	2.557	106.9	87.0	88.0	chel	151
Me			17.81	109.78	1.993	1.982	2.518	2.555	107.6	87.4	86.6	chel	
			9.783	82.00	2.009	1.964	2.567	2.569	109.0	85.5	86.5	chel	
85	oxazole	ΡĪ	10.342	76.27	1.993	1.984	2.527	2.596	106.8	89.0	87.0	chel	152,
			11.994	88.55	1.981	1.990	2.579	2.513	106.2	87.6	89.3	chel	153
			21.352	73.26	1.982	2.004	2.584	2.519	107.6	86.0	87.2	chel	
85	EtOH	$P2_1/n$	13.250		1.963	1.964	2.537	2.590	108.4	86.5	87.9	chel	152,
			17.296	92.41	1.966	1.966	2.555	2.562	108.1	86.8	87.0	chel	154
			23.223	_	1.931	2.005	2.541	2.577	109.2	86.2	85.7	chel	
					1.963	1.988	2.569	2.582	115.9	108.3	108.7	bridge	

Table 13. Crystal data for heterometallic molybdenum phosphorodithioato complexes

(Table 10) suggest a formulation with single and double phosphorus-sulphur bond lengths. A shorter P—S bond is associated with a longer Mo—S bond and *vice versa*.

The Mo—S bond *trans* to Mo=O is the longest, followed by that *trans* to the bridging oxygen. A difference in the P—S and Mo—S(—S) bond lengths in the chelate rings, and the presence of short phosphorus-sulphur bond lengths (as low as 1.932 Å in Mo₂O₃{S₂P(OPrⁿ)₂}₄,⁸⁶ or 1.928 Å in Mo₂O₃{S₂P(OPrⁱ)₂}₄,⁸⁷ corresponding to double bonds) suggests that the formulation **45**, with a coordination pattern of type **2**, satisfactorily reflects the nature of bonding in these compounds.

The compound $Mo_2O_3(NH) \{S_2P(OEt)_2\}_2 \cdot THF$ is an oxo-imino doubly bridged binuclear compound **46**, with two isobidentate chelating ligands (see Table 10 for geometric parameters).⁸⁸

IONEL HAIDUC et al.

There are several similar compounds containing oxomolybdenum, thiooxomolybdenum and aryliminomolybdenum coordination centres, connected by double sulphur or oxosulphur bridges, **47–50** and two terminal chelating ligands. All contain five-coordinate molybdenum(V). In these compounds the phosphorodithioato ligands are isobidentate, with practically equal P—S bonds, and a diminished S—P—S bond angle imposed by the formation of the four-membered MoS₂P chelate rings. Molecular dimensions for compounds **47** (R = Pr^{*i*}),⁸⁹ **48** (R = Pr^{*i*}),⁹⁰ **49** (R = Et),^{91,92} and **50** (R = Me, Et, Ar = Ph, *p*-tolyl)⁹³ are collected in Table 10.

A doubly bridged compound with four chelating ligands, $Mo_2S_2\{S_2P(OEt)_2\}_4$, **51** (R = Et),⁹⁴ contains six-coordinate molybdenum(IV). The phosphorus-sulphur bonds are slightly differing (1.96 and 2.00 Å), suggesting some double bond character in the shorter ones. A *trans* influence of bridging sulphur atoms in the Mo_2S_2 nucleus can be invoked to explain these differences.

Another type of dinuclear complex contains an additional carboxylato bridge, connecting the two molybdenum atoms, as in structures **52** (R = Et, $R' = CF_3$, R'' = H,⁹⁵ Me,⁹⁶; R' = Me, R'' = SEt,⁹⁷ NH₂, NCMe₂ and NCHBu⁹⁸) and **53** (R = Et, $R' = C_7H_{15}$),⁹⁹ with terminal isobidentate chelating phosphorodithioates, and *p*-tolylimino groups bonded to molybdenum. Molecular dimensions are listed in Table 10.

The pyridazine molecule in $Mo_2SO_3\{S_2P(OPr^i)_2\}_2$ · pyridazine, 54,¹⁰⁰ and pyridine in $Mo_2SO_3\{S_2P(OPr^i)_2\}_2$ · pyridine, 55,^{100,101} also form bridges between molybdenum centres, while the phosphorodithioato ligand forms terminal isobidentate chelating groups. The bridging mode of pyridine in 55 is rather unusual and surprising.¹⁰²

A pyrimidine adduct $Mo_2SO_2\{S_2P(OPr)_2\}_2$, pyrimidine has been formulated as 56, with the pyrim-

idine molecule coordinated to only one molybdenum atom, with a long Mo—N distance (2.861 Å). The ligand is isobidentate chelating.

In the complex $Mo_2\{S_2P(OPEt)_2\}_6 \cdot NC_6H_4N$ the *p*-phenylenediimino group acts as a spacer bridge between two molybdenum atoms. Of the six phosphorodithioato ligands two are monodentate terminal groups, while the other four are chelating, as shown in **57**.¹⁰³

(iii) Trinuclear complexes. A large number of trinuclear molybdenum phosphorodithioato complexes are built around a cyclic $Mo_3S_4^{++}$ core, **58a**. The Mo_3S_3 unit also contains three Mo-Mo bonds and is capped by a fourth sulphur atom; it can also be regarded as an incomplete cubane structure, with one of the four corners (marked by an asterisk) missing, as shown in **58b**. This site (*) can be occupied in some compounds by a fourth metal (hetero)atom, e.g. molybdenum, copper or antimony, to form a complete cubane structure.

The Mo₃S₄⁴⁺ core is coordinatively unsaturated, each molybdenum atom displaying the tendency to become octahedral, six-coordinated (if Mo—Mo bonds are ignored, as we will do throughout this review, for simplicity). Thus, each molybdenum atom possesses three available coordination sites. If a phosphorodithioato ligand forms a chelate ring at each molybdenum site, and an additional monodentate ligand is coordinated to each molybdenum atom, structure **59** results. This has been found in the compound $[Mo_3S_4{S_2P(OEt)_2}_3(L)_3]^+[(EtO)_2PS_2]^- (L = imidazole),^{104}$ where the positive charge of the trinuclear complex is neutralized by a fourth phosphorodithioate group acting as a non-coordinated counter ion. The chelating ligands are all isobidentate (P—S 1.976–1.998 Å; S—P—S 107.2°). In the free anion $(EtO)_2PS_2^-$ the P—S bonds are shorter (1.946 and 1.952 Å) and the S—P—S bond angle larger (118.7°).¹⁰⁴

A pair of the monodentate ligands L can be replaced by a fourth phosphorodithioato group, acting as a bridge and spanning across the Mo—S—Mo bridge, to form a structure of type 60.

These compounds contain three chelating and one bridging phosphorodithioato ligands and several such complexes, with $L = H_2O$,¹⁰⁵⁻¹⁰⁷ PhCH₂CN,¹⁰⁸ oxazole,¹⁰⁹ PPh₃,^{110,111} and allylthiourea,¹¹² have been reported. The ligand L is weakly bonded and can be easily interchanged with various groups. The position occupied by L has been called "a loose coordination site", reflecting this mobility.^{113,114}

The differences between the two coordination patterns of phosphorodithioato ligands in **60** are reflected in the different values of the S—P—S bond angle (see Table 11). Thus, formation of a four-membered chelate ring MoS₂P, forces a diminished value of this angle, which is in the range 105–108° (compared with the ideal tetrahedral value of 109°), while bridging S₂P(OR)₂ ligand displays a broader S—P—S angle (115–117°).

If the "loose coordination site" is occupied by a strong bidentate donor, like bipyridyl, this can force the phosphorodithioato ligand coordinated to the same site to become monodentate, as in **61**, a structure found in $Mo_3S_4\{S_2P(OEt)_2\}_4$ · bipy.¹¹⁵ This is a rare, if not unique, example of a compound containing simultaneously three different types of coordinated phosphorodithioate ligand in the same molecule : monodentate, bidentate chelating and bridging.

The P—S bond lengths and S—P—S bond angles in the three types of ligand (Table 11) differ in agreement with the coordination patterns. Thus, in the monodentate ligand P—S 1.998 Å, P—S 1.901 Å; S—P—S 120.8°; in the bidentate ligands P—S bond lengths are in the range 1.943–1.985 Å and S—P—S 107.5° (av.), while in the bridge P—S 1.969 and 1.976 Å and S—P—S 115.7°.¹¹⁵

The bridging phosphorodithioato group in 61 can be replaced by other ligands, notably monothiophosphato (phosphorothioato) groups, as in 62, or carboxylato groups, as in 63. While compounds of type 62, e.g. $Mo_3S_4\{S_2P(OEt)_2\}_3\{SOP(OEt)_2\}\cdot L \ (L = oxazole)^{116}$ may have been formed by accidental hydrolysis of tetrakis(phosphorodithioato) complexes,

carboxylato-bridged complexes 63, $Mo_3S_4\{S_2P(OEt)_2\}_3(\mu_2 \cdot R'COO)(L)$, with R' = H, L = pyr-idine,¹¹⁷ R' = Me, L = pyridine,^{117,118} MeCN,¹¹⁹ and R' = Et, L = pyridine,¹²⁰ have been prepared and studied in a systematic way. For crystal data and molecular dimensions see Table 11.

Oxidation of trinuclear complexes may lead to ruptured structures such as 64, which contain a monothiophosphato (phosphorothioato) bridge and two oxomolybdenum centres, in addition to the chelating phosphorodithioates. Such a structure has been found in the compound $Mo_3S_3O_2$ { $S_2P(OEt)_2$ }₃{SOP(OEt)_2}. The phosphorodithioato ligands are chelating and the phosphoro(mono)thioato group is bridging.¹²¹

A related family of trinuclear phosphorodithioato complexes is based upon the Mo₃S₃O core, in which the central, triply bridging sulphur atom in a capping position, has been replaced by oxygen.

Thus, complexes of type 65, with $L = oxazole^{109}$ and imidazole,¹²² have been structurally investigated. The available crystal data are listed in Table 11.

Here, the two different coordination patterns of the phosphorodithioato ligands lead to differing P—S interatomic distances and S—P—S bond angles, as found in Mo_3S_4 derivatives above.

Mixed species, with approximately 50–50% degree of occupancy of the central site X by oxygen and sulphur, **66**, have also been described, e.g. $Mo_3S_3(O,S){S_2P(OEt)_2}_4 \cdot L$ with L = thiourea.^{105,123}

The phosphorodithioato bridge can be replaced by a carboxylato bridge, as illustrated by Mo_3S_3O { $S_2P(OEt)_2$ }(OAc)Py (67).¹²⁴

A further development is a structural change in the trinuclear complexes, where the bridging and one of the chelating phosphorodithioato ligands are replaced by two carboxylato bridges. This results in a structure such as **68**, with two chelating ligands. Examples are Mo_3S_3O { $S_2P(OEt)_2$ }₂(OAc)₂Py,¹²⁵ and Mo_3S_3O { $S_2P(OEt)_2$ }₂(BzCOO)₂Py.¹²⁶

More complex structures, but related to those discussed above, are formed with three disulphido bridges between the molybdenum atoms. While maintaining the main features of previous structures, an additional halogen atom weakly interacts with three sulphur atoms, as observed in $Mo_3(S_2)_3S(X)\{S_2P(OEt)_2\}_3$ (69) with $X = Cl_2^{92,127}$ and $X = I_2^{128}$ and $Mo_3(S_2)_3(O)(X)\{S_2P(OEt)_2\}_3$ (70) with $X = Cl_2^{129}$ and $X = I_2^{130,131}$ The structures could also be shown as complete cubes, with a site occupied by a halogen (69a and 70a).

Double trinuclear units, as in Cl[Mo₃S₇{S₂P(OEt)₂}₃]₂[FeCl₄] (71)¹³² and the related oxo derivative Cl[Mo₃S₆O{S₂P(OEt)₂}₃]₂ [FeCl₄] (72),¹³³ are formed by sharing a chlorine atom via S...Cl (semi)bonds (2.936–3.145 Å).

Trinuclear molybdenum phosphorodithioato complexes are also known, in which halogen bridges are part of the central core bonding the molybdenum atoms together. Thus, in $Mo_3S_2Cl_3\{S_2P(OEt)_2\}_3$ the phosphorodithioato ligands occupy only chelating positions (structure 73)¹³⁴ while in $Mo_3S_2Cl_3\{S_2P(OEt)_2\}_4$ an additional bridging phosphorodithioato ligand forces one chlorine atom into a monodentate position (structure 74).¹³⁵

3419

(iv) Tetranuclear complexes. A fairly large number of phosphorodithioato molybdenum complexes are formed about a central Mo₄S₄ or Mo₄S₃O cubane core, with the general composition Mo₄S₃X{S₂P(OR)₂}₆ (where X = S or O).¹³⁶ Two isomeric forms are possible: an α -isomer, with three bridging and three chelating phosphorodithioato ligands, α -Mo₄S₃X{ μ -S₂P(OR)₂}₃{S₂P (OR)₂}₃, 75, and the β -isomer, with two bridging and four chelating phosphorodithioato ligands, β -Mo₄S₃X{ μ -S₂P(OR)₂}₂{S₂P(OR)₂}₄, 76. The β -Mo₄S₄{S₂P(OEt)₂}₆ complex has been reported by two groups.^{136,137}

Similar compounds with X = O, i.e. α -Mo₄S₃O{S₂P(OEt)₂}₆ (structure 75, X = O), ¹³⁸ β -Mo₄S₃O {S₂P(OEt)₂}₆ (structure 76, X = O), ¹³⁹ and α -Mo₄S₃O{S₂P(OEt)₂}₆·3MeCN (77)¹⁴⁰ have been reported.

Compounds whose structures have been established by X-ray diffraction are listed in Table 12 which shows the obvious differences between the molecular dimensions of the bridging and chelating ligands.

The two bridges of the β -structure can be replaced by carboxylato bridges, resulting in formation of Mo₄S₄{S₂P(OR)₂}₄(μ -RCOO)₂, **78**. Several such compounds are known, including Mo₄S₄

 $\{S_2P(OEt)_2\}_4(\mu\text{-}OAc)_2, {}^{141} \quad Mo_4S_4\{S_2P(OEt)_2\}_4(\mu\text{-}OAc)_2H, {}^{142} \quad \text{and} \quad Mo_4S_4\{S_2P(OEt)_2\}_4(\mu\text{-}PhCOO)_2^{143} \text{ (see Table 12)}.$

The exchange of bridging phosphorodithioato ligands for carboxylato ligands, while the chelating groups are maintained, suggests that the latter are more strongly bound.

The compound $Mo_4S_4\{S_2P(OEt)_2\}_4(NC_6H_4Me-p)_4$ also contains a cubic core, but the structure is constructed differently. Each molybdenum atom forms a chelate MoS_2P ring and a Mo=N bonc with the arylimido group, as shown in **79**.¹⁴⁴

A related compound, $Mo_4S_4O_2\{S_2P(OEt)_2\}_4(NC_6H_4Me-p)_2$, **80**, has also been reported.⁹³ It differs from **79** only by replacement of two NAryl by two oxo groups.

A completely different structure was found in the compound $Mo_4S_4\{S_2P(OEt)_2\}_4$ (NC₆H₄Me-*p*), (μ -OOCCF₃)₂.¹⁴⁵ This complex is in fact a dimer consisting of two dinuclear units, joined by ar S—S bond, **81** (R' = CF₃). Compound **81** contains only chelating phosphorodithioato ligands.

The compound $Mo_4N_4{S_2P(OEt)_2}_8$ is based upon on a rare monocyclic Mo_4N_4 skeleton, **82**. The square Mo_4N_4 ring is almost planar and each molybdenum atom participates in two additional MoS_2P chelate rings. The Mo—N bond lengths are practically equal (1.862–1.870 Å) and indicate some degree of double bonding, while the Mo—S and P—S interatomic distances are nonequivalent.¹⁴⁶ Short Mo—S bonds (range 2.469–2.510 Å) are associated with long P—S bonds (range

1.993–2.020 Å) and long Mo—S bonds (range 2.637–2.680 Å) pair with short P—S bonds (range 1.955–1.990 Å).¹⁴⁶ Therefore, coordination pattern **2** probably best describes the ligand structure here.

(v) Heterometallic molybdenum phosphorodithioates. Trinuclear molybdenum complexes can be converted into complete cubanes by inserting a metal atom in the vacant position of structure **58b**. Several cubane structures **83** in which one corner of the cube is occupied by a CuI unit have been reported, e.g. $Mo_3CuS_4(I)\{S_2P(OEt)_2\}_3(\mu$ -R'COO)(L), with R' = H, L = Py,¹⁴⁷ R' = Me, L = H₂O,¹⁴⁸ DMF,¹⁴⁹ DMSO;¹⁴⁸ R' = CCl₃, L = MeCN¹⁵⁰ and R' = Ph, L = Py.¹⁴⁸ Their structures contain only chelating phosphorodithioato ligands. Molecular dimensions are listed in Table 13.

One of the sulphur atoms of the cubane unit can be replaced by oxygen, to form Mo₃Cu $S_3O(I)\{S_2P(OEt)_2\}_3$ (μ -OAc)(L), (84) L = Py, DMF.¹⁵¹

An SbCl₃ molecule can also be inserted in the corner of the cube, as shown in **85**, and the compounds $Mo_3S_4SbCl_3\{S_2P(OEt)_2\}_4 \cdot 2H_2O$,¹⁵² $Mo_3S_4SbCl_3\{S_2P(OEt)_2\}_4 \cdot oxazole^{152,153}$ and $Mo_3S_4SbCl_3\{S_2P(OEt)_2\}_4 \cdot EtOH^{152,154}$ have been investigated.

c. *Tungsten*. The chemistry of tungsten phosphorodithioato complexes appears very similar to that of molybdenum, but far fewer compounds have been investigated structurally. Some structural differences are, however, observed.

The dinuclear compound $W_2S_4\{S_2P(OEt)_2\}_2$ contains a double sulphur bridge and two chelating phosphorodithioato ligands, $86^{,91,155}$ and is similar to its molybdenum analogue. Two crystalline forms of this compound were obtained, depending on the synthesis method used.¹⁵⁶

A compound of composition $W_2S_2\{S_2P(OEt)_2\}_4$ differs from its molybdenum counterpart in that the tungsten compound contains two bridging and two chelating ligands, **87**,¹⁵⁷ whereas the molybdenum compound (structure **51**) contains only chelating ligands. In **87** the chelating ligands are isobidentate and the bridging groups are symmetric (coordination pattern **10**). Unlike the fourmembered chelate WS₂P rings, the five-membered W₂S₂P rings present in this structure are not planar. The W—S bonds to chelating ligands (av. 2.57 Å) are longer than those to bridging ligands (av. 2.48 Å). As usual, the bridging S—P—S bond angle (114.4°) is larger than the chelating S—P—S bond angle (106.70).¹⁵⁷

A trinuclear compound $W_3S_4\{S_2P(OEt)_2\}_3(\mu$ -OAc)(pyridine)¹⁵⁸ has structure **88** (R' = Me, L = Py), which is reminiscent of the molybdenum analogue.

The trinuclear compound $W_3Se_7Br\{S_2P(OEt)_2\}_3$ has no molybdenum counterpart in terms of composition (no molybdenum-selenium core of this type in a phosphorodithioate) but the structural type **89** is similar to **69**. The ligand is isobidentate.¹⁵⁹

Cubane clusters (both α - and β -isomers) similar to those of molybdenum are also known for tungsten, i.e. α -W₄S₄{S₂P(OEt)₂}₆ (90),¹⁶⁰ β -W₄S₄{S₂P(OEt)₂}₆ (91),¹³⁶ and W₄S₄{S₂P(OEt)₂}₄(NC₆H₄Me-*p*)₄ (92).¹⁶¹

Several cubane structures containing tungsten and copper, of the general formula W₃Cu $S_4(I){S_2P(OEt)_2}_3(\mu$ -R'COO)(L), with R' = Me, L = MeCN,¹⁶² Py;^{163,164} R' = CCl₃, L = MeCN¹⁶⁵ and R' = Ph, L = MeCN,¹⁶⁶ have been investigated crystallographically. Their structure of type **93** is similar to that of molybdenum analogues (structure **83**).
Crystal data and molecular dimensions of tungsten phosphorodithioato complexes are collected in Table 14.

7. Group 7: Mn, Tc, Re

Attempts to prepare manganese phosphorodithioato complexes resulted in the formation of ionic $[Mn(phen)_3][S_2P(OEt)_2]_2$ (94), in which the metal is octahedrally coordinated only by *ortho*-phenanthroline, leaving the phosphorodithioate as counter-ion, outside the coordination sphere.¹⁶⁷ The P—S bonds in the anion are in the range 1.942–1.956 Å and the S—P—S bond angle (av. 118.50°) is broader than tetrahedral.

In spite of the rarity of technetium compounds, a phosphorodithioato complex of this metal, $TcCl_2{S_2P(OMe)_2}(PMe_2Ph)_2$ (95) has been investigated by X-ray diffraction. The compound displays an octahedral coordination geometry with isobidentate chelating phosphorodithioate (Tc—S 2.475 Å, P—S 1.992 Å).¹⁶⁸

The crystal data are collected in Table 15.

No rhenium phosphorodithioate crystal structure has been reported so far in the literature.

8. Group 8: Fe, Ru, Os

a. Iron. The iron(III) phosphorodithioato complexes investigated by X-ray diffraction Fe $[S_2P(OR)_2]_3$ with $R = Me^{169}$ and Pr^{i} ,¹⁷⁰ display an octahedral geometry, **96**, with three isobidentate chelating ligands. The octahedron is distorted by a twist angle of 20° between the two triangular faces of the octahedron (compared with a twist angle of 60° for the ideal octahedron).

