

0277-5387(95)00035-6

COMMUNICATION

THE FIRST $Mo_2Fe_2S_2$ CLUSTER COMPOUND WITH FUNCTIONALLY SUBSTITUTED CYCLOPENTADIENYL LIGAND. SYNTHESIS AND CRYSTAL STRUCTURE OF $(\eta^5-MeO_2CC_5H_4)_2(\mu_3-CO)_2Mo_2Fe_2(\mu_3-S)_2(CO)_6$

LI-CHENG SONG,* JI-QUAN WANG and QING-MEI HU

Department of Chemistry, Nankai University, Tianjin 300071, China

(Received 13 December 1994; accepted 5 January 1995)

Abstract—Reaction of $(\eta^5-\text{MeO}_2\text{CC}_5\text{H}_4)_2\text{Mo}_2(\text{CO})_4$ with $(\mu-\text{S}_2)\text{Fe}_2(\text{CO})_6$ in CH₂Cl₂ at room temperature gave the cluster compound $(\eta^5-\text{MeO}_2\text{CC}_5\text{H}_4)_2(\mu_3-\text{CO})_2\text{Mo}_2\text{Fe}_2(\mu_3-\text{S})_2(\text{CO}_6)$, the structure of which was confirmed by X-ray diffraction analysis.

Molybdenum-iron-sulfur (Mo/Fe/S) clusters are of great interest because of their occurrence in nitrogenase¹ and their behaviour as models for catalytic hydrodesulfurization (HDS).²⁻³ According to literature reports^{4–6} two interesting isomeric $Mo_2Fe_2S_2$ clusters, the butterfly-shaped Mo_2Fe_2 cluster $(\eta^{5}-RC_{5}H_{4})_{2}(CO)_{2}Mo_{2}Fe_{2}(\mu_{3}-S)_{2}(CO)_{6}$ and the planar Mo₂Fe₂ cluster $(\eta^{5}-RC_{5}H_{4})_{2}(\mu-CO)_{2}$ $Mo_2Fe_2(\mu_3-S)_2(CO)_6$ (R = H, Me) can be prepared from the corresponding metal-metal triply bonded compounds $(\eta^5 - RC_5H_4)_2Mo_2(CO)_4$ and $(\mu - S_2)$ $Fe_2(CO)_6$. In order to explore the effects of the electron-withdrawing substituents on the cyclopentadienyl ring and to prepare the new type of Mo/Fe/S clusters with functionally substituted cyclopentadienyl ligands, we undertook the study of the reaction between $(\eta^5 - RC_5H_4)_2M_2(CO)_4$ $(R = EtO_2C, MeO_2C, MeCO; M = Mo, W)$ and $(\mu$ -S₂)Fe₂(CO)₆. Herein we report the preliminary results of this kind of reaction, from which a new

butterfly Mo_2Fe_2 cluster $(\eta^5-MeO_2CC_5H_4)_2$ (CO)₂Mo₂Fe₂(μ_3 -S)₂(CO)₆ (1) was isolated and structurally determined by X-ray diffraction analysis. The compound is so far the first Mo/Fe/S cluster complex reported with functionally substituted cyclopentadienyl ligands.

Equimolar quantities of $(\eta^5 - MeO_2CC_5H_4)_2$ $Mo_2(CO)_4$ and $(\mu$ -S₂)Fe₂(CO)₆ reacted in degassed CH₂Cl₂ at room temperature for 1 h. After removal of the solvent in vacuo the residue was separated by preparative TLC using CH₂Cl₂ as eluent. The first eluted red-brown band was S₂Fe₃(CO)₉ and the second red band $(\eta^5 - MeO_2CC_5H_4)_2Mo_2(CO)_6$ which were identified by comparison with authentic samples. The third dark-brown band was the bufferfly cluster 1.[†] The IR spectrum of 1 shows several carbonyl absorptions, one at 1712.5 cm^{-1} attributed to the methoxycarbonyls, one at 1819.1 cm⁻¹ to the carbonyls attached to the molybdenum atoms, the other four between 1958 cm^{-1} and 2049 cm^{-1} to the carbonyls attached to the iron atoms. It should be pointed out that the band at 1819.1 cm^{-1} is slightly higher than the cm⁻¹ bands at 1791 and corresponding 1795 cm⁻¹ in $(\eta^{5}-RC_{5}H_{4})_{2}(CO)_{2}Mo_{2}Fe_{2}(\mu_{3}-S)_{2}$ $(CO)_6$ (R = H, Me)^{4.5} and at 1800 cm⁻¹ in (η^{5} - $RC_5H_4)_2(\mu$ -CO)₂Mo₂Fe₂(μ_3 -S)₂(CO)₆ (R = Me).^{5,6} So, the two carbonyls attached to the molybdenum atoms in 1 are still typical of the bridging carbonyls. The ¹H NMR spectrum exhibits a singlet peak at