The iron(II) complex NMe₄[FeCl{S₂P(OMe)₂}₂] displays trigonal bipyramidal geometry **97** with practically isobidentate ligands.¹⁶⁹ As expected axial Fe—S bonds (2.570 and 2.603 Å) are somewhat longer than equatorial Fe—S bonds (2.427 and 2.450 Å) and this induces some asymmetry in the P—S bonds as well (1.971–1.990 Å).

Table 14. Crystal structure data for tungsten phosphorodithioato complexes ($\mathbf{R} = \mathbf{Et}$ in compound **86**)

Struc- ture	R′	Space	a b	α β								Bond	
no.	Ĺ	group	с	Ŷ	P-	—S	M-	—S	S—P—S	M	-SP	type	Ref.
86	form A	$P2_i/n$	10.122		2.005	2.003	2.471	2.476	102.0	89.7	89.8	chel	155
			12.813	90.25	2.009	1.997	2.467	2.487	102.9	89.0	88.7	chel	
	form A	$P2_1/n$	18.230		2.012	2.022	2.483	2.473	102.3	89.2	89.4	chel	156
		()	12.905	90.5	1.992	2.022	2.498	2.473	103.8	88.3	88.2	chel	
			10.153										
	form B	$P2_1/a$	14.045		2.002	2.011	2.467	2.466	101.5	89.5	89.3	chel	91
			10.341	113.09	1.993	2.009	2.482	2.475	102.6	89.1	89.0	chel	
	form B	P2./a	13.844		2.000	2.016	2.438	2.430	100.3	89.7	89.6	chel	156
		1/ 4	10.280	113.2	2.019	1.998	2.480	2.477	101.7	89.5	90.0	chel	
			17.907										
87		$P2_i/n$	10.905		1.988	2.002	2.561	2.582	106.8	88.7	87.5	chel	157
			13.784	110.48	2.012	2.009	2.507	2.461	114.4	103.9	105.6	bridge	
		_	13.360	—									
88	Me, Py	P1	13.939	101.08	1.975	1.999	2.551	2.509	106.1	87.7	88.4	chel	158
			16.018	105.69	1.979	1.997	2.569	2.535	107.4	87.1	87.7	chel	
00		D2 /.	9.627	77.64	1.953	1.986	2.557	2.507	106.5	87.8	88.5	chel	150
89		PZ ₁ /C	13.109	121.00	1.983	1.972	2.515	2.331	103.1	90.4	90.2	chel	139
			15.067	121.09	2.034	2.023	2.333	2.548	103.5	89.4	89.7	chel	
00		ΡĪ	14.063	92.06	2.040	2.040	2.508	2.540	107.5	88.0	88.4	chel	160
70		11	16 289	95 24	1 990	1 980	2.545	2.500	106.4	87.3	877	chel	100
			13.377	73.06	1.970	1.985	2.542	2.552	107.5	86.0	86.6	chel	
			101011	10.00	1.967	1.990	2.564	2.574	116.9	107.2	107.7	bridge	
					1.970	2.010	2.561	2.567	116.7	107.5	107.6	bridge	
					2.000	1.987	2.558	2.577	117.0	107.7	108.8	bridge	
91		P2/n	12.807		2.019	1.979	2.559	2.556	107.5	86.7	87.6	chel	136a
			17.195	97.33	1.960	1.988	2.585	2.539	107.3	87.5	88.2	chel	
			13.488		1.926	1.926	2.546	2.546	123.2	111.2	111.2	bridge	
		D.T	14 (50	101.00	2.047	2.047	2.580	2.580	103.6 ^a	123.2^{a}	123.2	bridge	
92	Ar = T	PI	14.650	101.82	1.985	1.98/	2.539	2.538	107.1	87.3	87.2	chel	161
	<i>p</i> -101		19.133	75.02	1.983	1.988	2.33/	2.535	107.0	85.0	80.1 85.4	chel	
			13.075	15.92	1.992	1.990	2.501	2.545	107.7	83.2	87.0	chel	
93	Me	РĪ	10 152	111.00	1.907	1.994	2.525	2.339	106.5	88.5 87 1	88.0	chel	162
,5	MeCN	11	14 325	104 43	1 994	1.992	2.554	2.477	107.3	86.6	85.8	chel	102
	meert		15.935	97.89	1.983	1.995	2.543	2.496	105.8	87.5	87.5	chel	
93	Me, Py	$P2_1/n$	14.196		1.984	2.003	2.554	2.506	105.8	87.7	88.6	chel	163,
			17.203	86.02	1.998	2.000	2.573	2.526	106.5	86.8	88.1	chel	164
			18.075	_	1.981	2.005	2.562	2.499	105.7	87.5	88.8	chel	
93	CCl ₃ ,	ΡĪ	11.684	103.88	1.971	2.014	2.567	2.504	107.0	86.5	87.4	chel	165
	MeCN		14.243	109.01	1.984	2.008	2.537	2.476	104.9	87.9	89.1	chel	
<u>.</u>	DI	n .	15.455	65.64	1.981	1.997	2.533	2.487	105.6	87.3	88.2	chel	1
93	Ph,	P 1	11.645	96.15	2.004	1.985	2.521	2.563	106.7	87.7	86.9	chel	166
	MeCN		18.565	113.65	1.959	2.00/	2.496	2.556	107.3	86.9	8/.4	chel	
			11.292	93.//	2.002	1.9/1	2.48/	2.349	105.8	81.3	86.2	cnel	

"Because of large thermal parameters of the phosphorus atom these data are of low quality.

3426

Table 15. Crystal structure data for Group 7 metal (Mn, Tc, Re) phosphorodithioato complexes

Structur no.	e R	Space group	a b c	α β γ	P-	—S	M	—s	S—P—S	М	S—P	Bond type	Ref.
94 ^a	Et	ΡĪ	17.340 12.738 12.651	84.66 115.46 115.94	1.946 1.942	1.924 1.956			118.3 118.7	_		ionic ionic	167
95	Me	Pbcn	16.207 10.445 14.878		1.992	1.992	2.475	2.475	106.1	86.9	86.9	chel	168

^a Amended data.

Three cyclopentadienyliron dicarbonyl phosphorodithioates, η^5 -CpFe(CO)₂{S₂P(OR)₂} with Cp = C₅H₅, R = Et,¹⁷¹ Prⁱ¹⁷² and Cp = C₅Me₅, R = Prⁱ¹⁷³ contain monodentate ligands in a typical piano-stool structure **98**. Molecular dimensions are given in Table 16.

97

b. Ruthenium. No ruthenium phosphorodithioate crystal structure has been determined.

c. Osmium. The only relevant osmium compound which has been investigated by X-ray diffraction, contains two trithio $(Pr'O)_2(S)PSS$ ligands in an unusual bridging configuration **99** and four phosphorodithioato chelating ligands.^{174,175}

The molecular dimensions are listed in Table 16.

9. Group 9: Co, Rh, Ir

a. Cobalt. The octahedral $Co{S_2P(OMe)_2}_3$ complex (100) displays a twofold symmetry axis through Co and P(1) and the ligands are isobidentate chelating.¹⁷⁶ A hemihydrate $Co{S_2P(O Et)_2}_3 \cdot 1/2H_2O$ (101) has also been investigated.¹⁷⁷

A mixed ligand dinuclear complex $Co_2{S_2P(OEt)_2}_2 \cdot L$ (102) where L = 11,23-dimethyl-3,7,15,19-tetraazatricyclo(19^{3.1.1}-9¹³)-hexacosa-2,7,9,11,13(26),14,19,21(25)22,24-decaene-25,26-diolate, containing two phosphorodithioato symmetrical bridges (coordination pattern 7), has been described.¹⁷⁸

Cobalt(II) phosphorodithioates can be stabilized as five- and six-coordinate adducts or anions. Thus, five-coordinate $Co\{S_2P(OMe)_2\}_2 \cdot PPh_3$ displays a trigonal bipyramidal geometry, **103**, with non-equivalent axial (Co—S 2.569 and 2.664 Å) and equatorial bonds (Co—S 2.325 and 2.333 Å).^{179,180} The usual long M—S/short P—S bond pairing is observed in this compound, which imposes non-equivalence on the P—S bonds (short 1.941 and 1.961 Å; long 1.997 and 2.010 Å).

Struc- ture no.	R	Space group	a b c	α β γ	P-	–S	M-	—S	S—P—S	M-	-S-P	Bond type	Ref.
96	Me	C2/c	14.211 11.115	97.23	1.991 1.994	1.994 1.994	2.491 2.465	2.465 2.465	107.9 107.0	85.7 86.0	85.1 86.0	chel chel	169
96	\mathbf{Pr}^{i}	C2/c	12.823 11.030 27.110		1.998 1.985	1.998 2.007	2.461 2.491	2.461 2.472	105.7 108.5	86.8 94.9	86.8 85.0	chel chel	170
97	Me	ΡĪ	7.165 8.628	83.98 85.32 89.80	1.990 1.985	1.973 1.971	2.427 2.450	2.570 2.603	110.9 110.3	85.2 86.2	81.8 82.4	chel chel	169
98	Et	$P2_1/n$	7.440 14.545 14.454	94.42	1.933	2.018		2.304	112.1		111.2	uni	171
98	Pr^{i} Cp = C Ma	P2 ₁ /c	13.189 8.636 16.113	94.19 	1.944	2.026		2.322	112.5		109.1	uni	172
98	$C_{s}Me_{s}$ Pr' Cp = $C_{s}Me_{s}$	$P2_1/c$	13.718 11.090 14.985	98.16	1.940	2.021		2.312	111.9		112.0	uni	173
99	Pr'	ΡĪ	13.695 13.747 10.707	97.4 97.6 117.4	1.994 1.981	2.014 2.010	2.469 2.384	2.472 2.454	104.0 102.0	88.4 88.3	87.9 85.7	chel chel	174, 175

Table 16. Crystal structure data for Group 8 metal phosphorodithioates (Fe, Ru, Os)

Five-coordinate cobalt(II) is also present in $[NMe_4][CoCl{S_2P(OMe)_2}_2]$, which displays trigonal bipyramidal geometry **104**.¹⁶⁹ The non-equivalence of P—S (short 1.964 and 1.965 Å, long 1.996 and 2.000 Å) and Co—S bonds (long 2.615 and 2.651 Å, short 2.337 and 2.358 Å) is similar to that noted in the neutral triphenylphosphine adduct cited above.

104

Six-coordinate cobalt(II) occurs in $Co\{S_2P(OEt)_2\}_2 \cdot 2Py$ (105).¹⁸¹ Molecular dimensions of cobalt complexes are listed in Table 17.

b. Rhodium. No rhodium phosphorodithioato complexes seem to have been structurally investigated by X-ray diffraction.

c. Iridium. Only one iridium phosphorodithioate, $Ir{S_2P(OPr')_2}_3$, 106, has been investigated by X-ray diffraction,¹⁸² which shows the presence of two independent molecules in the unit cell. The ligand is anisobidentate and the molecular dimensions are given in Table 17. A curiosity of this compound is the non-equivalence of the three ligands in the coordination octahedron, as seen from

Struc- ture		Space	a b	α β								Bond	
no.	R	group	С	γ	P-	S	M—S	S—P—S	M	-SP	type	Ref.	
100	Me	C2/c	13.895	_	1.981	1.983	2.315	2.340	103.5	86.6	85.9	chel	176
			11.084	97.81	1.986	1.986	2.312	2.312	102.3	86.8	86.8	chel	
			13.020	_									
101	Et	ΡĪ	9.805	89.46	2.007	1.992	2.321	2.313	103.2	85.5	86.1	chel	177
			9.812	89.42	2.007	2.003	2.314	2.326	103.0	85.7	86.2	chel	
			14.271	86.95	2.004	2.017	2.318	2.320	102.8	85.8	86.0	chel	
102	Et	ΡĪ	18.644	84.99	1.968	1.970	2.680	2.650	118.1	110.7	108.1	bridge	178
			11.694	82.61	1.950	1.969	2.642	2.622	119.1	110.0	109.6	bridge	
			9.487	73.48									
103	Me	$P2_1/n$	26.712	_	1.941	2.010	2.569	2.325	109.0	81.4	86.5	chel	179,
			9.495	95.43	1.961	1.997	2.664	2.333	111.6	78.6	86.6	chel	180
			11.180										
104	Me	ΡĪ	7.164	84.59	2.000	1.965	2.337	2.615	111.1	86.3	79.6	chel	169
			8.612	84.63	1.996	1.964	2.358	2.651	110.4	87.5	80.3	chel	
			16.504	89.41									
105	Et	$P2_1/c$	8.117	_	1.975	1.976	2.506	2.524	111.1	84.3	83.9	chel	181
			17.183	104.19									
			9.901	_									
106	\mathbf{Pr}^{i}	ΡĪ	8.970	98.54	\mathbf{A}^{a}								182
			10.513	88.87	1.949	1.957	2.436	2.394	104.7	87.4	88.4	chel	
			19.107	98.18	2.014	2.034	2.373	2.334	102.1	86.6	87.2	chel	
					2.003	2.054	2.382	2.390	101.1	88.9	87.7	chel	
					\mathbf{B}^{a}								
					2.062	2.085	2.376	2.341	99.0	88.2	88.6	chel	
					1.978	1.984	2.417	2.456	103.3	89.4	88.1	chel	
					1.965	2.032	2.413	2.413	104.2	87.8	86.3	chel	

Table 17. Crystal structure data for Group 9 (Co, Rh, Ir) metal phosphorodithioato complexes

"Two independent molecules in the unit cell.

the P—S and Ir—S bond lengths and the S—P—S bond angles. From the P—S distances it appears that two of the ligands are reasonably symmetrically coordinated in each independent molecule, but the third is in each case anisobidentate. It is a curious compound though with such a variation in P—S lengths between ligands.

10. Group 10: Ni, Pd, Pt

a. Nickel. Nickel(II) phosphorodithioates seem to be another class of complexes favoured by crystallographers, as they are surpassed only by the number of molybdenum compounds investigated. Crystal data and molecular dimensions for nickel phosphorodithioato complexes are collected in Table 18.

Square planar nickel(II) complexes, **107**, were among the first metal phosphorodithioates to be investigated by X-ray diffraction and now the structures of Ni{S₂P(OR)₂}₂ with R = Me,¹⁸³ Et,¹⁸⁴⁻¹⁸⁶ Pr^{*n*},¹⁸⁷ Pr^{*i*188,189} cyclo-C₆H₁₁,¹⁹⁰ are known. Derivative of diols, such as 1,1'-biphenyl-2,2'-diol¹⁹¹ and 1,1'-binaphthyl-2,2'-diol¹⁹² have also been studied.

107

The nickel(II) phosphorodithioates display the tendency to coordinate one or two additional donor molecules, forming five- and six-coordinate adducts, respectively.

Five-coordinate complexes are obtained with bulky or sterically demanding donor molecules. Thus, tertiary phosphine adducts $Ni\{S_2P(OR)_2\}_2 \cdot L$ with R = Me, $L = PMe_3$,¹⁹³ and R = Et, $L = PPh_3^{194}$ are square pyramidal compounds, **108**, with the metal atom *ca* 0.5 Å above the basal plane of four sulphur atoms from the two basically isobidentate ligands.

108

Other five-coordinate adducts investigated are Ni $\{S_2P(OMe)_2\}_2$ · quinoline (tetragonal pyramidal, **108**, L = quin)¹⁹⁵ and 2Ni $\{S_2P(OEt)_2\}_2$ · DABCO (binuclear with two distorted tetragonal pyramidal coordination centres) **109**.¹⁹⁶

Table 18. Crystal structure data for nickel phosphorodithioato complexes

Structure no.	R	L	Space group	a c	n B a	P	Ŷ	M-	S	SPS	Я—М	S-P	Bond type	
107	Me		Pbca	10.290 8.640 16.356		1.979	1.984	2.225	2.219	1.027	84.4	84.5	chel	,
107	Et		P2 ₁ /c	10.22 8.67	102.50	1.947	1.986	2.213	2.208	103.1	84.7	83.9	chel	
107	Et		$P2_1/c$	10.493 10.300 8.760	102.59	1.986	1.993	2.230	2.236	103.1	84.3	84.0	chel	
107	Pr"		P21/n	8.165 8.706 8.706	103.76	1.978	1.999	2.220	2.230	102.5	84.8	84.1	chel	
107	\mathbf{Pr}'		Bb	14.160 18.094 10.323	— — 61.07	2.002 1.985	2.006 2.003	2.214 2.231	2.247 2.214	102.5 102.2	84.6 84.6	83.7 84.6	chel	
107	\mathbf{Pr}^{i}		C2/c	14.047 10.338 10.338		166.1	1.993	2.227	2.216	101.7	84.9	85.2	chel	
107	Cy		P2 ₁ /n	10.607 11.802 9.336 14.177	 96.72	1.982	1.993	2.221	2.216	101.7	84.9	85.0	chel	
107	$(RO)_2 = biph$		P2 ₁ /c	9.990 7.827 7.827	11.66	1.972	1.977	2.226	2.243	105.0	82.8	83.2	chel	
107	(RO) ₂ — binaph		P212121	9.630 9.630 10.171		1.971 1.966	1.975 1.967	2.242 2.249	2.233 2.239	106.1 106.9	81.9 79.9	82.1 80.2	chel chel	
108	Me	PMe,	PĪ	9.418 9.418	99.483 84.150 98.979								chel	
108	Et	PPh ₃	ΡĪ	12.985	99.10 99.10	1.969 1.960	1.969	2.395 2.436	2.433 2.391	107.2	84.4	83.7	chel	

3431

18—continued.	
Table	

	Bond	type Ref.	chel 195	chel	chel 196	chel	chel 195	uni	uni 197	chel		chel 198		chel 199		chel 200		chel 201		chel 202	chel	chol 202	C07 17110		chel 204	chel
		SP	84.7	84.6	82.4	92.9	86.7	114.7	111.3	86.7		83.7		82.6		83.0		82.7		83.4	85.0	0,00	0.00		83.4	83.6
		×	84.8	85.2	83.6	83.0	80.2		ļ	83.0		84.2		82.0		83.1		82.6		81.0	82.4		7.70		82.5	82.7
		S-P-S	106.8	105.5	109.1	110.4	111.1	116.8	117.2	108.0		110.4		111.7		118.8		110.9		111.1	111.8	0 1 1 1	0.111		112.1	111.9
		S	2.42	2.39	2.450	2.44]	2.300	2.419	ļ	2.344		2.50		2.511		2.303		2.504		2.488	2.464	201 C	COL-1		2.524	2.522
l.		Ā	2.42	2.43	2.426	2.437	2.583	ļ	2.398	2.499		2.49		2.486		2.302		2.490		2.590	2.565	7 5 10	(10.7		2.466	2.463
		S	2.00	2.01	1.995	1.9/8	1.968	1.962	2.003	1.979		1.99		1.972		1.827		1.988		1.973	1.966	1 072	C1/-1		1.980	1.979
Table 18-		4 	1.99	1.99	1.969	1.9.1	1.913	1.937	1.936	1.955		1.98		1.971		1.821		1.976		1.961	1.959	1 070	1.10		1.951	1.944
	ъя	γ		101.3	105.15	102.32 90.93		92.50	ļ	107.65			104.8	113.8		99.25 93.46	92.01	1	110.36		111.67		121.06		69.64	71.16 89.99
	b	c	15.61	10.11 29.75	13.171	8.333 10.602	7.86	14.51 21 79	20.007	11.599 14.929		8.11	9.94 9.94	13.753	15.306	8.438 14.885	6.366	9.620	19.553 12.274	12.770	16.756 17 125	121.01	15.102	13.972	9.469	14.638 14.637
	Space	group	C2/c		ΡĪ		$P2_{1/c}$		$P2_{1/c}$			$P2_{1/c}$		$P2_1/c$		ΡĪ		P2/c		$P2_{i}/n$			2120		ΡĪ	
		Г	quin									Py		Py		Py		$BzNH_2$				hiny	(dia		bipy	
		R	Me		Et		Me		(RO) ₂ =	∕_o∕_w	$\sim 0^{-1}$	Et		Bu"		Cy		Cy		Bu"		Me			Bu″	
	Structure	no.	108		109		110		110			111		111		111		111		112		113	Ì		113	

3432

195			205			206			207				208			209			210			205			211		
chel	chel					chel			chel	chel	chel	chel	chel			chel	ionic		chel	ionic					chel		
84.2	84.1					84.8			84.1	84.6	84.8	84.0	83.3			83.2	ļ		85.9						82.8		
83.4	83.0					84.1			85.2	86.0	86.5	85.7	84.6			82.7	ł		84.0						83.7		
110.8	111.6					110.2			110.8	109.8	109.6	110.3	110.4			111.1	120.0		111.1	117.6					105.1		
2.47	2.48					2.471			2.547	2.543	2.554	2.547	2.505			2.499			2.624						2.247		
2.50	2.52					2.509			2.504	2.500	2.502	2.493	2.459			2.496			2.549	ł					2.264		
1.97	1.97					1.972			1.969	1.972	1.976	1.980	1.981			1.984	1.943		1.960	1.969					1.999		
1.97	1.97					1.959			1.969	1.967	1.965	1.964	1.974			1.960	1.894		1.953	1.960					1.939		
	100.17			135.95		1	101.21			126.42	I			96.43			98.154		95.66	90.23	75.46		131.65		108.9	90.2	109.4
6.61	18.57	18.86	14.914	9.333	23.359	15.500	17.400	10.347	22.281	21.597	13.237		13.96	17.89	11.88	16.806	12.720	21.248	13.513	16.040	12.891	24.885	11.313	19.771	9.029	13.432	17.246
$P2_1/c$			P2 ₁ /c			C2/c			$P2_1/n$				C2/c			$P2_1/n$			ΡĪ			C2/c			ΡĪ		
phen	(yellow	green)	phen	(bright	green)	phen			TMED				DPED						$\mathbf{R}' = \mathbf{B}\mathbf{u}''$								
Me			Me			Et			Et				Ē			Bu"			C			Me			Et		
113			113			113			113				113			114			115			116			117		

In the adduct with 2,9-dimethyl-phenanthroline, $Ni\{S_2P(OMe)_2\}_2 \cdot 2,9-Me_2phen$, the dinitrogen ligand displaces one sulphur from the coordination sphere, with the formation of an unusual complex containing both didentate and monodentate phosphorodithioato ligands, **110**. The coordination geometry is intermediate between square pyramidal and trigonal bipyramidal.¹⁹⁵

A similar geometry was found in Ni $\{S_2P(OCMe_2CMe_2O)\}_2 \cdot 2,9$ -Me₂phen.¹⁹⁷

Trans-octahedral complexes of type 111, e.g. Ni{S₂P(OR)₂}₂·2Py with R = Et,¹⁹⁸ Buⁿ,¹⁹⁹ Cy²⁰⁰ and Ni{S₂P(OCy)₂}₂·2PhCH₂NH₂²⁰¹ have been investigated, but surprisingly, the bisimidazole adduct Ni{S₂P(OBuⁿ)₂}₂·2imidazole is a *cis*-complex 112.²⁰²

A *cis*-configuration of type **113** is imposed by polycyclic tertiary amines such as bipyridyl and orthophenanthroline, and has been found in Ni{S₂P(OR)₂}₂ · bipy with $R = Me^{203}$ and $Bu^{n,204}$ and in Ni{S₂P(OR)₂}₂ · phen with $R = Me^{195,205}$ and Et.²⁰⁶ Similarly, the adducts of substituted ethylenediamines Ni{S₂P(OEt)₂}₂ · TMED²⁰⁷ and Ni{S₂P(OEt)₂}₂ · DPED,²⁰⁸ are also *cis*-octahedral complexes.

In all the nitrogen-base *cis*-adducts and Ni—S bonds become non-equivalent, as a result of *trans*influence of the nitrogen donors. The data listed in Table 18 illustrate this tendency, showing differing Ni—S interatomic distances.

Occasionally, the nitrogen donor can displace the phosphorodithioato ligand, with formation of ionic complexes. Those investigated by X-ray diffraction include two six-coordinate complexes, $[Ni\{S_2P(OBu^n)_2\}(phen)_2]^+[\cdot S_2P(OBu^n)_2]^-$, **114** (R = Buⁿ)²⁰⁹ and $[Ni\{S_2P(OCy)_2\}(BuNH_2)_4]^+[S_2P(OCy)_2]^-$, **115** (R = Cy),²¹⁰ as well as products of complete expulsion of the phosphorodithioate ligand from the coordination sphere, like $[Ni(phen)_3][S_2P(OMe)_2]_2$ (**116**).²⁰⁵

In the complex $[NBu_4][Ni\{S_2P(OEt)(OH)\}S_2C(CN)_2]$, 117, an ethyl group has been lost (hydrolysis) during the preparation,²¹¹ but the coordination of the phosphorodithioate ligand has been maintained.

b. Palladium. Only two palladium square planar phosphorodithioates, **118**, have been investigated, namely $Pd\{S_2P(OPr^i)\}_2^{212}$ and $Pd\{S_2P(OC_6H_3Me_2)_2\}_2^{213}$ The molecular dimensions are listed in Table 19. In both compounds the ligands are isobidentate and the S—P—S bond angles of 103–105° suggest minor strain in four-membered chelate ring.

c. Platinum. Platinum(II) forms a square planar four-coordinate complex, with two isobidentate ligands, $Pt\{S_2P(OPr')_2\}_2$, **119**,²¹⁴ and a cation with two coordinated phosphine ligands, in $[Pt\{S_2P(OPr')_2\}(PMe_2Ph)_2]^+[PF_6]^-$, **120**.²¹⁵

Table 19. Crystal structure data on palladium and platinum phosphorodithioato complexes

Structure no.	R	Space group	a b c	$\substack{lpha\\eta}{eta}{\gamma}$	P-	—S	M-	S	S—P—S	M—	S—P	Bond type	Ref.
118	Pr ⁱ	PĪ	6.379 8.449 10.977	99.89 97.04 99.42	1.998	1.994	2.346	2.334	103.4	86.1	86.5	chel	212
118	OC ₆ H ₃ - Me ₂	$P2_1/a$	16.075 8.353 14.268	115.46	1.984	1.992	2.346	2.344	104.9	82.4	82.3	chel	213
119	Pr ⁱ	ΡĪ	6.346 8.470 10.956	100.29 96.79 99.21	2.003	2.010	2.332	2.341	101.9	87.3	86.9	chel	214
120	Pr ⁱ	ΡĪ	10.913 11.432 29.463	93.59 91.79 106.60	A ^{<i>a</i>} 2.001	2.003	2.383	2.381	104.3	86.1	86.1	chel	215
121	Et	РĪ	12.291 13.064 13.679	113.06 100.71 114 72	1.997 1.926 1.974	2.012 2.019 1.999	2.364 (3.954) 2.388	2.367 2.324 2.337	102.6 120.7 103.6	87.4 106.1 85.9	87.0 	chel uni chel	216
122	Et	P2 ₁	10.107 20.002	114.23	1.928 1.993	2.036 2.011	2.373	2.342 2.328	119.1 102.4	 86.2	104.5 87.0	uni chel	217a
123	Pr ⁱ	$P2_1/c$	8.467 15.846 21.540	98.03	1.994	2.001	2.434	2.341	105.0	87.8	87.1	chel	217Ъ

"Two independent molecules in the unit cell.

In the triphenylphosphine adduct, $Pt\{S_2P(OEt)_2\}_2 \cdot PPh_3$, **121**, one ligand is forced to become monodentate.²¹⁶ The differing *trans*-effects of phosphorus (from PPh₃) and sulphur (from the monodentate phosphorodithioate) produce slight differences in the Pt—S interatomic distances: Pt—S 2.388 Å *trans* to PPh₃, Pt—S 2.337 Å *trans* to sulphur from the monodentate phosphorodithioate and Pt—S 2.324 Å *trans* to sulphur from the chelating ligand.

A second complex containing both chelating and mondentate phosphorodithioato ligands is $Pt{S_2P(OEt)_2}_2 \cdot ApeS$ (ApeS = $Ph_2AsCH_2CH_2P(=S)Ph_2$) which displays square planar geometry, **122**, with coordination by one arsenic and three sulphur atoms.^{217a} The monodentate phosphorodithioato ligand in **121** and **122** can be replaced by an organic group and a methylplatinum compound **123** has been reported.^{217b}

Molecular dimensions for platinum compounds are given in Table 19.

11. Group 11: Cu, Ag, Au

a. Copper. Copper(II) phosphorodithioates are difficult to obtain, because of internal oxidation of the ligand to bis(thiophosphoryl)disulphide, with concomitant reduction of the metal to copper(I). Therefore, only copper(II) compounds investigated by X-ray diffraction can be considered as authentic examples. In fact, the only copper(II) phosphorodithioate is $Cu\{S_2P(OC_6H_4Me-2)_2\}$, a square planar complex **124** with isobidentate ligands.²¹⁸ The Cu—S bonds average 2.33 Å.

In two other copper(II) complexes, namely $Cu(en)_2 \{S_2P(OEt)_2\}_2$,²¹⁹ and $Cu(en)_2 \{S_2P(OEt)_2\}(SCN)$,²¹⁹ the Cu—S distance of *ca* 3.0 Å suggests that in the actual complex the square planar cation $[Cu(en)_2]^{2+}$, weakly interacts with phosphorodithioato anions. The original paper describes the phosphorodithioato ligand in $Cu(en)_2 \{S_2P(OEt)_2\}_2$ as monodentate, (structure **125**) with Cu—S 3.04 and 2.90 Å, P—S 1.93–1.94 Å in one ligand and 1.98 and 2.01 Å in the second

3437

ligand.²¹⁹ In Cu(en)₂{S₂P(OEt)₂}(SCN) the phosphorodithioato ligand is described as bridging (structure **126**) with Cu—S 3.09 and 2.99 Å, P—S 1.96 and 1.97 Å.²¹⁹

The SCN- anions are free in the lattice (non-coordinated). The abnormally long Cu—S distances make this description debatable. Probably a more correct description would be to consider packing of square planar $[Cu(en)_2]^{2+}$ cations and $(EtO)_2PS_2^-$ anions in the lattice. The equivalence of the P—S bonds in **125** supports this idea, and $Cu(en)_2\{S_2P(OEt)_2\}_2$ could then be reformulated as **125a**. All other copper phosphorodithioates are copper(I) derivatives.

Mononuclear copper(I) phosphorodithioates are known only as triphenylphosphine adducts, $CuS_2P(OR)_2 \cdot 2PPh_3$ with $R = Et^{220}$ (structure 127) and $(OR)_2 = OCH_2CMe_2CH_2O.^{221a}$ The coordination geometry is distorted tetrahedral.

The mono(triphenylphosphine) adduct is a tricyclic dimer, $[(Ph_3P)Cu\{S_2P(OEt)_2\}]_2$ **128** (R = Et, L = PPh₃). The transannular Cu1—S2 distance (2.553 Å) is only slightly longer than the ring Cu1—S1 (2.455 Å) and Cu1—S2' (2.357 Å) distances. Thus, the dimeric structure is of type **22**, with dative transannular bonds. The P—S(1) double bonds (1.969 Å) are somewhat elongated, due to participation of the sulphur atoms in an additional dative bond. The single P—S(2) bond (2.004 Å) displays a normal interatomic distance.^{221b}

The bipyridine adduct is a cyclic dimer, $[Cu{S_2P(OEt)_2} \cdot bipy]_2$, with bridging phosphorodithioato ligands. The copper-sulphur bonds in the dimer are Cu1—S1 2.347 and Cu2—S2 2.323 Å, and phosphorus-sulphur bonds are P—S1 1.969 and P—S2 1.984 Å. The non-equivalence of the bond pairs supports formulation **129**, with the ligand displaying coordination pattern **8** and an eight-membered ring skeleton of type **20**.

In the absence of an additional donor ligand, copper(I) phosphorodithioates are polynuclear, cluster complexes. Thus, copper(I) diisopropylphosphorodithioate is a tetramer 130, containing a Cu_4 tetrahedron,²²²⁻²²⁴ with a triconnective phosphorodithioate (coordination pattern 18) on each face (in 130 the ligand on the rear Cu_3 face is omitted for clarity).

Two cubic Cu₈ cluster complexes Cu₈S{S₂P(OEt)₂}₆²²³ and Cu₈Cl₂{S₂P(OEt)₂}₆^{224a} have been reported. In Cu₈S{S₂P(OEt)₂}₆ the Cu₈ cube contains an encapsulated sulphur atom in the centre and a tetrametallic tetraconnective phosphorodithioato ligand (coordination pattern **19**) on each face (only four are shown in diagram **131** for clarity). In Cu₈Cl₂{S₂P(OEt)₂}₆ one chlorine is encapsulated and occupies an internal position in the centre of the cube, while the second is external, and forms a bridge connecting pairs of cubes in a supramolecular chain structure.^{224a} The Cu...Cu interatomic distances of 2.95–3.00 Å in the sulphur-centred compound and 3.18–3.44 Å in the chlorine-centred compound, indicate weak metal-metal interactions. The Cu—S(—P) distances of 2.25–2.28 Å are shorter (indicating stronger bonds) than the eight Cu—S_{central} bonds (2.54–2.63 Å).²²³

These two compounds are the only known examples of tetrametallic tetraconnective coordination of phosphorodithioato ligands.

Two heterometallic compounds, derived from a cubane skeleton, $Cu_3MoS_3O(PPh_3)_3\{S_2P(OEt)_2\}$, **132**,^{224b} and $Cu_3WS_3O(PPh_3)_3\{S_2P(OEt)_2\}$, **133**,^{224c} have similar structures. The ligand is anisobidentate and displays distinct single P—S and double P=S bonds, e.g. 2.002 and 1.964 Å, respectively, in **132**.^{224b}

Crystal and molecular data for copper phosphorodithioates are listed in Table 20.

b. Silver. A triphenylphosphine adduct was found to be a dimer, $[Ag\{S_2P(OEt)_2\}(PPh_3)]_2$, **134** $(R = Et, L = PPh_3)$ with bimetallic triconnective coordination (pattern **14**).²²⁵ The Ag—S bonds

Struc- ture no.	R	X or L	Space group	a b c	α β γ	P—	S	M–	–S S	—P—S	M—S-	-P	Bond type	Ref.
124	2-Me- C ₆ H₄		P2 ₁ /n	9.128 13.633	91.08	1.976 1.982	1.986 1.982	2.317 2.346	2.330 2.312	106.9 106.7	83.4 83.1	82.8 84.0	chel chel	218
125	Et		P 2 ₁	24.204 13.597		1.94	1.98	(3.04)		119.0			ionic	219
126	Et		$P2_1/c$	6.943 16.071 8.529 19.247	121.22	1.95	1.97	(3.09)	(2.99)	118.3			ionic	219
127	Et		$P2_1/n$	13.696 11.88 14.70	 91.0	1.967	1.973	2.440	2.453	112.7	78.4	78.0	chel	220
127	$(OR)_2 = $		$P2_1/n$	22.09 18.159 12.234 18.656	 108.75 	1.957	1.979	2.466	2.457	114.4	80.2	80.0	chel	221a
128	Et	PPh ₃	ΡĪ	9.716 11.026	78.16 102.64 114.34	1.969	2.004	2.456	2.553 2.537	114.7	81.8	78.7 101.5	bridge	221b
129	Et		ΡĪ	9.388 10.208	95.88 68.44	1.969	1.984	2.347	2.323	118.4	108.6	100.4	bridge	220
130	Pr ⁱ		P2 ₁ 2 ₁ 2 ₁	10.704 11.311 12.428		1.963	2.050	2.278	2.290 2.262	119.1	101.8	110.6 102.9	bridge	218
				33.923	—	1.966	2.059	2.230	2.291 2.268	118.8	102.7	110.3	bridge	
						1.980	2.065	2.286	2.267	118.0	99.5	105.4	bridge	
						1.969	2.050	2.275	2.305	117.1	99.2	104.5	bridge	
				11.283		2.009	2.049	2.277	2.263	116.5	103.2	115.5	bridge	222
				33.825	_	1.982	2.021	2.266	2.203	119.1	101.1	102.4	bridge	
						1.962	2.045	2.265	2.256	117.9	98.5	106.5	bridge	
						1.973	2.038	2.283	2.252	118.1	99.2	105.6	bridge	
131	Et	X = S	R3	12.667	111.42	1.986	2.013	2.251	2.280	119.5	103.1	110.8	bridge	223
131	Et	A —CI	F I	12.663 14.317	57.35 72.23	2.002 2.000 2.012	2.022 2.028 2.020	2.267 2.267 2.264	2.287 2.305 2.298	121.2 120.9 120.5	102.4 102.5 108.5 108.4	102.7 113.3 102.8 113.4 103.1	bridge bridge	22 4 a
132	Et	X = O L = Pl	PĪ Ph ₃	13.810 19.753	99.42 107.24	1.964	2.002	2.342	2.481		102.6	113.6	bridge	224b
133	Et	$\begin{array}{l} X = O \\ L = Pl \end{array}$	PĪ Ph₃	11.719 13.808 19.764	88.05 99.27 107.8	1.973	2.001	2.337	2.472	118.3	103.4	107.1	bridge	224c
134	Et	PPh ₃	$P2_1/c$	11.696 14.965 9.753	88.12 119.0	1.957	2.000	2.810	2.502 2.821	117.3	82.3	102.8 81.4	chel	225
135	Et		$P2_1/c$	12.966 16.159	106.0			2.517 2.868	2.728 2.679				uni	226
136	Et	X = S L = PI	PĪ Ph3	12.898 13.600 20.636	101.19 107.22 77.17	1.981	2.000	2.622	2.684 2.689	117.1	98.7	95.0 107.9	ı.	227
136	Et	$\begin{array}{l} X = O \\ L = P \end{array}$	PĪ Ph ₃	14.275 19.960 11.746	98.58 107.68 87.88	1.968	1.975	2.735	2.583 2.656	115.6	98.0 107.3	105.1	chel	228
137	Pr'		ΡĪ	12.495 17.251 12.167	99.33 102.17 72.79	2.001 1.944 1.970 1.983	2.028 2.036 2.019 2.017	2.284 2.326 2.267 2.297	2.253 2.223 2.292 2.276	116.7 117.3 118.1 118.4	102.2 104.7 109.2 101.6	103.0 103.4 100.7 107.8	bridge bridge bridge bridge	229

Table 20. Crystal structure data for Group 11 (Cu, Ag, Au) phosphorodithioato complexes

are non-equivalent (Ag1—S1 2.821 Å, Ag1—S1' 2.502 and Ag—S2 2.810 Å) and the phosphorussulphur bonds are close to single (P—S1 2.000 Å) and double (P—S2 1.957 Å). This leads to a (quasi)tricyclic structure 134 consisting of an Ag₂S₄P₂ ring with two dative transannular S \rightarrow Ag interactions, i.e. a molecular skeleton of type 22.

The bis(diethylphosphorodithioato) anion is also dimeric, $[Ag\{S_2P(OEt)_2\}_2]_2^{2-}$ (in its tetramethylammonium salt $[NMe_4^+]_2$ $[Ag\{S_2P(OEt)_2\}_2]_2^{2-}$, and the phosphorodithioato ligands are distinctly nonequivalent, showing monodentate (monoconnective) and bimetallic triconnective behaviour (structure 135).²²⁶ The strongest silver-sulphur bond is to the monodentate ligand (Ag1-S3 2.517 Å), while in the eight-membered Ag₂S₄P₂ ring the Ag-S bonds are somewhat weaker (Ag1-S2 2.728 Å and Ag1-S1' 2.679 Å). Transannular dative bonds S1 \rightarrow Ag1 again transform the structure into a tricyclic system 135, based again upon a molecular skeleton of type 22.

Mixed polynuclear tungsten-silver compounds, with phosphorodithioato ligands attached only to silver, $WAg_3S_4 \{S_2P(OEt)_2\}$ (PPh₃)₃ and $WAg_3S_3O \{S_2P(OEt)_2\}$ (PPh₃)₃ have been reported.^{227,228} These are polycyclic cages, consisting of WS₂Ag, WS₃Ag₂ and PS₃Ag₂ rings, with external oxo and thiooxo groups attached to tungsten. They bear some relation with the cubane structures, as illustrated by the idealized diagram **136** (X = S or O, L = PPh₃).

Silver atoms are tetracoordinate (distorted tetrahedral geometry) and the phosphorodithioato ligand displays trimetallic triconnective bridging (pattern 13) which can be seen as connected to a triangular face in a WAg₃ tetrahedron. The P—S bonds seem to be intermediate between single and double, and the S—P—S bond angles of 117.1° (X = S) and 115.6° (X = O) are enlarged, probably because of spanning two silver atoms. Perhaps for the same reason, the Ag—S—P angles (95.0–107.9° for X = S and 98.0–107.3° for X = O) also display significantly larger values than in bidentate phosphorodithioato complexes.

3441

Crystal and molecular data of silver complexes are collected in Table 20.

c. Gold. Only one gold(I) phosphorodithioate, $[AuS_2P(OPr')_2]_n$, has been structurally investigated.²²⁹ It consists of binuclear Au—Au units, connected through secondary bonds in supramolecular chains, **137**. The somewhat unsymmetric phosphorodithioato ligand is bridging. The crystal and molecular dimensions are listed in Table 20. The S—P—S bond angles are enlarged to 116.7–118.4°, due to the bridging function of the ligands.

12. Group 12: Zn, Cd, Hg

a. Zinc. Zinc (dialkyl)phosphorodithioates are important engine oil lubricant additives, and as such have received much attention. Since amines are also introduced in the composition of lubricant oils, a number of amine adducts have also been investigated.

Zinc(II) diethylphosphorodithioate is a polymeric compound, $[Zn{S_2P(OEt)_2}_2]_n$, which displays symmetrically bridging ligands (coordination pattern 7) as shown in diagram **138**, with an additional chelating ligand at each metal atom.²³⁰ The Zn—S bonds in the polymeric chain (2.337 and 2.345 Å) are comparable to those in the chelate rings (2.350 and 2.401 Å), but the P—S interatomic distances are different, i.e. 1.992 and 2.001 Å in the bridging groups and 1.973 and 1.987 Å in the chelating phosphorodithioato ligands. Geometry about zinc is basically tetrahedral.²³⁰

The diisopropylphosphorodithioato complex is a dimer, $[Zn{S_2P(ORPr)_2}_{2]_2}^{21}$ containing an eight-membered ring, formed by two bridging ligands and two four-membered chelate rings, **139**. In the bridging group P—S bond lengths are 1.956 and 1.972 Å, while in the chelate rings the P—S distances are 1.968 and 1.984 Å. The S—P—S bond angles are 117.3° and 109.7°, respectively. The transannular Zn...S distance of 3.347 Å indicates a weak interaction, making the system quasi-tricyclic, of type **23**. The bridging ligands can be considered symmetric (coordination pattern no. **7**) and the chelating ligands practically isobidentate.

IONEL HAIDUC et al.

In the nitrogen base adducts the initial tetrahedral geometry is disturbed by the additional ligand. Thus, in the pyridine adduct $Zn \{S_2P(OPr')_2\}_2 \cdot Py (140)^{232,233}$ one of the phosphorodithioato ligands is forced to become anisobidentate (coordination pattern 3) and the P1—S2 separation (1.948 Å) is significantly shorter than P1—S1 (2.010 Å), P2–S3 (2.007 Å) and P2—S4 (1.971 Å). The Zn—S bonds are longer in the chelate ring (Zn—S3 2.352 Å, Zn—S4 2.496 Å) than the primary bond to the anisobidentate ligands, Zn—S1 (2.273 Å); a secondary Zn...S interaction (Zn...S2 3.041 Å) underscores the difference between the coordination patterns of the two ligands.

A dinitrogen ligand, bipyridyl, in $Zn\{S_2P(OPr^i)_2\}_2 \cdot bipy (141)^{233}$ forces one phosphorodithioato ligand to become anisobidentate, with $Zn \dots S 2.711$ Å (coordination pattern 3), while the three nitrogen atoms of terpyridine in the adduct $Zn\{S_2P(OPr^i)_2\}_2 \cdot terpy (142)^{233}$ force both phosphorodithioato ligands to become basically monodentate ($Zn \dots S 3.523$ and 3.977 Å). A clear distinction between double and single phosphorus–sulphur bonds can be made on the basis of the respective interatomic distances (P=S 1.925 and 1.926 Å in 141; 1.892 and 1.936 Å in 142; P-S 1.997 and 2.005 Å in 141; 1.968 and 2.012 Å in 142).²³³

Aliphatic amines produce similar structural changes. Thus, in the adduct $Zn\{S_2P(OPr')_2\}_2 \cdot en$ (structure 143)²³² the metal is four-coordinate (distorted tetrahedral) and the phosphorodithioato ligands are each monodentate, engaging in hydrogen bonding with the diamine.

A pentaamine, such as 1,11-diamino-3,6,9-triazaundecane (abbreviated datau) occupies five coordination sites around the metal (trigonal bipyramidal geometry) in Ni $\{S_2P(OEt)_2\}_2$ · datau (structure 144)²³³ and displaces both phosphorodithioato ligands from the coordination sphere, making them outer-sphere counter ions.

An anionic tris(phosphorodithioato) complex $[NMe_4][Zn{S_2P(OC_6H_4Me-4)_2}_3]$ contains, unexpectedly, a tetrahedrally coordinated central atom with one isobidentate chelating and two monodentate ligands (structure 145).^{234,235} Obviously, the zinc atom is too small to accommodate six

sulphur atoms and become six-coordinate. In the chelate ring P—S bonds are 1.961 and 1.978 Å, while in the monodentate ligands one can distinguish double P—S bonds (1.921 and 1.926 Å) and single P—S bonds (1.986 and 1.987 Å). The S—P—S bond angle in the four-membered chelate ring is 113.2° , and less strained (119.1°) in the monodentate ligands.

Tetranuclear zinc complexes with an encapsulated central sulphur or oxygen atom, i.e. $Zn_4S\{S_2P(OEt)_2\}_6^{236}$ and $Zn_4O\{S_2P(OBu'')_2\}_6$ (EXAFS²³⁷ and X-ray diffraction²³⁸) both contain a tetrahedron of zinc atoms (without metal-metal bonds) with practically isobidentate phosphorodithioato ligands bridging between pairs of metal atoms along the tetrahedron edges (structure **146**, X = S or O). There are no metal-metal bonds in these complexes; one ligand has been omitted for clarity.

Crystal and molecular dimensions of zinc phosphorodithioates are listed in Table 21.

b. Cadmium. Cadmium bis(diisopropylphosphorodithioate) is a cyclic dimer,²³¹ [Cd{S₂P (OPr')₂}₂]₂, 147, like its zinc analogue, with an eight-membered ring of type 23.

Cadmium can achieve six-coordination and this was found in the urotropine (hexamethylene tetramine) adduct $Cd\{S_2P(OEt)_2\}_2 \cdot 2urotr^{239}$ with a *trans*-octrahedral structure **148** (R = Et, L = urotr).

Table 21. Crystal structure data for zinc phosphorodithioato complexes

Struc- ture		Space	a b	α β								Bond	
no.	R	group	С	γ	P-	–S	M-	—S	S-P-S	M-	-S—P	type	Ref.
138	Et	$P2_1/a$	12.084 19.840 8.463	113.99	1.973 1.992	1.987 2.001	2.401 2.345	2.350 2.337	109.7 108.0	81.5 101.8	82.5 106.4	chel bridge	230
139	Et	C2/c	10.934 17.098 25.587	99.23	1.968 1.956	1.984 1.972	2.409 2.306	2.351 2.302	109.7 117.3	81.4 100.7	82.6 104.1	chel bridge	231
140	Pr ⁱ	$P2_1/n$	21.28 8.35 16.27	99.5 	1.946 1.975	2.017 1.999	(3.032) 2.502	2.269 2.358	113.5 111.3	79.9	93.5 83.1	uni chel	232
			16.289 8.331 21.316	99.56 	1.948 1.971	2.010 2.007	(3.041) 2.496	2.273 2.352	113.8 111.0	80.2	93.6 83.2	uni chel	233
141	Pr ⁱ	РĪ	9.020 8.502 21.267	83.12 97.96 103.46	1.925 1.926	2.005 1.997	(3.822) 2.711	2.327 2.365	117.5 112.0	 79.6	97.8 87.5	uni chel	233
142	Pr ⁱ	$P2_1/n$	8.847 25.215 15.740	90.74	1.936 1.892	2.012 1.968	(3.523) (3.977)	2.334 2.339	117.4 120.7		99.3 114.0	uni chel	233
143	Pr ⁱ	P2 ₁ /c	13.402 16.470 12.294	99.00	1.913 1.898	2.003 1.975		2.292 2.331	117.1 118.8		104.9 99.2	uni uni	232
144	Et	$P2_1/c$	8.183 25.161	 99.72	1.947 1.937	1.955 1.962	_		117.9 120.4	_		ionic ionic	233
145	p-Tol	$P2_1/a$	29.311 11.032	106.83	1.961 1.921	1.978 1.986	2.423 3.565	2.423 2.308	113.2 119.1	80.8	80.4 102.3	chel uni	234, 235
146	Et	R3	17.515 20.776 20.776		1.921 1.983 1.968	1.987 1.994 1.981	3.511 2.335 2.341	2.296 2.337 2.353	119.1 120.5 121.1	109.9 108.6	100.6 106.6 106.6	uni bridge bridge	236
146	$\begin{array}{l} \mathbf{X} = \mathbf{S} \\ \mathbf{B}\mathbf{u}^{\prime\prime} \end{array}$	ΡĪ	11.560 12.522 14.514	112.13 106.72								bridge	237, 238a,
	X = O		14.528	106.65						_			2386

Unlike the zinc analogue which is four-coordinate, the tris(diisopropylphosphorodithioato)cadmium complex anion in $[NMe_4][Cd\{S_2P(OPr')_2\}_3]$ is six-coordinate, with isobidentate ligands (structure 149).²⁴⁰ Because of a twist of 44° the coordination geometry is intermediate between octahedral and trigonal prismatic.

Molecular dimensions for cadmium compounds are listed in Table 22.

c. Mercury. Mercury(II) phosphorodithioates are polymeric materials, containing bridging ligands and two types have been identified by X-ray diffraction. Bis(diethylphosphoro-dithioato)mercury(II), is a double chain polymer, $[Hg{S_2P(OEt)_2}_2]_n$, with each ligand acting as a bridging group (structure 150).^{241,242} The two P—S bonds are 2.12 and 2.13 Å, therefore the ligand is symmetric (coordination pattern 7) and the metal is tetrahedrally coordinated (Hg—S 2.56 Å).

In polymeric bis(diisopropylphosphorodithioato)mercury(II), $[Hg{S_2P(OPr^i)_2}_2]_n$ there are both chelating and bridging ligands. The structure is supramolecular (polymeric), with chelate HgS_2P ring units connected into a helical chain of type 27 by asymmetric phosphorodithioato bridges (coordination pattern 9).²⁴³ Formulation 151 is supported by the clear non-equivalence of P—S and Hg—S interatomic distances. Thus, in the chelate ring P—S is 2.024 and P=S 1.934 Å, in the bridge P—S is 2.006 Å and P=S 1.954 Å. The Hg—S interatomic distances are 2.888 and 2.390 Å in the chelate ring, and 2.388 and 2.748 Å in the bridge.²⁴³ The long P—S bond is always associated with a short Hg—S bond and *vice versa*.

The only monocylic chelate ring mercury derivative is the salt of bis(tricyclo-hexylphosphine)(diisopropylphosphorodithioato)mercury(II), $[Hg\{S_2P(OP^i)_2\}(PCy_3)]^+CF_3SO_3^-$, which contains an isobidentate ligand (structure **152**). Although the P—S bonds are nearly equal (1.982 and 1.989 Å), there is a difference in the Hg—S bond lengths (2.707 and 2.821 Å).²⁴⁴

An organomercury(II) phosphorodithioate is a cyclic dimer, $[PhHg{S_2P(OEt)_2}]_2$, **153** (R = Et), with very asymmetric bridging ligands.²⁴⁵ The double and single phosphorus–sulphur bonds in the ligand (P=S 1.924 Å and P-S 2.028 Å) are associated with long (secondary) and short (covalent)

										I				
Structure			Space	p a	βg								Bond	
no.	R	r	group	с	λ	<u>Р</u> -	S	-M	S	SPS	M—8	d L	type	Ref.
147	\mathbf{Pr}'		C2/c	10.964		1.972	1.974	2.591	2.552	112.2	83.4	84.4	chel	231
				16.906	16.99	1.956	1.962	2.486	2.600	116.0	96.9	102.2	bridge	
				26.490)	
148	Et	urotr	$P2_1/n$	16.310	I	1.979	1.982	2.682	2.704	115.8	83.7	83.1	chel	239
				6.777	96.13									Ì
				14.576										
149	Pr		$R\overline{3}$	15.414	50.68	1.976	1.982	2.658	2.777	113.4	87.5	84.1	chel	240
150	Et		I4,a	20.33		2.13	2.12	2.56		114.6		95.4	bridge	241 242
				20.33									0	
				4.37										
151	\mathbf{Pr}^{i}		C2/c	31.70		1.934	2.024	2.888	2.390	112.0	7.67	91.6	chel	243
				8.66	129.34	1.945	2.006	2.748	2.388	109.2	103.2	103.7	bridge	
				22.34	ļ)	
152	\mathbf{Pr}^{i}		P21/c	10.440		1.982	1.989	2.707	2.821	112.6	87.1	83.8	chel	244
				22.615	93.05									I
				21.904										
153	Εt		$P2_1/c$	7.330		1.924	2.028	3.323	2.383	116.1	94.9		bridge	245
				18.085	105.96)	
				11.552	I									

Table 22. Crystal structure data for cadmium and mercury phosphorodithioato complexes

IONEL HAIDUC et al.

mercury-sulphur bonds (Hg...S 3.323 Å and Hg—S 2.383 Å),²⁴⁵ to form the eight-membered ring of type **21**.

The molecular dimensions of mercury phosphorodithioates are listed in Table 22.

13. Group 13: Al, Ga, In, Tl

No structure of aluminium or gallium phosphorodithioates has been determined. Tris-(diethylphosphorodithioato)indium(III), $In{S_2P(OEt)_2}_3$, is an octahedral complex with three anisobidentate chelating ligands,²⁴⁶ which can be formulated as **154**. The low accuracy of the structure determination (R = 12%) prevents any further comments.

Organothallium phosphorodithioates were found to be supramolecular, polymeric associates, $[Me_2Tl{S_2P(OR_2)}]_n$ (R = Me, Et, Cy). Monomeric units, **155**, containing nearly linear TlMe₂ coordination centres and anisobidentate phosphorodithioato ligands, are connected through intermolecular Tl...S secondary interactions (coordination pattern no. **17**), leading to complex two-dimensional structures. The full details of the work will be soon published.²⁴⁷

Crystal and molecular structure data are given in Table 23.

14. Group 14: Si, Ge, Sn, Pb

a. Silicon. No silicon phosphorodithioate has been structurally investigated.

b. Germanium. In the germanium phosphorodithioates studied, the ligand is always monodentate. Thus, the phosphorodithioates $Ge\{S_2P(OMe)_2\}_4$ (156),²⁴⁸ $[GeS\{S_2P(OMe)_2\}_2]_2$ (157),²⁴⁸ $Ph_3Ge\{S_2P(OMe)_2\}$ (158),²⁴⁹ $Ph_2Ge\{S_2P(OMe)_2\}_2$ (159)²⁴⁹ and $PhGe\{S_2P(OMe)_2\}_3$ (160) (only partially solved structure)²⁵⁰ are all molecular compounds, with no intermolecular metal-ligand interactions. The bond lengths and angles are listed in Table 24. The data clearly distinguish between single and double phosphorus-sulphur bonds.

Structure no.	R	Space group	a b c	α β γ	P-	—S	M-	—S	S-P-S	M—	S—P	Bond type	Ref.
154	Et	Cc	8.61 18.81 17.85	92.20	1.952 1.902 1.874	2.037 2.137 2.066	2.633 2.578 2.609	2.591 2.607 2.628	111.0 109.5	85.2 88.5 87.7	85.8 83.0 83.7	chel chel	246
155 R' = Me	Me		17.85	_	1.919	1.973	2.009 2.982 3.326 3.236	3.029	111.0	07.7	65.7	bridge	247a, 247b
155 R′ = Me	Et				1.95	1.99	3.029 3.209	2.983				bridge	247a, 247b
155 R′ = Me	Су				1.916 1.96	2.030 1.97	3.015 2.811	2.984 2.97 3.19				chel bridge	247a, 247b
					1.982	2.01	3.157	2.951				bridge	

Table 23. Crystal structure data for Group 13 (Al, Ga, In, Tl) phosphorodithioato complexes

Table 24. Crystal structure data for germanium phosphorodithioates

Structure no.	R	Space group	a b c	α β γ	P-	—S	M-	S	S—P—S	MSP	Bond type	Ref.
156	Me	P2 ₁ /c	11.230 23.044 12.086	113.59	1.900 1.909 1.917	2.081 2.080 2.071		2.218 2.230 2.236	106.9 107.9 108.2	104.9 105.9 105.9	uni uni uni	248
157	Me	P2 ₁ /c	10.344 12.860 12.443	104.44	1.915 1.914	2.065 2.064	3.402 3.417	2.224 2.222 2.223	118.6 115.7 116.1	104.9 100.7 102.3	uni uni uni	248
158	Me	ΡĪ	10.311 11.282 11.517	101.47 113.68 110.31	1.923	2.060	(5.253)	2.285	109.1	109.0	uni	249
159	Me	ΡĪ	9.813 10.345 11.837	89.04 85.28 82.29	1.898 1.904	2.043 2.045	_	2.257 2.253	111.9 112.4	103.7 105.6	uni	249
160	Me	Pn2 ₁ a	13.673 14.566 13.154	a								250

^aMolecular structure not completely solved; no further information available.

c. Tin. Only one tin(II) compound has been investigated, namely dimeric $[Sn{S_2P(OPh)_2}_2]_2$. The compound contains two chelating and two bridging (bimetallic triconnective) ligands, as shown in **161**. Both the chelate and bridging ligands are asymmetric, and short (double) and long (single) phosphorus-sulphur bonds are observed : P=S 1.967 Å and P-S 2.002 Å in the

chelating ligands and P=S 1.964 Å and P=S 2.006 Å in the bridging ligands. The secondary Sn...S interactions (3.391 Å) leading to dimerization are substantially longer than the intrachelate ring Sn...S interactions (2.830 and 3.043 Å).^{251,252} The structure can be regarded as based upon a molecular skeleton of type **24**.

Two types of structure have been identified for diorganotin phosphorodithioates: an asymmetric structure 162, with anisobidentate ligands, and a symmetric structure 163, with isobidentate phosphorodithioates.

The asymmetric structure **162** is illustrated by diphenylbis(diethylphosphorodithioato)tin(IV), Ph₂Sn{S₂P(OEt)₂}₂.²⁵³ In the anisobidentate ligand, the phosphorus–sulphur bonds are unequal (P=S 1.919 and 1.942 Å; P-S 2.036 and 2.029 Å) and the secondary Sn...S interactions bring the two atoms to 3.20 and 3.23 Å. The bond angles C-Sn-C (135°), S1-Sn-S3 (84.5°) and S2...Sn...S4 (136.9°) determine a coordination geometry which can be described as intermediate between distorted tetrahedral (if only the primary bonds are considered) and distorted octahedral (if the secondary Sn...S bonds are also included).

The symmetric structure 163 of $Ph_2Sn\{S_2P(OPr')_2\}_2$ is so far unique. The ligands are isobidentate (P—S 1.998 and 2.000 Å) and the Sn—S bonds are identical and of intermediate length (2.678–2.689 Å) between those of the primary and secondary bonds cited above for the unsymmetric $Ph_2Sn\{S_2P(OEt)_2\}_2$. The coordination geometry around tin is octahedral (centrosymmetric).²⁵⁴

The dramatic structural differences between the two diphenyltin phosphorodithioates which occur

when peripheral OR groups are changed (OEt/OPr) are rather puzzling. Crystal packing effects can be invoked to explain these differences, but this seems still unsatisfactory.

The structures of the two other diorganotin phosphorodithioates, namely $Me_2Sn\{S_2P(OCMe_2CMe_2O)\}_2^{255}$ and $Bu_2Sn(OAc)\{S_2P(OCH_2CMe_2CH_2O)\}^{256}$ are also asymmetric, with anisobidentate ligands (as in 162).

(Diethylphosphorodithioato)triphenyltin, $Ph_3Sn\{S_2P(OEt)_2\}$, is an illustration of the unidentate coordination **164** in organotin compounds. The P—S bond lengths (2.054 and 1.931 Å) clearly indicate single and double bond character, respectively, and the orientation of the P—S bond, away from tin, underscores the unidentate character of the ligand. Coordination around tin is distorted tetrahedral.²⁵⁷

The structure is different in the 2-thiooxo-1,3,2-dioxophospholane-2-thiolato derivative $Ph_3Sn\{S_2P(OCMe_2CMe_2O)\}$. Although the phosphorus-sulphur bond distances (2.039 and 1.903 Å) would indicate a unidentate coordination, the orientation of the doubly bonded sulphur (S2) towards the metal and its distance to the tin atom (Sn ... S2 3.411 Å), suggesting a weak secondary interaction, makes the ligand anisobidentate. This determines a coordination geometry at tin, which is intermediate between tetrahedral and trigonal bipyramidal, as shown in 165 (R = Ph).²⁵⁸

Triorganotin structures can be compared with that of S=P(S-SnMe₃)₃. Single (2.076–2.080 Å) and double (1.948 Å) phosphorus-sulphur bonds are observed in the latter, with a four-coordinate tin atom.²⁵⁹ The S=P-S bond angles are larger than tetrahedral (114.3–114.7°), while S-P-S bond angles (103.4–104.8°) are diminished, illustrating the effects of valence shell electron repulsions. Crystal data and molecular dimensions for tin phosphorodithioates are collected in Table 25.

d. Lead. The structures of four lead(II) phosphorodithioates, $[Pb\{S_2P(OR)_2\}_2]_n$, with R = Et,^{260,261} Pr^{i} ,²⁶² Bu^{i} ²⁶¹ and Ph^{261} have been determined, and each one is different.

Bis(diethylphosphorodithioato)lead(II)^{260,261} is built up of distorted tetragonal pyramids, with the apical lead atom 1.48 Å above the basal plane and the ligands anisobidentate (P—S 1.969 and 1.995 Å; 1.968 and 1.991 Å; Pb—S 2.996 and 2.754 Å; 3.022 and 2.790 Å). Additional Pb...O and Pb...S (3.409 and 3.483 Å) interactions (two of each) lead to supramolecular association, **166** (R = Et), with the coordination geometry around lead becoming square-antiprismatic. This is one of the rare examples (in fact only two are known, see Section E.17 for the second) when oxygen atoms of P—OR groups of the phosphorodithioato ligand participate in coordination to the metal.

Structure no.	R	Space group	a b c	$egin{array}{c} lpha \ eta \ \gamma \end{array}$	P-	—S	M-	S	S—P—S	— М—	-S—P	Bond type	Ref.
161	Ph	ΡĪ	10.499 13.948 9.291	99.18 95.71 91.80	1.967 1.964	2.002 2.006	2.830 3.043 3.391	2.623 2.631	112.3 115.5	82.9 96.1 74.8	87.9 94.3	chel bridge chel	251, 252
162	Et	$P2_i/c$	14.137 14.299 15.759	112.33	1.942 1.919	2.029 2.036	3.23 3.20	2.492 2.481	112.4 113.2		97.5 97.7	uni uni	253
163	Pr ⁱ	$P2_i/n$	17.517 14.212 6.340	100.63	1.998	2.006	2.689	2.678	111.3	86.3	85.4	chel	254
162	$(OR)_2 = 0$	Pccn	16.830 11.407 12.829		1.932	2.031	3.130	2.495	112.4	79.1	95.0	chel	255
162	$(OR)_2 = $	ΡĪ	6.942 12.992 16.804	71.16 78.12 74.50	1.931 1.930	2.032 2.034	3.174 3.172	2.528 2.526	114.7 114.6	77.1 77.2	93.1 93.1	chel chel	256
164	Et	ΡĪ	12.647 9.961 9.437	98.59 91.51 96.12	1.931	2.054		2.458	112.3	_	103.8	uni	257
165	$(OR)_2 = 0$	P2 ₁ /n	14.511 11.536 15.435	94.32	1.903	2.039	3.411	2.436	114.8	_	102.1	chel	258

Table 25. Crystal structure data for tin phosphorodithioato complexes

In bis(diisopropylphosphorodithioato)lead(II) there are only lead-sulphur interactions.²⁶² Each Pb{S₂P(OPrⁱ)₂}₂ molecule forms two pairs of additional lead-sulphur Pb...S bonds with two neighbouring molecules, resulting in a supramolecular structure **167** (R = Prⁱ). Each phosphorodithioato ligand is bimetallic triconnective and the lead atoms are six-coordinate. The coordination geometry around lead is ψ -pentagonal bipyramidal, with possibly a lone pair occupying an equatorial position.

Bis(diisobutylphosphorodithioato)lead(II) forms dimeric associates $[Pb{S_2P(OBu')_2}_2]_2^{261}$ In each monomeric building unit one ligand is isobidentate chelating (monometallic biconnective) (Pb—S3 2.768, Pb—S4 2.762 Å), the other is bimetallic triconnective and participates in the formation of the dimer. The interunit Pb'...S2 secondary bonds (3.444 Å) are longer than the intraunit Pb...S2 secondary bonds (3.127 Å), which is reflected in the formulation **168** (R = Bu'), based upon a molecular skeleton of type **24**. This is also supported by the P—S bond lengths: P1—S1 1.994 Å, P1—S2 1.951 Å; P2—S3 1.985 Å and P2—S4 1.986 Å. The coordination geometry around lead is ψ -pentagonal pyramidal.

Bis(diphenylphosphorodithioato)lead(II) is also a supramolecular dimer, $[Pb{S_2P(OPh)_2}_2]_2^{261}$ but the interunit Pb...S4' distance (3.215 Å) is slightly shorter than the intraunit Pb...S4 distance (3.323 Å), leading to the formation of an eight-membered quasicyclic species, as shown in **169** (R = Ph). Additional η^6 -C₆H₅-Pb interactions between two different units seem to stabilize the dimer. The phosphorus-sulphur bond length differentiation (P1—S1 1.984, P1—S2 1.960 Å; P2—S3 1.958, P2—S4 1.993 Å) are in agreement with formulation **169**.

169

Supramolecular association of lead(II) phosphorodithioates is obviously the result of the tendency of the large lead atom to achieve a higher coordination number. This tendency can also be satisfied by coordination of additional donor molecules, i.e. adduct formation. In the bipyridine adduct $[Pb{S_2P(OEt)_2} \cdot bipy]_2$ dimerization still occurs,²⁶³ and the lead atom is seven-coordinate, as shown in **170** (**R** = Et).

The ethylenediamine adduct, on the other hand, is a supramolecular chain polymer $[Pb{S_2P(O Et)_2}_2 \cdot en]_n$ 171 (R = Et), with chelating ethylenediamine and phosphorodithioato (isobidentate) ligands and phosphorodithioato (bimetallic triconnective) bridges. The metal atom is again seven-coordinate.²⁶³

The structure of a second ethylenediamine adduct, $[Pb{S_2P(OEt)_2}_2 \cdot 1/2en]_n$, is more complex.²⁶³ It contains tetranuclear units interlinked to produce a chain-like supramolecular structure. These

are formed from dimeric $[Pb{S_2P(OEt)_2}_3]_2$ units, doubly bridged by $Pb{S_2P(OEt)_2}$ en units, as shown in 172.

The structures of organolead(IV) phosphorodithioates are much simpler, because fewer coordination sites are available around the organometallic R_nPb coordination centres. Thus, in bis(dibenzylphosphorodithioato)diphenyllead(IV), $[Ph_2Pb\{S_2P(OCH_2Ph)_2\}_2]_2$, the unit molecule contains anisobidentate ligands and six-coordinate lead in distorted octahedral geometry, as shown in **173** ($R = CH_2Ph$). In the crystal, adjacent molecules are connected in pairs by weak Pb...S interactions (3.69 Å), and the lead coordination geometry becomes distorted pentagonal bipyramidal.²⁶⁴

The presence of a larger number of organic groups around the metal reduces coordination possibilities. In (diethylphosphorodithioato)triphenyllead(IV), $Ph_3Pb\{S_2P(OEt)_2\}$, the ligand is monodentate (P=S 1.924 Å, P-S 2.034 Å)) and coordination around lead is reduced to (distorted) tetrahedral, **174** (R = Et). The Pb-S bond (2.554 Å) is shorter than in the diphenyllead derivative or than in any lead(II) phosphorodithioates. The phosphorus-sulphur bond lengths (P-S 2.035 Å and P=S 1.923 Å) are in agreement with monodentate coordination.²⁶⁴

Crystal structure data, including bond lengths angles are collected in Table 26.

15. Group 15: As, Sb, Bi

a. Arsenic. Only one structure of an arsenic phosphorodithioate has been reported. Thus, bis(diisopropylphosphorodithioato)phenylarsenic(III), PhAs{S₂P(OPr')₂}₂, is a molecular monomeric compound, containing anisobidentate ligands, in tetragonal pyramidal coordination 175 (R = Pr').²⁶⁵ The coordination geometry can also be described as ψ -octahedral, with a stereochemically active lone pair of electrons occupying a position *trans* to the phenyl group. The presence of single P—S (2.09–2.10 Å) and double P=S bonds (1.90 Å) is worth underscoring. The

Table 26. Crystal structure data for lead phosphorodithioato complexes

Structur no.	re R	Space group	α α b β c γ	P-	–S	M	—S	S—P—S	5 M—	-S—P	Bond type	Ref.
166	Et	ΡĪ	10.102 99.82	1.969	1.995	2.996	2.754	115.4	83.5	89.8	chel	260,
			10.366 109.91	1.968	1.991	3.022	2.790	116.2	83.1	89.1	chel	261
167	\mathbf{Pr}^{i}	$P2_1/n$	5.290 —	2.000	1.982	2.761	2.985	113.8			bridge	262
/		17	10.067 95.97				3.232				chel	-
			9.335 —	1.958	1.944	2.772	3.027	114.6			bridge	
							3.175				chel	
168	$\mathbf{B}\mathbf{u}^i$	ΡĪ	17.426 91.73	1.985	1.986	2.768	2.762	112.0	87.4	87.5	chel	261
			14.377 93.87	1.994	1.951	2.755	3.127	113.9	92.6	82.8	chel	
		_	6.237 65.67				3.444				bridge	
169	Ph	PĪ	14.178 95.61	1.993	1.958	2.732	2.896	113.7	88.0	84.1	chel	261
			9.332 91.86	1.984	1.960	2.753	3.323	115.1	92.9	77.5	chel	
	-	DA /	10.507 99.10	1.05	1.00	2 000	3.215	1165		80.7	bridge	0.40
170	Et	$P2_1/c$	14.727 —	1.95	1.98	3.000	3.118	116.5	84.7	88.4	chel	263
			14.490 110.72	1.97	1.99	2.040	3.212	112.0	00.0	99.6	bridge	
171	Π4	ЪĨ		1 055	1 0 5 9	2.949	2.929	115.2	88.8 94 1	89.0	chel	262
1/1	Εt	PI	10.933 103.38	1.955	1.938	5.175	3.074	115.2	80.1	102.5	cnei	203
			13.237 132.24	1.045	1.057	2 177	2.190	116.9	85.0	01.8	onage	
172	E+	рī	0.007 08.54	1.945	1.937	3.177	2.907	113.0	86.0	91.0	chel	263
1/2	Et	IF 1	10 875 100 77	1.90	1.99	2.05	2.02	113.0	80.0 80.1	92.5	bridge	205
			15.000 95.64	1.90	1.90	3.21	2.95	116.2	03.7	90.0	bridge	
			15.000 55.04	1.97	1.97	5.21	5.11	110.2	15.2	71.4	chel	
173	Bz	ΡĪ	11.760 80.14	1.93	1.98	2.940	2.723	112.4	86.3	91.4	chel	264
1,0	172	• •	12.532 111.46	1.93	2.01	2.957	2.679	114.0	84.0	90.3	chel	-0.
			16.263 112.41									
174	Et	ΡĪ	9.579 101.62	1.924	2.034		2.554	111.0		104.6	uni	264
			10.602 99.55									
			12.710 100.72									

As—S bonds are 2.310–2.317 Å (primary bonds) and 3.125 and 3.187 Å (secondary interactions). For other molecular dimensions see Table 27.

b. Antimony. The molecular structures of $Sb{S_2P(OR)_2}_3$ with R = Me,²⁶⁶ Et²⁶⁷ and Prⁱ,²⁶⁶ have been determined. All three compounds are monomeric tris chelates, with anisobidentate ligands,

Struc- ture no. R		Space group	a b c	$\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}$	P-	–S	M-	M—S		M—S—P		Bond type	Ref.
175	Pr ⁱ	$P2_1/c$	12.454		1.90	2.10	3.125	2.310	111.5	78.2	97.4	chel	265
		17 -	26.693 8.901	109.40	1.90	2.09	3.187	2.317	112.0	77.3	77.3	chel	205
176	Me	$P2_1/n$	9.313 8.506 28.528	99.09	1.941 1.941 1.927	2.029 2.036 2.033	3.008 3.006 3.002	2.522 2.535 2.531	112.2 112.3 112.8	81.5 81.7 81.7	93.4 93.1 92 9	chel chel chel	266
176	Et	P2 ₁	8.624 9.707 17.521	92.83	1.984 1.979 1.927	1.992 1.983 1.976	2.785 2.838 2.856	2.590 2.629 2.583	108.4 109.9 109.7	86.2 86.0 86.0	91.8 91.67 92.9	chel chel chel	267
176	P r ^{<i>i</i>}	$P2_1/n$	11.293 10.659 31.195	97.22	1.945 1.933 1.949	2.029 2.034 2.044	3.031 3.013 3.000	2.503 2.521 2.531 2.519	111.2 111.6 111.2	82.1 82.2 82.1	94.9 93.7 93.8	chel chel chel	266
177	Pr ⁱ	$P2_1/c$	12.451 26.681 9.026	 109.70	1.947 1.941	2.039 2.048	3.056 3.067	2.516 2.529	111.0 110.9	82.2	95.5 95.3	chel chel	265
178	Pr ⁱ	P2 ₁ /c	10.714 18.205 22.010	97.44 —	1.942 1.943	2.044 2.035	3.684 3.172 3.934	2.555 2.531	116.1 115.3	100.5 103.3	63.6 72.5	bridge	268
179	Et	P2	8.618 9.698 17 569	92.95	1.925 1.972 1.964	1.972 2.002 1.980	3.266 2.820 2.778 2.747	2.750 2.795 2.747	112.3 112.1 112.1	87.8 88.2 88 3	88.9 87.1 87.1	chel chel	269
179	Pr ⁱ	$P2_1/c$	20.096 9.086 21.619	114.71	1.959 1.948 1.955	1.997 1.991 2.011	2.886 2.878 2.858	2.714 2.702 2.690	112.6 112.2 111.7	85.7 85.8 86.1	89.8 90.0 89.7	chel chel chel	270
179	$(OR)_2 =$	C2/c	16.684 13.682 11.930	98.45 —	1.900	2.011	2.000	2.090		00.1	09.7	cher	271
179	$(OR)_2 =$	P2 ₁ /c	9.591 10.059 36.170	90.51 —	1.932 1.968 1.934	1.978 2.023 1.995	2.836 2.856 2.873	2.758 2.712 2.745	115.4 114.2 114.2	85.4 84.3 85.6	86.7 87.2 88.0	chel chel chel	271

Table 27. Crystal structure data for Group 15 (As, Sb, Bi) metal phosphorodithioato complexes

displaying distorted octahedral coordination geometry, 176, determined by the three primary Sb—S bonds (2.52–2.63 Å) and the three secondary Sb...S interactions (*ca* 3 Å).

The molecular dimensions are listed in Table 27. It can be seen that the ethyl derivative differs somewhat from the methyl and isopropyl phosphorodithioato complexes, both in terms of P—S, Sb—S bond lengths and S—P—S bond angles, and in the ethyl complex the ligand becomes more closely isobidentate.

Bis(diisopropylphosphorodithioato)phenylantimony(III), PhSb{ $S_2P(OPr')_2$ }, is monomeric, with structure 177 (R = Pr'), and is structurally very similar to the phenylarsenic analogue.²⁶⁵

(Diisopropylphosphorodithioato)diphenylantimony(III), $[Ph_2Sb\{S_2P(OPr')_2\}]_n$, is a supramolecular polymer, **178** (R = Ph, R' = Pr'), with secondary Sb...S bonds (3.172 and 3.266 Å) connecting the monomeric units into a polymeric chain. The ligand is bimetallic triconnective (P—S 2.044 Å, P—S 1.942 Å) and the sulphur atom doubly bonded to phosphorus participates in intraunit secondary Sb...S bonding (3.934 and 3.684 Å). It is worth noting that the intermolecular secondary Sb...S interactions are shorter than the Sb...S interactions within the chelate building units.²⁶⁸

c. Bismuth. All four bismuth tris(phosphorodithioates) whose structures have been determined by X-ray diffraction, $Bi\{S_2P(OR)_2\}_3$, with R = Et,²⁶⁹ $Pr^{i\,270}$ and $(OR)_2 = OCHMeCHMeO$ and $OCH_2CEt_2CH_2O^{271}$ are monomeric, distorted octrahedral complexes, **179**, with anisobidentate ligands, like the antimony analogues. The molecular dimensions are given in Table 27.

16. Group 16: Se, Te

a. Selenium. A selenium(II) phosphorodithioate can be regarded as an analogue of the bis(thiophosphoryl) trisulphides, but their structures are completely different. The structure of $[Se{S_2P(S)(OEt)_2}_2]_n$ determined at $-135^{\circ}C$ contains double (1.912 Å) and single (2.094–2.099 Å) phosphorus-sulphur bonds, and intermolecular secondary Se...S interactions (3.342–3.523 Å) leading to supramolecular association, 180 (R = Et). The coordination geometry around selenium thus becomes trapezoidal planar.²⁷²

For crystal data and molecular dimensions see Table 28.

b. Tellurium. Several tellurium(II) and tellurium(IV) phosphorodithioates have been investigated by X-ray diffraction. In bis(dimethylphosphorodithioato)tellurium(II), $[Te{S_2P(OMe)_2}_2]_n$, the molecules are associated into a supramolecular two-dimensional structure through Te...S secondary interactions, as shown schematically in **181** (R = Me). The P=S double bond (1.92 Å) of the ligand is involved in intermolecular secondary interactions (Te...S 3.31 Å). The other P-S bond of the ligand is a single bond (2.09 Å). The tellurium atom lies on a two-fold axis.²⁷³

The structure of $[Te{S_2P(OEt)_2}_2]_n$ (182) is also associated, but in a more complex way, leading to a three-dimensional supramolecular array.²⁷⁴ The asymmetric unit contains three molecules, with the ligand in each showing single (P—S 2.076–2.089 Å) and double (P—S 1.919–1.939 Å) bonds. The P—S double bonds not involved in secondary interactions are the shortest (1.927 and 1.919 Å); some double bonds participate in secondary interactions with tellurium atoms, 182a, while one is connected by secondary interactions simultaneously to two other tellurium atoms, 182b. The intermolecular, secondary bonds, are in the range from 3.209 to 3.541 Å (the sum of van der Waals radii for Te and S is *ca* 3.8 Å). If the secondary bonds are considered, the coordination geometry around tellurium is trapezoidal planar.²⁷³

Two organotellurium(II) derivatives, e.g. $[p-MeOC_6H_4Te S_2P(OMe)_2]_n^{275}$ and $[p-EtOC_6H_4Te S_2P(OMe)_2]_n^{276a}$ are also supramolecular associates, forming single strand polymeric chains **183**. The primary Te—S bonds are in the normal range (2.439–2.443 Å) and the secondary Te...S bonds (3.309 and 3.262 Å) are significantly shorter than van der Waals distances. In $[PhTe S_2P(OMe)_2]_n$ the primary Te—S bonds are 2.418 Å and the secondary Te...S bonds were determined as 3.405 Å.^{276b}

Table 28. Crystal structure data for selenium and tellurium phosphorodithioato complexes

Structure no.	R	Space group	a b c	$egin{smallmatrix} lpha\ eta\ \gamma \end{bmatrix}$	P-	—S	M-	—S	S—P—	-S M	-S—P	Bond type	Ref.
180	Et	PĪ	8.364 10.755	63.28 70.78	2.099 2.094	1.912 1.912	2.209 2.210	3.342 3.523	107.1 105.7		102.0 103.0	bridge bridge	272
181	Me	Pben	12.387 10.37 11.51	83.93 —	1.92	2.09	2.44	3.31	106.8	_	105.1	bridge	273
182	Et	₽Ī	12.247 12.656 20.135	101.69 103.29 104.72	A ^a 1.927 1.939 B ^a	2.079 2.077	2.420 2.430		107.7 109.6		103.2 102.1	bridge bridge	275
					1.929 1.919 C ^a	2.082 2.089	2.435 2.387	_	107.5 106.9		103.6 104.1	bridge bridge	
					1.949	2.070	2.424		106.7	_	100.8	bridge	
183	$Me Ar = p - MeOC_{1}H_{1}$	$P2_1/n$	9.976 12.023 12 333	97.22	1.933	2.070	3.262	2.443	107.9	_	103.3	bridge	275
183	Et Ar = p - EtOC ₄ H ₄	$P2_1/n$	10.176 12.407 12.234	97.40	1.927	2.052	3.309	2.439	107.9	—	102.9	bridge	276a
183	$Me \\ Ar = Ph$	$P2_1/c$	10.324 8.519 14.929	101.83	1.919	2.060	3.405	2.418	107.2		106.1	bridge	276b
184	Ph	$P2_1/c$	10.392 10.379 42.050	95.273	1.933 1.909 1.934	2.009 2.069 2.013	3.292 3.374 3.106	2.651 2.481 2.613	113.6 116.4 113.5	97.7 74.9 94.4	80.8 97.0 81.9	chel chel chel	276c
185	Me	P2 ₁ /c	7.820 15.356 20.317	92.84	1.934 1.928	2.045 2.022	3.383 3.362	2.619 2.625	115.1 116.3	98.1		chel chel	277
185	$\begin{array}{l} Et \\ R' = Ph \end{array}$	P2 ₁ 2 ₁ 2 ₁	8.297 16.311 21.117		1.931 1.929	2.043 2.020	3.367 3.365	2.609 2.620	114.4 115.9	79.4 78.6	99.2 100.0	chel chel	278a
185	(RO) ₂ =	P2 ₁ /c	12.707 11.482 16.782	98.00	1.939 1.944	2.045 2.038	3.349 3.341	2.604 2.661	113.8 113.6	99.1 95.9		chel chel	278b
185	$R = Me (RO)_2 = 0 $	PĪ ù	12.580 13.313 8.206	91.28 104.94 78.52	1.917 1.920	2.060 2.052	3.490 3.516	2.597 2.660	116.4 116.7	97.4 99.4		chel chel	278b
	O - B R = Me	ù											
186	Et	P2 ₁ /n	11.637 15.159 14.688	111.84	1.951	1.962	3.150	3.286	117.9	87.3	91.4	chel	278c
187	Et	$P2_1/c$	10.856 19.876 12.206	98.31	1.901 1.903	2.036 2.021	3.493 3.447	2.627 2.621	116.1 114.3	98.9 101.5	76.4 79.3	bridge	279
188	Εt	P2 ₁ 2 ₁ 2 ₁	6.653 9.876 36.347		1.927	2.027	3.438	2.742	116.0	78.4	96.5	chel	280
189	Et	ΡĪ	9.078 11.823 14.941	69.28 88.29 89.40	1.992	1.815	3.436	2.708		99.3	80.5	chel	281
190	$Me = p-MeOC_{2}H$	$P2_1/n$	9.694 13.679 13.879	110.65	1.993	2.009	2.728	2.632	110.6	85.6	88.0	chel	277
191	Et	ΡĪ	14.287 14.579 14.652	85.30 84.36 60.20	1.933 1.960 1.908	2.000 1.972 1.995	3.477 3.410 3.413	2.691 2.684 2.772	116.9 116.2 116.3	73.1 77.0 75.7	93.6 97.4 93.6	chel chel chel	282

"Three crystallographically independent molecules in the unit cell.

Only one monoorganotellurium(IV) tris(phosphorodithioate), **184** (Ar = Ph, R = Ph), has been structurally investigated. The compound displays pentagonal bipyramidal geometry and the ligands are anisobidentate, with short (P=S 1.933, 1.934 and 1.909 Å) and long (P-S 2.009, 2.013 and 2.069 Å) phosphorus-sulphur bonds. The tellurium-sulphur distances indicate primary bonds (2.651, 2.613 and 2.481 Å, all in the equatorial plane) and secondary interactions (3.292 and 3.106 Å—equatorial, and 3.374 Å—axial). The aryl group is in apical position, *trans* to the longest Te ... S distance. The S-P-S bond angles (113.6°, 113.5° and 116.4°) are wider than tetrahedral, in keeping with the weak chelating character of the ligands.^{276c}

In bis(dialkylphosphorodithioato)diphenyltellurium(IV), $Ph_2Te\{S_2P(OR)_2\}_2$, with $R = Me^{277}$ and Et,^{278a} the ligands are strongly anisobidentate, with single (P—S 2.020 and 2.045 Å) and double (P—S 1.928 and 1.934 Å) bonds. The tellurium coordination geometry is ψ -trigonal bipyramidal, with phenyl groups in equatorial positions, **185**, R' = Ph. The sulphur atoms doubly bonded to phosphorus, which are involved in secondary interactions with tellurium (Te...S 3.35–3.38 Å) are well above and below the equatorial plane, and were not considered in the description of the coordination geometry.

Dimethyltellurium derivatives of cyclic alkylene phosphorodithioates, $Me_2Te\{S_2P(OCMe_2 CMe_2O)\}_2$ and $Me_2Te\{S_2P(OCH_2CEt_2CH_2O)\}_2$ display similar structures.^{278b}

Triphenyltellurium(IV) diethylphosphorodithioate, $Ph_3Te\{S_2P(OEt)_2\}$, displays an uncommon structure **186**, in which both tellurium–sulphur bonds are unusually long (3.286 and 3.150 Å), of the order of magnitude of secondary interactions. The P—S bonds in the phosphorodithioato ligand (1.951 and 1.962 Å)^{278c} are of the same order of magnitude as found in ionic phosphorodithioates. Perhaps, this compound can be best described as containing discrete Ph_3Te^+ cations and $(EtO)_2PS_2^-$ anions, connected through secondary Te...S interactions. This view is also supported by the wide S—P—S bond angle (117.9°).

The heterocyclic tellurium(IV) bis(diethylphosphorodithioate) $[C_6H_4(CH_2)_2Te\{S_2P(OEt)_2\}_2]_n$ has a supramolecular structure **187**, in which the molecules are connected into zig-zag chains by weak secondary Te...S bonds (3.729 Å). In the molecular unit the ligands are clearly anisobidentate : P—S 2.021 and 2.036 Å; P—S 1.901 and 1.903 Å; Te—S 2.621 and 2.627 Å; Te...S 3.447 and 3.393 Å. The weak intrachelate Te...S impose little strain upon the S—P—S bonds, which are rather wide (114.3 and 116.1°).²⁷⁹

The mixed ligand complex $C_6H_4(CH_2)_2Te\{S_2C-NEt_2\}\{S_2P(OEt)_2\}$ (structure **188**) is worth mentioning, because the primary Te—S bonds are clearly different : Te— S_{dtc} 2.521 Å and Te— S_{dtp} 2.742 Å, suggesting that the dithiocarbamato ligand is more strongly bound to tellurium than the phosphorodithioate. The secondary bonds are also shorter for dithiocarbamate (Te ... S_{dtc} 3.103 Å) than for the phosphorodithioate (Te ... S_{dtp} 3.438 Å).²⁸⁰

A related mixed ligand complex, PhTe{S₂C-NEt₂}₂{S₂P(OEt)₂}, displays pentagonal bipyramidal geometry, **189**, with five sulphur atoms in the equatorial plane (Te—S distances in the range 2.674–2.708 Å). The phenyl group occupies an axial position, perpendicular to the pentagonal plane, while the second axial position is occupied by a sulphur atom, doubly bonded to phosphorus in a phosphorodithioato ligand.²⁸¹ This axial distance (Te ... S 3.436 Å) is much longer than the equatorial Te—S bonds (2.690–2.708 Å). The phosphorodithioato ligand is anisobidentate (coordination pattern no. **3**) with P—S 1.992 Å and 1.815 Å (unusually short) and Te—S 2.708 and 3.436 Å. This compound is closely related to the tris(phosphorodithioate) **184** cited above.

The compound $[p-MeOC_6H_4Te{S_2P(OMe)_2}Br_2]_2$ contains a practically isobidentate chelating ligand (rare in tellurium chemistry), with P—S 1.993 and 2.009 Å; Te—S 2.728 and 2.632 Å in tetragonal pyramidal coordination **190** (R = Me). However, if the intermolecular Te...Br sec-
ondary interactions (3.810 Å) are also considered, the coordination geometry becomes distorted octahedral.²⁷⁷

A unique mixed valence compound $Te^{VI}[OTe^{IV}(CH_2)_2C_6H_4\{S_2P(OEt)_2\}]_6$ contains six Te^{IV} heterocyclic units, each with an anisobidentate phosphorodithioato ligand, connected *via* Te^{IV} —O— Te^{VI} bonds to the central tellurium(VI) atom, as shown in **191** (R = Et). Secondary interactions between different units are also present.²⁸²

Crystal data and molecular dimensions for tellurium compounds are collected in Table 28.

17. Lanthanides

There are four types of lanthanide phosphorodithioato complex, whose structures have been established by X-ray diffraction: (a) neutral tris(dialkylphosphorodithioato) metal(III) adducts, $Ln\{S_2P(OR)_2\}_3 \cdot 2L$; (b) anionic tetrakis(dialkylphosphorodithioato) metallates, $(Ln\{S_2P(OR)_2\}_4]^-$; (c) cationic bis(dialkyl-phosphorodithioato) metal complexes, with a non-coordinated phosphorodithioato counter ion, $[Ln\{S_2P(OR)_2\}_2 \cdot 3L]^+[S_2P(OR)_2]_2$; and (d) mixed cationic-anionic complexes (combination of types (b) and (c)), like $[Ln\{S_2P(OR)_2\}_2 \cdot 3L]^+$ $[Ln\{S_2P(OR)_2\}_4]^-$.

In the neutral complexes $Ln\{S_2P(OR)_2\}_3 \cdot 2L$ investigated, with Ln = La, R = Et, $L = OPPh_3$;²⁸³ $L = OS(CH_2Ph)_2$;²⁸⁴ $R = Pr^i$, L = DMSO;²⁸⁵ $L = MeCONMe_2$;²⁸⁶ Ln = Nd, $R = Pr^i$, $L = PhCONH_2$,²⁸⁷ the metal is eight-coordinate (distorted square antiprism or dodecahedral), **192**, and the ligands are isobidentate, occupying six of the coordination sites. The other two site are occupied by a neutral oxygen donor ligand L. Solid state molecular dimensions are listed in Table 29.

In the anionic tetrakis(dialkylphosphorodithioato) complexes, $[Ph_4As]^+[Ln\{S_2P(OR)_2\}_4]^-$ with Ln = La, R = Et;²⁸⁸ Ln = Ce, R = Me;^{289a} Ln = Nd, $R = Pr^i$;^{289a} Ln = Ho, $R = Pr^i$;^{289a} Ln = Er, R = Me;^{289a} Et²⁸⁸ and $[Ph_4P^+][Pr\{S_2P(OMe)_2\}_4]^-$ ^{289b} dodecahedral geometry is achieved by coor-

complexes
phosphorodithioato
lanthanide
on
data
structure
Crystal

Table 29.

Structure			Space	p q	β								Bond	
no.	R	L	group	с	γ	P	S	-M-	S	S—P—S	M_S		type	Ref.
192	Et	OPPh ₃	P2 ₁ /c	19.66		1.936	1.976	3.048	3.075	114.5	91.0	89.4	chel	283
La				12.54	94.16	1.966	1.986	2.981	3.092	114.3	90.9	87.4	chel	
				24.11		1.957	1.971	3.037	3.092	115.1	90.3	88.5	chel	
192	Et	$OSBz_2$	P <u>1</u>	13.300	92.79	1.959	1.969	2.992	3.023	114.9	89.2	88.1	chel	284
La				19.816	114.92	1.961	1.964	3.008	3.018	112.8	90.9	90.5	chel	
				11.257	75.40	1.955	1.969	3.091	3.013	115.0	88.6	90.6	chel	
192	\Pr^i	DMSO	$P2_1/n$	17.354		1.959	1.966	3.003	3.013	112.9	90.7	90.3	chel	285
La				23.336	96.04	1.971	1.972	3.008	3.015	113.6	89.8	89.7	chel	
				10.955		1.949	1.950	3.011	2.984	114.2	89.4	90.2	chel	
192	Pr'	DMA	P <u>1</u>	23.071	120.0	1.965	1.987	3.046	3.009	112.8	90.3	91.0	chel	286
La				11.060	97.2	1.970	1.985	3.012	2.988	113.1	89.3	89.7	chel	
				10.793	88.9	1.974	1.981	3.013	3.029	113.1	90.2	89.6	chel	
192	\mathbf{Pr}^{i}	PhCONH ₂	C2/c	28.887		\mathbf{A}^{a}								287
Nd				28.913	106.72	1.961	1.971	2.987	2.984	114.3	89.3	89.2	chel	
				24.814		1.946	1.989	2.900	2.972	112.2	91.3	88.4	chel	
						1.939	1.953	2.962	2.895	113.4	88.7	90.4	chel	
						\mathbf{B}^{a}								
						1.950	1.957	2.971	2.895	113.0	88.8	90.8	chel	
						1.970	1.970	2.983	2.983	114.4	89.1	89.1	chel	
						Ca								
						1.929	1.969	2.898	2.969	112.4	91.3	88.8	chel	
						1.967	1.967	2.993	2.993	114.3	89.3	89.3	chel	
193	Et		$P2_1/c$	20.053		1.956	1.974	3.011	2.997	114.4	89.0	89.2	chel	288
La				15.207	112.02	1.968	1.974	2.973	3.002	113.8	90.0	89.0	chel	
				20.389		1.962	1.973	2.975	2.958	111.4	91.0	91.2		
						1.976	1.986	2.989	3.002	112.0	90.5	89.9		
193	Me		ပိ	14.762		1.948	1.966	2.964	2.965	114.1	89.5	89.1		289a
Ce				16.780	101.09	1.960	1.972	2.952	2.986	114.1	89.6	88.5	chel	
				19.890		1.961	1.970	2.952	2.999	112.5	91.1	89.6	chel	
						1.968	1.970	2.998	2.939	111.7	90.0	91.6	chel	

3462

10.2	٦ م			070 61		1 073	1 075	7 055	070 L	117 2	00.4	0.00	leha	7802
Nd	11		1/171	24.966	102.32	1.960	1.996	2.941	2.938	111.7	90.6	9.0 0.0	chel	*
1				21.420		1.974	1.990	2.947	2.927	111.8	89.3	89.6	chel	
						1.945	1.968	2.979	2.929	113.7	88.9	89.9	chel	
193	Pr		$P2_{1}/n$	14.400		1.970	1.973	2.837	2.878	112.1	88.9	87.6	chel	289a
Ho			:	32.427	93.46	1.956	1.962	2.921	2.837	9.111	88.5	90.8	chel	
				15.167	ļ	1.966	1.986	2.877	2.825	110.4	89.6	90.7	chel	
						1.974	1.987	2.894	2.848	110.8	88.4	89.5	chel	
193	Me		ပိ	14.626		1.946	1.975	2.840	2.886	112.0	90.3	88.4	chel	289a
Er				16.760	100.89	1.963	1.972	2.893	2.904	112.4	89.5	89.0	chel	
				19.718		1.956	1.973	2.804	2.906	110.2	92.2	88.8	chel	
						1.960	1.993	2.887	2.729	109.4	88.3	92.2	chel	
193	Et		$P2_1/c$	19.972		1.966	1.968	2.904	2.833	111.5	88.3	90.3	chel	288
Er				15.148	112.27	1.960	1.978	2.910	2.823	112.1	88.0	90.2	chel	
				20.244		1.960	1.969	2.871	2.802	110.2	89.4	91.3	chel	
						1.963	1.969	2.816	2.900	111.1	90.5	88.0	chel	
193	Me		Pca2 ₁	19.857		1.96	2.06	2.888	3.015	112.9	85.4	90.8	chel	289b
Pr				11.422	1	1.99	2.01	2.942	2.982	112.7	89.0	87.6	chel	
				19.077		2.01	2.02	3.056	2.985	112.0	87.7	89.5	chel	
						1.99	2.01	3.010	2.932	111.3	88.5	90.6	chel	
194	Et OP	Ph_3	$P2_1$	17.90		1.89	2.06	2.92	2.89	110.3	92.3	89.6	chel	283
Sm				16.84	99.98	1.95	2.01	2.97	2.93	113.3	89.2	89.0	chel	
				12.54		1.89	1.98			118.5			ionic	
194	Pr' Ph(CONH ₂	$P2_1/n$	25.076		1.966	1.988	2.805	2.816	110.9	89.4	88.6	chel	290
Tb				15.446	100.77	1.978	1.988	2.805	2.816	112.1	88.4	88.4	chel	
				14.579		1.961	1.964			117.9			ionic	
194	Pr' Ph(CONH ₂	$P2_1/n$	25.036		1.973	1.981	2.781	2.790	110.9	88.9	88.5	chel	290
Er				15.338	99.50	1.973	1.986	2.815	2.819	111.3	88.9	88.5	chel	
				14.805		1.946	1.964			118.3			ionic	
193/194	Pr ⁱ OS	Bu_2	An	23.696		Cation	194:							
				23.466	111.22	1.950	1.966	2.895	2.889	112.2	89.7	89.5	chel	291
				20.208	u /-	1.927	1.994	2.916	2.908	113.5	89.4	88.4	chel	
PN						Anion	193:							
						1.948	1.966	2.937	2.911	113.4	88.9	89.3	chel	
						1.949	1.964	2.904	2.940	112.5	90.3	88.9	chel	
						1.954	1.983	2.933	2.928	111.6	90.7	90.2	chel	
						1.977	1.988	2.882	2.951	111.8	90.9	88.7	chel	

Structure no.	R	Ц	Space group	a b c	s B s	P	S	M	Š	SPS	M—S		Bond type	Ref.
193/194	Pr ⁱ	DMSO	P2 ₁ /n	29.846 20.070	92.13	Cation 1.952	194: 1.955	2.884	2.891	112.3	89.5	89.2	chel	285
				14.057	ļ	1.949	1.982	2.872	2.875	112.3	89.6	88.9	chel	
Eu						Anion	195:							
						1.943	1.974	2.897	2.881	112.4	88.9	88.8	chel	
						1.934	1.953	2.908	2.872	113.0	88.9	89.6	chel	
						1.967	1.970	2.876	2.891	110.1	91.2	90.7	chel	
						1.948	1.951	2.912	2.883	112.0	89.6	90.4	chel	
195	Me		$P2_{1}/n$	10.601		1.960	1.960	2.909	2.922				chel	292
Sm			ĩ	17.946	101.90	1.960	1.960	3.047	2.918				bridge	
				12.407										

Table 29—continued.

dination of eight sulphur atoms from four isobidentate ligands, 193. Molecular dimensions are given in Table 29.

The complexes $[Ln{S_2P(OR)_2}_2 \cdot 3L]^+[S_2P(OR)_2]^-$ with Ln = Sm, R = Et, $L = OPPh_3$; Ln = Tb, Er, $R = Pr^i$, $L = PhCONH_2$,²⁹⁰ contain a cation of pentagonal bipyramidal geometry, with two isobidentate chelating phosphorodithioato ligands and the three additional neutral oxygen donor ligands; one phosphorodithioate is anionic, as shown in **194**.

Finally, the complexes $[Ln{S_2P(OR)_2}_2 \cdot 3L]^+[Ln{S_2P(OR)_2}_4]^-$ (193/194) with Ln = Nd, $R = Pr^i$, $L = OSBu_2$,²⁹¹ and Ln = Eu, $R = Pr^i$, L = DMSO,²⁸⁵ combine in the same compound a cation 194 and an anion 195 of the types discussed above. Note again that the metal is eight-coordinate in the anion and seven-coordinate in the cation.

Interatomic distances and bond angles are listed in Table 29.

The only organolanthanide compound investigated by X-ray diffraction is the dimeric η^5 -pentamethylcyclopentadienyl samarium complex, $(\eta^5-C_5Me_5)Sm\{S_2P(OMe)_2\}_2$. This has an unusual structure **195** (R = Me) and is the second complex in which the oxygen atom of the phosphorodithioato ligand participates in bonding.²⁹²

Acknowledgements—The services available from the Cambridge Crystallographic Data Centre via the EPSRC Daresbury Laboratory were used for the search of phosphorodithioate structures and for unpublished but deposited data. One of the authors (I.H.) is grateful to Universidad Nacional Autonoma de Mexico (UNAM) and Consejo Nacional de Ciencia y Tecnologia, Mexico (CONACYT) for a visiting professorship grant and financial support. Two of the authors (I.H. and D.B.S.) are grateful to The British Council for the support of their collaboration under the ROMLISS Program. The authors are also grateful to the Chinese colleagues who provided much of the unpublished or not easily available structural data.

REFERENCES

- 1. J. R. Wasson, G. M. Woltermann and H. J. Stoklosa, Fortschr. Chem. Forsch. (Topics Curr. Chem.) 1973, 35, 65.
- 2. W. Kuchen and H. Hertel, Angew. Chem. 1969, 81, 127; Angew. Chem. Int. Ed. Engl. 1969, 8, 89.
- 3. R. C. Mehrotra, G. Srivastava and B. P. S. Chauhan, Coord. Chem. Revs. 1984, 55, 207.

- 4. K. C. Molloy and J. J. Zuckerman, Accounts Chem. Res. 1983, 16, 386.
- 5. R. T. M. Tiekink, Main Group Met. Chem. 1992, 15, 161.
- 6. I. Haiduc, Revs. Inorg. Chem. 1981, 3, 353.
- 7. A. Haaland, Angew. Chem. 1989, 101, 1017; Angew. Chem. Int. Ed. Engl. 1989, 28, 992.
- 8. N. W. Alcock, Advan. Inorg. Chem. Radiochem. 1972, 15, 1.
- 9. A. Bondi, J. Phys. Chem. 1964, 68, 441.
- J. M. Lehn, in *Perspectives in Coordination Chemistry* (Edited by A. F. Williams, C. Floriani and A. E. Mehrbach), p. 447. Verlag Helvetica Chimica Acta Basel and VCH Weinheim (1992).
- 11. J. M. Lehn, Pure Appl. Chem. 1978, 50, 871.
- 12. J. M. Lehn, Angew. Chem. 1988, 100, 91; Angew. Chem. Int. Ed. Engl. 1988, 27, 89.
- I. Haiduc, Supramolecular Associations in Main Group Organometallic Chemistry, Lecture given at the 12th Colloquio de la Academia Mexicana de Quimica Inorganica, Quimica de los Elementos Representativos, 5– 6 Agosto 1993, UNAM, Ciudad De Mexico, Mexico.
- 14. I. Haiduc, in *Materials Science and Environmental Chemistry of Main Group Elements*, Lecture presented at the 2nd ANAIC International Conference, Kuala Lumpur, Malaysia, November 1993, in press.
- 15. P. v. R. Schleyer, Private communication (1992).
- 16. A. E. Reed and R. v. P. Schleyer, J. Am. Chem. Soc. 1990, 112, 1434.
- 17. S. Van Houten, A. Vos and G. A. Wiegers, Rec. Trav. Chim. Pays Bas 1955, 74, 1167.
- 18. Y. C. Leung, J. Waser, L. R. Roberts, Chem. Ind. (London) 1955, 948.
- 19. Y. C. Leung, J. Waser, S. van Houten, A. Vos, G. A. Wiegers, E. H. Wiebenga, Acta Cryst. 1957, 10, 574.
- 20. A. M. Griffin, P. C. Mishall and G. M. Sheldrick, J. Chem. Soc. Chem. Commun. 1976, 809.
- 21. C. C. Chang, R. C. Haltiwanger and A. D. Norman, Inorg. Chem. 1978, 17, 2056.
- 22. P. C. Minshall and G. M. Sheldrick, Acta Cryst. 1978, B34, 1326.
- 23. S. van Houten and E. H. Wiebenga, Acta Cryst. 1957, 10, 156.
- 24. A. M. Griffin and G. M. Sheldrick, Acta Cryst. 1975, B31, 2738.
- 25. A. Vos, R. Olthof, F. van Bolhuis and R. Botterweg, Acta Cryst. 1965, 19, 864.
- 26. A. Vos and E. H. Wiebenga, Acta Cryst. 1955, 8, 217.
- 27. D. T. Dixon, F. W. B. Einstein and B. R. Penfold, Acta Cryst. 1965, 18, 221.
- 20. W. Hilmer, Acta Cryst. 1969, B25, 1229.
- 29. D. B. Sowerby, in *The Chemistry of Inorganic Homo- and Heterocycles* (Edited by I. Haiduc and D. B. Sowerby), Vol. 2, p. 681. Academic Press, London, New York (1987).
- 30. M. J. Potrzebowski, J. H. Reibenspies and Z. Zhong, Heteroatom Chem. 1991, 2, 455.
- 31. G. Grossmann, B. Schwab, A. John, H. Komber and G. Jeschke, *Phosphorus, Sulfur, Silicon* 1993, 78, 297.
- 32. S. L. Lawton, Inorg. Chem. 1970, 9, 2269.
- 33. V. V. Tkachev, L. O. Atovmyan and S. A. Shchepinov, Zh. Strukt. Khim. 1976, 17, 945.
- 34. A. C. Gallacher and A. A. Pinkerton, Acta Cryst. 1993, C49, 1793.
- 35. P. Knopik, L. Luczak, M. J. Potrzebowski, J. Michalski, J. Blaszczyk and M. W. Wieczorek, J. Chem Soc. Dalton Trans. 1993, 2749.
- 36. A. Lopusinski, L. Luczak, J. Michalski, A. E. Koziol and M. Gdaniec, J. Chem. Soc. Chem. Commum. 1991, 889.
- 37. J. S. Yadav, R. Bohra, R. C. Mehrotra, R. K. Rai and G. Srivastava, Acta Cryst. 1989, C45, 308.
- 38. A. C. Gallacher and A. A. Pinkerton, Acta Cryst. 1992, C48, 2085.
- 39. A. C. Gallacher and A. A. Pinkerton, Acta Cryst. 1992, C48, 701.
- 40. T. Buranda, A. C. Gallacher and A. A. Pinkerton, Acta Cryst. 1991, C47, 1414.
- 41. J. D. Lee and G. W. Goodacre, Acta Cryst. 1971, B27, 302.
- 42. P. J. Wheatley, J. Chem. Soc. 1969, 523.
- 43. (a) S. N. Dutta and M. M. Woolfson. Acta Cryst. 1961, 14, 178; (b) R. Sillanpäa, O. Ergin and S. Celebi, Acta Cryst. 1993, C49, 767.
- 44. A. J. Blake, R. A. Howie and G. P. McQuillan. Acta Cryst. 1981, B37, 966.
- 45. J. D. Lee and G. W. Goodacre. Acta Cryst. 1969, B25, 2127.
- 46. J. D. Lee and G. W. Goodacre. Acta Cryst. 1970, B26, 507.
- 47. M. Gruber, P. G. Jones and R. Schmutzler. Chem. Ber. 1990, 123, 1313.
- 48. R. K. Shibao, N. L. Keder and H. Eckert. Acta Cryst. 1992, C48, 1525.
- 49. (a) R. Appel, F. Knock and H. Kunze. Angew. Chem. 1983, 95, 1008; Angew. Chem. Int. Ed. Engl. 1983, 22, 1004; (b) H. Beckmann, G. Grossmann, G. Ohms and J. Sieler. Heteroatom Chem. 1994, 5, 73.
- 50. M. Scheer and P. G. Jones, J. Organomet. Chem. 1992, 434, 57.
- 51. S. Hoehne, E. Lindner and J. P. Gunz, Chem. Ber. 1978, 111, 3818.
- 52. P. J. Wheatley, J. Chem. Soc. 1962, 300.
- 53. J. J. Daly, J. Chem. Soc. 1964, 4065.

- (a) T. T. Shore, W. T. Pennington, M. C. Noble and A. W. Cordes, *Phosphorus, Sulfur* 1988, **39**, 153; (b)
 F. Menzel, V. Kaiser and W. Brockner, *Polyhedron*, 1994, **13**, 579; (c) V. Kaiser and F. Menzel, *Z. Kristallogr.* 1993, **206**, 279; (d) V. Kaiser, F. Menzel and W. Brockner, *Z. Kristallogr.* 1993, **207**, 306.
- 55. (a) M. Yokoyama and K. Ogata, J. Chem. Soc. Dalton Trans. 1988, 2225; (b) V. Kaiser, F. Menzel and W. Brockner, Z. Kristallogr. 1993, 207, 308.
- 56. E. Fluck, G. Gonzalez, K. Peters and H. G. von Schnering, Z. Anorg. Allg. Chem. 1981, 473, 51.
- 57. P. Toffoli, P. Khodadad and N. Rodier, Acta Cryst. 1978, B34, 3561.
- 58. M. Bouchetière, P. Toffoli, P. Khodadad and N. Rodier, Acta Cryst. 1978, B34, 384.
- 59. K. Volk and H. Schäfer, Z. Naturforsch. 1979, 34b, 1337.
- 60. K. Mereiter, H. Preisinger, I. A. Zellner, W. Mikenda and H. Steidl, Inorg. Chim. Acta. 1983, 72, 67.
- 61. B. Krebs and G. Henkel, Z. Anorg. Allg. Chem. 1981, 475, 143.
- 62. G. Henkel, B. Krebs and S. A. Mason, Eur. Cryst. Meeting, 4th, 1977, 381.
- 63. W. Stucker, G. Henkel and B. Krebs, Eur. Cryst. Meeting, 9th, 1985, 340.
- 64. P. Coppens, C. H. MacGillavry, S. G. Hovenkamp and H. Douwes, Acta Cryst. 1962, 15, 765.
- 65. J. P. Hazel and R. L. Collin, Acta Cryst. 1972, B28, 2279.
- 66. A. A. Pinkerton and N. J. Terrill, Acta Cryst. 1988, C44, 567.
- 67. A. E. Kalinin, V. G. Andrianov and Yu. T. Struchkov. Izv. Akad. Nauk SSSR, Ser. Khim. 1979, 783; English transl. p. 727.
- 68. U. Thewalt, S. Klima and H. G. Alt, J. Organomet. Chem. 1987, 321, 209.
- 69. V. V. Tkachev, S. A. Shchepinov and L. O. Atovmyan, Zh. Strukt. Khim. 1977, 18, 1036; J. Struct. Chem. Engl. transl. 1977, 18, 823.
- 70. C. Furlani, A. A. G. Tomlinson, P. Porta and A. Sgamellotti, J. Chem. Soc. A. 1970, 2929.
- 71. S. Woodward, U. Riaz, M. D. Curtis, B. S. Haggerty and A. L. Rheingold, Organometallics, 1990, 9, 2703.
- 72. R. Mercier, J. Douglade and B. Viard, Acta Cryst. 1981, B37, 949.
- 73. T. Buranda and A. A. Pinkerton, Inorg. Chim. Acta 1990, 170, 81.
- 74. H. Vicents, F. Schousboe-Jensen, and R. G. Hazell, Acta Chem. Scand. 1972, 26, 1375.
- 75. R. Kuroda and P. Biscarini, J. Chem. Soc. Dalton Trans. 1990, 3393.
- 76. R. Kuroda, Rigaku Denki Janasu, 1990, 21, 13; Chem. Abs. 1991, 114, 53174p.
- 77. J. R. Dilworth and J. A. Zubieta, J. Chem. Soc. Dalton Trans. 1983, 397.
- 78. M. E. Noble, J. C. Huffman and R. A. D. Wentworth, Inorg. Chem. 1982, 21, 2101.
- S. A. Roberts, C. G. Young, W. E. Cleland Jr., R. B. Ortega and J. H. Enemark, *Inorg. Chem.* 1988, 27, 3044.
- 80. P. Gómez-Sal, T. Pedraz, P. Royo and A. Vázquez-Miguel, Latin-American Inorganic Chemistry Meeting, Santiago de Compostela (Spain), Nov. 1993, Abstracts, p. 313 (Poster 2410P).
- 81. G. Barrado, D. Miguel, J. A. Pérez-Martinez, V. Riera and S. Garcia-Granda, J. Organomet. Chem. 1994, 466, 147.
- 82. G. Barrado, D. Miguel, J. A. Pérez-Martinez, V. Riera and S. Garcia-Granda, J. Organomet. Chem. 1993, 463, 127.
- 83. R. L. Thompson, S. J. Geib and N. J. Cooper, Inorg. Chem. 1993, 32, 6076.
- 84. D. M. Wu, J. L. Huang and J. Q. Huang, Jiegou Huaxue (J. Struct. Chem.) 1984, 3, 109.
- 85. J. R. Knox and C. K. Prout, Acta Cryst. 1969, 25, 2281.
- 86. R. Ratnani, R. Bohra, G. Srivastava and R. C. Mehrotra, J. Cryst. Spectrosc. Res. 1990, 20, 541.
- 87. Z. G. Aliev, L. O. Atovmyan and V. V. Tkachev, Zh. Strukt. Khim, 1975, 16, 694.
- 88. A. W. Edelblut, B. L. Haymore and R. A. D. Wentworth, J. Am. Chem. Soc. 1978, 100, 2250.
- 89. L. O. Atovmyan, V. V. Tkachev and S. A. Shchepinov, Koord. Khim. 1978, 4, 610.
- 90. M. G. B. Drew, P. C. H. Mitchell, A. R. Read and T. Colclough, Acta Cryst. 1981, 37, 1758.
- S. F. Lu, M. Y. Shang, W. D. Cheng, M. Y. He and J. L. Huang, *Fenzi Kexue Yu Huaxue Yanjiu*, 1984, 4, 345.
- 92. J. L. Huang, M. Y. Shang, J. Q. Huang, H. G. Zhuang, S. F. Lu and J. X. Lu. Jiegou Huaxue (J. Struct. Chim.) 1982, 1, 1.
- 93. M. E. Noble, K. Folting, J. C. Huffman and R. A. D. Wentworth, Inorg. Chem. 1983, 22, 3671.
- 94. H. G. Zhuang, X. M. Zhang, J. L. Huang, Y. H. Lin and J. Q. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1985, 4, 46.
- 95. M. E. Noble, J. C. Huffman and R. A. D. Wentworth, Inorg. Chem. 1983, 22, 1756.
- 96. M. E. Noble, K. Folting, J. C. Huffman and R. A. D. Wentworth, Inorg. Chem. 1984, 23, 631.
- 97. M. E. Noble and D. E. Williams, Inorg. Chem. 1988, 27, 749.
- 98. E. K. Haub, J. F. Richardson and M. E. Noble, Inorg. Chem. 1992, 31, 4926.
- 99. A. C. Lizano, J. F. Richardson and M. E. Noble, Inorg. Chem. 1989, 28, 1451.
- 100. M. G. B. Drew, P. J. Baricelli, P. C. H. Mitchell and A. R. Read, J. Chem. Soc. Dalton Trans. 1983, 649.
- 101. M. G. B. Drew, P. C. H. Mitchell and A. R. Read, J. Chem. Soc. Chem. Comun. 1982, 238.

- 102. P. J. Baricelli, M. G. B. Drew and P. C. H. Mitchell, Acta Cryst. 1983, C39, 843.
- 103. K. L. Wall, K. Folting, J. C. Huffmann and R. A. D. Wentworth, Inorg. Chim. Acta 1984, 86, L25.
- 104. S. F. Lu, M. D. Huang, J. Q. Huang, J. L. Huang and J. X. Lu, Science in China. Ser. B. (Engl. Edn) 1989, 32, 139.
- 105. X. T. Lin, Y. H. Lin, J. L. Huang and J. Q. Huang, Youji Huaxue (J. Org. Chem.) 1985, 326; Chem. Abs. 1985, 103, 152620k.
- 106. X. T. Lin, Y. H. Lin, J. L. Huang and J. Q. Huang, Kexue Tongbao (Chin. Sci. Bull.) 1986, 31, 509.
- 107. X. T. Lin, Y. H. Lin, J. L. Huang and J. Q. Huang, Kexue Tongbao (Chin. Sci. Bull.) 1987, 32, 810, Chem. Abs. 1987, 107, 189538y.
- 108. S. F. Lu, J. Q. Huang, Y. H. Lin and J. L. Huang, Jiegou Huaxue (J. Struct. Chem.) 1987, 6, 154.
- 109. S. F. Lu, M. Y. Shang, J. Q. Huang and J. X. Lu, Sci. Sin. Ser. B. (Engl. Ed.) 1988, 31, 147.
- 110. J. Q. Huang, S. F. Lu, Y. H. Lin, J. L. Huang and J. X. Lu, Acta Chimica Sinica (Engl. ed.) 1986, 301.
- J. Q. Huang, S. F. Lu, Y. H. Lin, J. L. Huang and J. X. Lu, *Huaxue Xuebao (Acta Chim. Sinica)* 1987, 45, 213; *Chem. Abs.* 1987, 107, 16715a.
- 112. X. T. Lin, J. X. Lu, J. Q. Huang and J. L. Huang, Chin. J. Chem. 1992, 10, 34; Chem. Abs. 1992, 117, 61607j.
- 113. J. Q. Huang, J. L. Huang, M. Y. Shang, S. F. Lu, X. T. Lin, Y. H. Lin, M. D. Huang, H. H. Zhuang and J. X. Lu, *Pure Appl. Chem.* 1988, **60**, 1185.
- 114. J. Q. Huang, S. F. Lu, M. Y. Shang, X. T. Lin, M. D. Huang, Y. H. Lin, D. M. Wu, H. H. Zhuang, J. L. Huang and J. X. Lu, *Jiegou Huaxue (J. Struct. Chem.*) 1987, **6**, 219.
- 115. M. D. Huang, S. F. Lu, J. Q. Huang and J. L. Huang, Wuli Huaxue Xuebao (Acta Phys. Chim. Sinica) 1988, 4, 611; Chem. Abs. 1989, 110, 127571g.
- 116. S. F. Lu, M. D. Huang, J. Q. Huang, Z. X. Huang and J. L. Huang, Acta Cryst. 1990, C46, 2036.
- 117. S. F. Lu, J. Q. Huang, M. D. Huang and J. L. Huang, Huaxue Xuebao (Acta Chim. Sinica) 1989, 47, 24.
- S. F. Lu, J. Q. Huang, Z. X. Huang, J. L. Huang and J. X. Lu, *Jiegou Huaxue (J. Struct. Chem.)* 1990.
 9, 116; *Chem. Abs.* 1991, 114, 33378e.
- 119. Y. F. Zheng, N. Y. Zhu, H. Q. Zhan and X. T. Wu, Acta Cryst. 1989, C45, 1632.
- 120. J. Hu, H. G. Zhuang, J. Q. Huang and J. L. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1989, **8**, 6; *Chem. Abs.* 1989, **111**, 224042p.
- 121. S. F. Lu, J. Q. Huang, J. L. Huang and J. X. Lu, *Jiegou Huaxue (J. Struct. Chem.)* 1984, 3, 151, *Chem. Abs.* 1985, 103, 62906d.
- 122. M. D. Huang, S. F. Lu, J. Q. Huang and J. L. Huang, Jiegou Huaxue (J. Struct. Chem.) 1987, 6, 29; Chem. Abs. 1987, 107, 189457w.
- 123. X. T. Lin, J. Q. Huang, J. L. Huang and Y. X. Lin, *Huaxue Xuebao (Acta Chim. Sinica)* 1986, 44, 1062; *Chem. Abs.* 1987, 106, 42919u.
- 124. Z. Wang, B. Zhang, W. Huang, J. Q. Huang and J. L. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1992, 11, 127; Chem. Abs. 1993, 118, 115347r.
- 125. S. F. Lu, J. Q. Huang, Z. X. Huang, B. Zhang and J. L. Huang, *Chinese J. Chem. (Engl. Ed.)* 1992, 10, 500; *Chem. Abs.* 1993, 119, 130301k.
- Z. M. Wang, B. Zhang, W. Huang, J. Q. Huang and J. L. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1992, 11, 253; *Chem. Abs.* 1993, 119, 19231y.
- 127. M. Y. Shang, J. L. Huang and J. X. Lu, Acta Cryst. 1984, 40, 759.
- 128. S. F. Lu, J. Q. Huang, Y. H. Lin and J. L. Huang, Acta Chimica Sinica (Huaxue Xuebao) 1987, 45, 842.
- 129. D. M. Wu, J. Q. Huang, Y. H. Lin and J. L. Huang, *Wuli Huaxue Xuebao (Acta Phys. Chim. Sinica)* 1986, **2**, 533; *Chem. Abs.* 1987, **106**, 94955x.
- 130. M. Y. Shang, J. L. Huang and J. X. Lu, Jiegou Huaxue (J. Struct. Chem.) 1984, 3, 17.
- 131. M. Y. Shang and J. L. Huang, Sci. Sin. Ser. B (Engl. Edn.) 1985, 8.
- 132. X. T. Lin, J. X. Lu, J. L. Huang and J. Q. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1990, 9, 236; *Chem. Abs.* 1991, 114, 17719u.
- 133. X. T. Lin, J. Huang and J. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1985, **4**, 143; *Chem. Abs.* 1986, **105**, 237294y.
- 134. S. F. Lu, Y. H. Lin, J. L. Huang, J. X. Lu and J. Q. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1984, 3, 147; *Chem. Abs.* 1985, 103, 62905c.
- 135. M. G. Shang, J. L. Huang and J. X. Lu, Sci. Sin. Ser. B. (Engl. Edn.) 1985, 607.
- 136. (a) S. F. Lu, J. Q. Huang, H. H. Zhuang, J. Q. Li, D. M. Wu, Z. X. Huang, C. Z. Lu, J. L. Huang, and J. X. Lu, *Polyhedron*, 1991, 10, 2203; (b) X. M. Zhang, Master's Thesis (1985) cited in Ref. 136a.
- 137. C. L. Coyle, K. A. Eriksen, S. Farina, J. Francis, Y. Gea, M. A. Greaney, P. J. Guzi, T. R. Halbert, H. H. Murray, and E. I. Stiefel, *Inorg. Chim. Acta* 1992, **198–200**, 565.
- 138. D. M. Wu, J. L. Huang and J. Q. Huang, Wuji Huaxue Xuebao (Inorg. Chem.) 1985, 1, 32.
- 139. S. F. Lu, Y. H. Lin, J. L. Huang and J. Q. Huang, Kexue Tongbao (Chin. Sci. Bull.) (Engl.), 1986, 31, 1609; Chem. Abs. 1987, 106, 186888f.

- 140. S. F. Lu, J. L. Huang and J. Q. Huang, Huaxue Xuebao (Acta Chim. Sinica) 1985, 43, 918.
- 141. (a) S. F. Lu, J. Q. Huang, Z. X. Huang, Q. J. Wu, W. Z. Chen, G. T. Lu, Q. L. Sun and J. L. Huang, *Inorg. Chim. Acta.* 1990, **176**, 35, (b) Y. H. Lin, D. M. Wu, J. Q. Huang and J. L. Huang, *Wuji Huaxue Xuebao (Inorg. Chem.)* 1992, **8**, 402; *Chem. Abs.* 1994, **120**, 207283n.
- 142. S. F. Lu, J. Q. Huang, Z. X. Huang and J. L. Huang, Jiegou Huaxue (J. Struct. Chem.) 1991, 10, 40.
- 143. H. H. Zhuang, D. M. Wu, J. Q. Huang and J. L. Huang Chin. Chem. Lett. 1991, 2, 553; Chem. Abs. 1992, 116, 206614a.
- 144. A. W. Edelblut, K. Folting, J. C. Huffman and R. A. D. Wentworth, J. Am. Chem. Soc. 1981, 103, 1927.
- 145. J. E. Pelati, J. C. Huffman and R. A. D. Wentworth, Inorg. Chem. 1988, 27, 2194.
- 146. M. E. Noble, K. Folting, J. C. Huffman and R. A. D. Wentworth, Inorg. Chem. 1982, 21, 3772.
- 147. Y. F. Zheng, N. Y. Zhu and X. T. Wu, Acta Cryst. 1989, C45, 1988.
- 148. S. F. Lu, N. Y. Zhu, X. T. Wu, Q. J. Wu and J. X. Lu, J. Mol. Struct. 1989, 197, 15.
- 149. X. T. Wu, S. F. Lu, L. Y. Zu, Q. J. Wu and J. X. Lu, Inorg. Chim. Acta 1987, 133, 39.
- 150. X. T. Wu, Y. F. Zheng, N. Y. Zhu and J. X. Lu, Jiegou Huaxue (J. Struct. Chem.) 1988, 7, 137.
- 151. S. F. Lu, J. Q. Huang, Z. D. Chen, Q. J. Wu, W. Z. Chen, X. Y. Huang, Z. X. Huang, J. L. Huang and J. X. Lu, J. Cluster Sci. 1992, 3, 179, Chem. Abs. 1993, 119, 61571j.
- 152. S. F. Lu, J. Q. Huang, Y. H. Lin and J. L. Huang, Huaxue Xuebao (Acta Chim. Sinica) 1987, 45, 666.
- 153. S. F. Lu, J. Q. Huang, Y. H. Lin and J. L. Huang, *Jiegou Huaxue (J. Struct. Chem.)* 1986, 5, 37; *Chem. Abs.* 1987, **106**, 93967r.
- 154. S. F. Lu, J. Q. Huang, Y. H. Lin and J. L. Huang, Jiegou Huaxue (J. Struct. Chem.) 1986, 5, 42.
- 155. S. X. Liu, B. Zhang, J. Q. Huang and J. L. Huang, Jiegou Huaxue (J. Struct. Chem.) 1990, 9, 22.
- 156. M. G. B. Drew, R. J. Hobson, P. E. M. Mumba, D. A. Rice and N. Turp, J. Chem. Soc. Dalton Trans. 1987, 1163.
- 157. M. H. Chisholm, D. M. Ho, J. C. Huffman and W. G. van der Sluys, Polyhedron 1987, 6, 1115.
- 158. Y. F. Zheng, H. Q. Zhan and X. T. Wu, Acta Cryst. 1989, C45, 1424.
- 159. V. P. Fedin, M. N. Sokolov, O. A. Geras'ko, A. V. Virovets, N. V. Podberezska and V. Y. Fedorov, *Polyhedron* 1992, **11**, 3159.
- 160. C. C. Lin and G. Chen, Jiegou Huaxue (J. Struct. Chem.) 1990, 9, 111.
- 161. M. L. Sampson, J. F. Richardson and M. E. Noble, Inorg. Chem. 1992, 31, 2726.
- 162. X. Wu, H. Q. Zhan, Y. F. Zheng and J. X. Lu, J. Mol. Struct. 1989, 197, 33.
- 163. H. Q. Zhan, Y. F. Zheng, X. T. Wu and J. X. Lu, Jiegou Huaxue (J. Struct. Chem.) 1988, 7, 157.
- 164. H. Q. Zhan, Y. F. Zheng, X. T. Wu and J. X. Lu, Inorg. Chim. Acta 1989, 156, 277.
- 165. Y. F. Zheng, H. Q. Zhan and X. T. Wu, Acta Cryst. 1989, C45, 1990.
- 166. Y. F. Zheng, H. Q. Zhan, X. T. Wu and J. X. Lu, Trans. Met. Chem. 1989, 14, 161.
- 167. M. G. B. Drew, M. Hasan and Y. Hello, Polyhedron 1989, 8, 1853.
- 168. B. Lorenz, K. Schmidt, W. Hiller, U. Abram and R. Rübener, Inorg. Chim. Acta 1993, 208, 195.
- 169. K. Kirschbaum, U. Bönnighausen, E. Gesing, K. Greiwe, U. Kuhlmann, H. Strasdeit, B. Krebs and G. Henkel. Z. Naturforsch. 1990, **45b**, 245.
- 170. M. G. B. Drew, W. A. Hopkins, P. C. H. Mitchell and T. Colclough, J. Chem. Soc. Dalton Trans. 1986, 351.
- 171. J. Sanz-Aparicio, S. Martinez-Carrera and S. Garcia-Blanco, Acta Cryst. 1987, C43, 2009.
- 172. J. Sanz-Aparicio, S. Martinez-Carrera and S. Garcia-Blanco. Acta Cryst. 1986, C42, 1121.
- 173. J. Sanz-Aparicio, S. Martinez-Carrera and S. Garcia-Blanco, Z. Kristallogr. 1986, 175, 195.
- 174. V. V. Tkachev, L. O. Atovmyan and S. A. Shchepinov, *Izvest. Akad. Nauk SSSR, Ser. Khim.* 1977, 2170; *Engl. transl.* p. 2011.
- 175. V. V. Tkachev, L. O. Atovmyan and S. A. Shchepinov, Zh. Strukt. Khim. 1980, 21, 173.
- 176. J. F. McConnell and A. Schwartz, Acta Cryst. 1972, B28, 1546.
- 177. Z. Xu, Y. P. Yu, J. H. Lin, J. Xu, X. Z. You, C. C. Lin and S. X. Liu, *Gaodeng Xuexiao Huaxue Xuebao* (Chem. J. Chin. Univ.) 1988, 9, 432.
- 178. G. A. Williams and R. Robson, Aust. J. Chem. 1981, 34, 65.
- 179. M. Shimoi, A. Ouchi, T. Uehiro, Y. Yoshino, S. Sato and Y. Saito, Bull. Chem. Soc. Japan 1982, 55, 2371.
- 180. M. Shimoi, A. Ouchi, S. Sato and Y. Saito, Chem. Lett. 1979, 319.
- 181. Z. Xu, J. H. Lin, Y. P. Yu, J. Xu, X. Z. You, S. X. Liu and C. C. Lin, *Huaxue Xuebao (Acta Chim. Sinica)*, 1989, **47**, 623; *Chem. Abs.* 1990, **112**, 68606p.
- 182. V. V. Tkachev and L. O. Atovmyan, Zh. Strukt. Khim. 1983, 24, 155.
- 183. V. Kastalsky and J. F. McConnell, Acta Cryst. 1969, B25, 909.
- 184. E. A. Glinskaya and M. A. Porai-Koshits, Kristallografiya 1960, 4, 241.
- 185. Q. Fernando and C. D. Green, J. Inorg. Nucl. Chem. 1967, 29, 647.
- 186. J. F. McConnell and V. Kastalsky, Acta Cryst. 1967, 22, 853.
- 187. N. D. Yordanov, G. Gochev, O. Angelova and J. Macicek, Polyhedron 1990, 9, 2597.

- 188. V. V. Tkachev and L. O. Atovmyan, Koord. Khim. 1976, 2, 997.
- 189. B. F. Hoskins and E. R. T. Tiekink, Acta Cryst. 1985, C41, 322.
- 190. C. C. Lin, S. X. Liu, Z. Xu, J. H. Lin and X. Z. You, Jiegou Xuahue (J. Struct. Chem.) 1987, 6, 186.
- 191. Z. Xu, J. H. Lin, X. Z. You, W. X. Liu and P. Zheng, Youji Huaxue (J. Org. Chem.). 1991, 11, 632; Chem. Abs. 1992, 116, 117715s.
- 192. W. Poll and H. Wunderlich, Acta Cryst. 1980, B36, 1191.
- 193. H. W. Chen and J. P. Fackler, Am. Cryst. Assoc. Summer Meeting, 1974, 229.
- 194. S. X. Liu, C. C. Lin, Y. P. Yu, D. L. Zhu, Z. Xu, S. H. Gou and X. Z. You, Acta Cryst. 1991, C47, 43.
- 195. P. S. Shetty and Q. Fernando, J. Am. Chem. Soc. 1970, 92, 3964.
- 196. W. Rudzinski, M. Shiro and Q. Fernando, Anal. Chem. 1975, 47, 1194.
- 197. C. P. Bhasin, R. Bohra, G. Srivastava, R. G. Mehrotra and P. B. Hitchcock, *Inorg. Chim. Acta*, 1989, 164, 11.
- 198. S. Ooi and Q. Fernando, Inorg. Chem. 1967, 6, 1558.
- 199. S. X. Liu, C. C. Lin, Z. Xu, Y. P. Yu and X. Z. You, Youji Huaxue (J. Org. Chem.) 1987, 369.
- 200. S. X. Liu, X. C. Lin, Z. Xu, J. H. Lin, Y. P. Yu and X. Z. You. Gaodeng Xuexiao Xuebao (Chem. J. Chin. Univ.) 1989, 10, 1225; Chem. Abs. 1990, 113, 47494f.
- 201. X. Z. You, Z. Xu, X. Xu, J. H. Lin, Y. P. Yu, C. C. Lin and S. X. Liu, *Kexue Tongbao (Chin. Sci. Bull.)* 1992, 37, 657; *Chem. Abs.* 1993, 118, 110525n.
- 202. J. S. Huang, Y. P. Yu, Z. Xu and X. X. You, Acta Cryst. 1990, C46, 991.
- 203. S. K. Arora, D. E. Carter, Q. Fernando and K. Seff, Acta Cryst. 1977, B33, 3230.
- 204. X. Z. You, Z. Xu, Y. P. Yu, S. X. Liu and C. C. Lin, Jiegou Huaxue (J. Struct. Chem.) 1986, 5, 154; Chem. Abs. 1987, 107, 124911v.
- 205. M. Shiro and Q. Fernando, J. Chem. Soc. D. 1971, 350.
- 206. D. C. Craig, E. T. Pallister and N. C. Stephenson, Acta Cryst. 1971, B27, 1163.
- 207. D. B. Sowerby and I. Haiduc, Inorg. Chim. Acta 1976, 17, L15.
- 208. D. B. Sowerby and I. Haiduc, Inorg. Nucl. Chem. Letters 1976, 12, 791.
- 209. Y. P. Yu, D. L. Zhu, S. X. Liu, C. C. Lin, Z. Xu, S. Z. Gou and X. Z. You, Jiegou Huaxue (J. Struct. Chem.) 1990, 9, 73; Chem. Abs. 1990, 113, 221775k.
- 210. J. H. Lin, Z. Xu, X. Z. You, Y. P. Yu, D. L. Zhu, S. X. Liu and C. C. Lin, *Jiegou Huaxue (J. Struct. Chem.)* 1990, 9, 207; *Chem. Abs.* 1991, 114, 175322f.
- 211. R. Kirmse, W. Dietzsch, J. Stach, L. Golic, R. Bötcher, W. Brunner, M. C. M. Gribnau and C. P. Keijzers, *Mol. Phys.* 1986, 57, 1139.
- 212. N. D. Yordanov, M. Ivanova, G. Gochev and J. Macicek, Polyhedron 1993, 12, 117.
- 213. R. Roques, C. Blonski, A. Klaebe, J. Perie, J. P. Declercq and G. Germain, Acta Cryst. 1981, B37, 1756.
- 214. V. V. Tkachev and L. O. Atovmyan, Koord. Khim. 1982, 8, 215.
- 215. J. C. Poat, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc. Chem. Comm. 1990, 1036.
- 216. J. P. Fackler Jr, L. D. Thompson, J. B. Lin, T. A. Stephenson, R. O. Gould, J. M. C. Alison and A. J. F. Fraser, *Inorg. Chem.* 1982, **21**, 2397.
- 217. (a) R. Colton, J. Ebner and B. F. Hoskins, *Inorg. Chem.* 1988, 27, 1993; (b) V. K. Jain, S. Chaudhury, A. Vyas and R. Bohra, *J. Chem. Soc. Dalton Trans.* 1994, 1207.
- 218. N. D. Yordanov, V. Alexiev, J. Macicek, T. Glowiak and D. R. Russell, Trans. Met. Chem. 1983, 8, 257.
- 219. N. V. Pervukhina and N. V. Podberezskaya, Zh. Strukt. Khim. 1985, 26, 101.
- 220. M. G. B. Drew, G. A. Forsyth, M. Hasan, R. J. Hobson and D. A. Rice, J. Chem. Soc. Dalton Trans. 1987, 1027.
- 221. (a) U. N. Tripathi, R. Bohra, G. Srivastava and R. C. Mehrotra, *Polyhedron* 1992, 11, 1187; (b) Q. H. Chen, S. F. Lu, X. Y. Huang and J. Q. Huang, *Jiegou Huaxue (J. Struct. Chem.*) 1994, 13, 102.
- 222. S. L. Lawton, W. J. Rohrbaugh and G. T. Kokotailo, Inorg. Chem. 1972, 11, 612.
- Z. X. Huang, S. F. Lu, J. Q. Huang, D. M. Wu and J. L. Huang, *Jiegou Huaxue* (J. Struct. Chem.) 1991, 10, 213; Chem. Abs. 1992, 116, 98091s.
- (a) D. Wu, J. Q. Huang, Y. Lin and J. L. Huang, Sci. Sin. Ser. B. (Engl. Ed.) 1988, 31, 800; Chem. Abs. 1989, 110, 50185z; (b) S. W. Du and X. T. Wu, Acta Cryst. 1994, 50C, 500; (c) Q. H. Chen, X. Y. Huang, S. F. Lu and J. Q. Huang, Jiegou Huaxue (J. Struct. Chem.) 1993, 12, 391; Chem. Abs. 1994, 121, 25462g.
- 225. M. G. B. Drew, R. J. Hobson, P. P. E. M. Mumba and D. A. Rice, J. Chem. Soc. Dalton Trans. 1987, 1569.
- 226. M. G. B. Drew, R. J. Hobson, P. P. E. M. Mumba and D. A. Rice, Inorg. Chim. Acta 1988, 142, 301.
- 227. S. W. Du, N. Y. Zhu, P. C. Chen and X. T. Wu, J. Mol. Struct. 1993, 291, 167.
- 228. S. W. Du and X. T. Wu, J. Coord. Chem. 1993, 30, 183.
- 229. S. L. Lawton, W. J. Rohrbaugh and G. T. Kokotailo, Inorg. Chem. 1972, 11, 2227.
- 230. T. Ito, T. Igarashi and H. Hagihara, Acta Cryst. 1969, B25, 2303.
- 231. S. L. Lawton and G. T. Kokotailo, Inorg. Chem. 1969, 8, 2410.
- 232. M. G. B. Drew, M. Hasan, R. J. Hobson and D. A. Rice, J. Chem. Soc. Dalton Trans. 1986, 1161.

- 233. P. G. Harrison, M. J. Begley, T. Kikabhai and F. Killer, J. Chem. Soc. Dalton Trans. 1986, 929.
- 234. J. A. McCleverty, R. S. Z. Kowalski, N. A. Bailey, R. Mulvaney and D. A. O'Cleirigh, J. Chem. Soc. Dalton Trans. 1983, 627.
- 235. R. S. Z. Kowalski, N. A. Bailey, R. Mulvaney, H. Adams, D. A. O'Cleirigh and J. A. McCleverty, *Trans. Met. Chem.* 1981, 6, 64.
- 236. P. G. Harrison, M. J. Begley, T. Kikabhai and F. Killer, J. Chem. Soc. Dalton Trans. 1986, 925.
- 237. A. J. Burn, R. W. Joyner, P. Mechan and K. M. A. Parker, J. Chem. Soc. Chem. Comm. 1986, 982.
- 238. (a) Q. Wang, Y. Meng, Y. X. Jin and Z. Chai, Lanzhou Daxue Xuebao, Ziran Kexueban 1990, 26, 24; Chem. Abs. 1993, 118, 113601v; (b) Y. X. Jin, Z. Chai and Q. Wang, Shiyou Huagong (Petrochemical Technology) 1988, 17, 235.
- 239. M. Shinoi, A. Ouchi, M. Aikawa, S. Sato and Y. Saito, Bull Chem. Soc. Japan 1982, 55, 2089.
- 240. J. A. McCleverty, S. Gill, R. S. Z. Kowalski, N. A. Bailey, N. A. Adams, K. W. Lumbard and M. A. Murphy, J. Chem. Soc. Dalton Trans. 1982, 493.
- 241. Y. Watanabe and H. Hagihara, Acta Cryst. 1972, A28, S89.
- 242. Y. Watanabe, Sci. Papers Inst. Phys. Chem. Res. (Japan) 1980, 74, 150.
- 243. S. L. Lawton, Inorg. Chem. 1971, 10, 328.
- 244. B. F. Abrahams, D. Dakternieks, B. F. Hoskins and G. Winter, Austral. J. Chem. 1988, 41, 757.
- E. M. Vázquez-López, A. Castiñeiras, A. Sánchez, J. S. Casas and J. Sordo, J. Cryst. Spectr. Res. 1992, 22, 403.
- 246. P. Coggon, J. D. Lebeda, A. T. McPhail and R. A. Palmer, J. Chem. Soc. Chem. Comm. 1970, 78.
- 247. (a) E. M. Vázquez-López, Ph.D. Thesis, University of Santiago de Compostela, Spain (1993). (b) R. Carballo, J. S. Casas, A. Sánchez, J. Sordo and E. M. Vasquez-López, in preparation.
- 248. R. K. Chadha, J. E. Drake and A. B. Sarkar, Inorg. Chem. 1987, 26, 2885.
- 249. R. K. Chadha, J. E. Drake and A. B. Sarkar, Inorg. Chem. 1985, 24, 3156.
- 250. R. K. Chadha, J. E. Drake and A. B. Sarkar, J. Organomet. Chem. 1987, 323, 271.
- 251. J. L. Lefferts, K. C. Molloy, M. B. Hossain, D. van der Helm and J. J. Zuckerman, *Inorg. Chem.* 1982, 21, 1410.
- 252. J. L. Lefferts, M. B. Hossain, K. C. Molloy, D. van der Helm and J. J. Zuckerman. Angew. Chem. 1980, 92, 326; Angew. Chem. Int. Ed. Engl. 1980, 19, 309.
- 253. B. W. Liebich and M. Tomassini, Acta Cryst. 1978, B34, 944.
- 254. K. C. Molloy, M. B. Hossain, D. van der Helm, J. J. Zuckerman and I. Haiduc, *Inorg. Chem.* 1980, 19, 2041.
- 255. H. Preut, V. D. Ngo and F. Huber, Acta Cryst. 1986, C42, 809.
- 256. A. A. S. El Khadi, Y. P. Singh, R. Bohra, R. C. Mehrotra and G. Srivastava, *Main Group Met. Chem.* 1991, 14, 305.
- 257. K. C. Molloy, M. B. Hossain, D. van der Helm, J. J. Zuckerman and I. Haiduc, *Inorg. Chem.* 1979, 18, 3507.
- 258. H. Preut, V. D. Ngo and F. Huber, Acta Cryst. 1987, C43, 164.
- 259. F. Shihada and F. Weller, J. Organomet. Chem. 1988, 342, 177.
- 260. T. Ito, Acta Cryst. 1972, B28, 1034.
- 261. P. G. Harrison, A. Steel, G. Pelizzi and C. Pelizzi, Main Group Metal Chem. 1988, 11, 181.
- 262. S. L. Lawton and G. T. Kokotailo, Inorg. Chem. 1972, 11, 363.
- 263. P. G. Harrison, M. G. Begley, T. Kikabhai, A. T. Steel and M. I. Khalil, J. Chem. Soc. Dalton Trans. 1989, 2443.
- 264. M. G. Begley, C. Gafney, P. G. Harrison and A. Steel, J. Organomet. Chem. 1985, 289, 281.
- 265. R. K. Gupta, A. K. Rai, R. C. Mehrotra, V. K. Jain, B. F. Hoskins and E. R. T. Tiekink, *Inorg. Chem.* 1985, 24, 3280.
- 266. D. B. Sowerby, I. Haiduc, A. Barbul-Rusu and M. Salajan, Inorg. Chim. Acta 1983, 68, 87.
- 267. R. O. Day, M. M. Chauvin and W. E. McEwen, Phosphorus & Sulfur 1980, 8, 121.
- 268. C. Silvestru, M. Curtui, I. Haiduc, M. Begley and D. B. Sowerby, J. Organomet. Chem. 1992, 426, 49.
- 269. M. Iglesias, C. del Pino, and S. Martinez-Carrera, Polyhedron 1989, 8, 483.
- 270. S. L. Lawton, C. J. Fuhrmeister, R. G. Haas, C. S. Jarman Jr. and F. G. Lohmeyer, *Inorg. Chem.* 1974, 13, 135.
- 271. R. Bohra, H. P. S. Chauhan, G. Srivastava and R. C. Mehrotra, *Phosphorus, Sulfur, Silicon* 1991, 60, 167.
- 272. L. S. Refaat, K. Maartmann-Moe and S. Husebye, Acta Chem. Scand. 1984, A38, 303.
- 273. S. Husebye, Acta Chem. Scand. 1966, 20, 24.
- 274. L. S. Refaat, K. Maartman-Moe and S. Husebye, Acta Chem. Scand. 1984, A38, 147.
- 275. S. Husebye, K. Maartmann-Moe and O. Mikalsen, Acta Chem. Scand. 1989, 43, 868.
- 276. (a) S. Husebye, K. Maartmann-Moe and O. Mikalsen, Acta Chem. Scand. 1990, 40, 464; (b) M. Wieber, private communication; D. Lang, Doctoral Dissertation, Universität Würzburg (1993); (c) M. Wieber and S. Lang, Z. Anorg. Allg. Chem. 1994, 620, 1397.

3471

- 277. R. K. Chadha, J. E. Drake, N. T. McManus, B. A. Quinlan and A. B. Sarkar, *Organometallics* 1987, 6, 813.
- 278. (a) D. Dakternieks, R. Di Giacomo, R. W. Gable and B. F. Hoskins, J. Organomet. Chem. 1988, 349, 305; (b) J. E. Drake, L. N. Khasrou, A. G. Mislankar and R. Ratnani, Can. J. Chem. 1994, 72, 1328; (c) M. Wieber, S. Lang and N. Graf, Phosphorus, Sulfur, Silicon 1994, 85, 31.
- 279. D. Dakternieks, R. Di Giacomo, R. W. Gable and B. F. Hoskins, J. Am. Chem. Soc. 1988, 110, 6753.
- 280. J. O. Bogason, D. Dakternieks, S. Husebye, K. Maartmann-Moe and H. Zhu, *Phosphorus, Sulfur, Silicon* 1992, **71**, 13.
- 281. D. Dakternieks, R. Di Giacomo, R. W. Gable and B. F. Hoskins, J. Am. Chem. Soc. 1988, 110, 6762.
- 282. D. Dakterneiks, R. Di Giacomo, R. W. Gable and B. F. Hoskins, J. Am. Chem. Soc. 1988, 110, 6541.
- 283. A. A. Pinkerton and D. Schwarzenbach, J. Chem. Soc. Dalton Trans. 1976, 2466.
- 284. T. Imai and A. Ouchi, Bull. Chem. Soc. Japan 1986, 59, 669.
- 285. T. Imai, M. Nakamura, K. Nagai, Y. Ohki, Y. Suzuki, M. Shimoi and A. Ouchi, *Bull. Chem. Soc. Japan* 1986, **59**, 2115.
- 286. K. Nagai, Y. Sato, S. Kondo and A. Ouchi, Bull. Chem. Soc. Japan. 1983, 56, 2605.
- 287. R. Nakamura, K. Nagai, M. Shimoi and A. Ouchi, Bull. Chem. Soc. Japan 1984, 57, 2919.
- 288. A. A. Pinkerton and D. Schwarzenbach, J. Chem. Soc. Dalton Trans. 1981, 1470.
- 289. (a) S. Spiliadis, A. A. Pinkerton and D. Schwarzenbach, *Inorg. Chim. Acta* 1983, 75, 115; (b) A. A. Pinkerton and D. Schwarzenbach, *J. Chem. Soc. Dalton Trans.* 1976, 2464.
- 290. K. Nagai, R. Nakamura, M. Shimoi and A. Ouchi, Bull Chem. Soc. Japan 1984, 57, 2725.
- 291. Y. Ohki, M. Nakamura, Y. Suzuki, K. Nagai, M. Shimoi and A. Ouchi, Bull. Chem. Soc. Japan 1985, 58, 1593.
- 292. M. Rieckhoff, M. Noltemeyer, F. T. Edelmann, I. Haiduc and I. Silaghi-Dumitrescu, J. Organomet. Chem. 1994, 469, C19.