^{*} Author to whom correspondence should be addressed. † *Characterization data for* 1: Yield 44.6%. M.p. 260°C(decomp.). ¹H NMR [CDCl₃, TMS, δ (ppm)]: 3.92 [s, 6H, 2(CH₃)]; 5.08 [t, 4H, 2(H₃, H₄)]; 6.04 [t, 4H, 2(H₂, H₅)]. IR (KBr): ν (C=O), 1712.5 s; ν (C=O), 1819.1 s, 1958.6 s, 1983.2 s, 2032.4 s, 2048.8 s, cm⁻¹. Anal. Found: C, 31.6; H, 1.6. Calc. for C₂₂H₁₄Fe₂Mo₂O₁₂S₂: C, 31.5; H, 1.7%. EIMS: *m/z* (⁹⁸Mo) 400 [S₂Fe₂Mo₂(CO), 0.9%].

Fig. 1. The molecular structure of 1. Selected bond lengths (Å) and angles (°): Mo(1)—Mo(2), 2.8615(7); Mo(1)—Fe(1), 2.811(1); Mo(1)—Fe(2), 2.814(1); Mo(1)—S(1), 2.344(2); Mo(2)—S(1), 2.337(2); Fe(1)—S(1), 2.183(3); Mo(1)—C(17), 2.01(1); Mo(2)—C(18), 1.98(1); $C(17) \cdots Fe(1)$, 2.699; $C(17) \cdots Fe(2)$, 2.642; $C(18) \cdots Fe(1)$, 2.612; $C(18) \cdots Fe(2)$, 2.658; $Fe(1) \cdots Fe(2)$, 3.931; Fe(1)—Mo(1)—Mo(2), 59.51(3); Fe(1)—Mo(2)—Mo(1), 59.35(3); Mo(1)—Fe(1)—Mo(2), 61.15(3); Fe(1)—Mo(1)—Fe(2), 88.70(3); Fe(1)—Mo(2)—Fe(2), 88.73(3); Mo(1)—C(17)—O(17), 158.6(9); Mo(2)—C(18)—O(18), 156.2(9).

3.92 ppm for methyl groups in the substituents and two triplets at 5.08 and 6.04 ppm which are assigned to $H_{3,4}$ and $H_{2,5}$ of the rings⁷ respectively.

A dark-brown crystal of 1 suitable for X-ray

diffraction was obtained from its THF solution at room temperature after one week. The X-ray diffraction analysis revealed that 1 has the structure shown in Fig. 1.* The four metal atoms Mo₂Fe₂ of this molecule are arranged as a butterfly-shaped skeleton with two molybdenum atoms in the hinge position. The butterfly angle and the Fe(1)—Fe(2)nonbonding distance are 108.61° and 3.931 Å, respectively. These values are slightly larger than 104.1° and 3.833(5) Å in $(\eta^{5}-RC_{5}H_{4})_{2}$ $(CO)_2Mo_2Fe_2(\mu_3-S)_2(CO)_6$ (R = H).⁴ So the two $FeMo_2$ wings of 1 are more open. The two sulfur atoms are four-electron donors which are μ_3 bonded on each FeMo₂ wing. The two substituted cyclopentadienyls and two carbonyls coordinated to molybdenum atoms are *cis* with respect to the Mo-Mo bond. Since the distances of C(17) - Fe(1) $(d_2),$ C(17)—Fe(2) (d_2) and C(17)—Mo(1) (d_1) are 2.699, 2.642 and 2.01(1) Å, respectively, the asymmetric parameters⁸ α

^{*} Crystal data for 1: $C_{22}H_{14}Fe_2Mo_2O_{12}S_2$; M = 838.05; crystal dimensions $0.2 \times 0.3 \times 0.2$ mm, monoclinic, space group Cc, a = 12.014(2), b = 15.735(2), c = 15.456(3)Å, $\beta = 112.87(1)^\circ$, V = 2692(2) Å³, Z = 4, $D_x = 2.07$ g cm⁻³. Mo-K α radiation ($\lambda = 0.71073$ Å), μ (Mo-K α) = 21.56 cm⁻¹, F(000) = 1640. A total of 2033 independent reflections were collected in the range $2 \le \theta \le 23^\circ$ with Mo-K α radiation by the $\omega - 2\theta$ scan mode, of which 1805 reflections were considered to be observed with $I \ge 3\sigma(I)$ and used in structure solution and refinement. The structure was solved by direct method and refined to R = 0.036 and Rw = 0.042. Atomic coordinates, thermal parameters and structure factor tables have been deposited at the Cambridge Crystallographic Data Centre.

 $(\alpha = (d_2 - d_1)/d_1)$ of the bridging carbonyl C(17)—O(17) are 0.34 and 0.31. These parameters are smaller than the corresponding 0.38 and 0.39 in $(\eta^5-\text{RC}_5\text{H}_4)_2(\text{CO})_2\text{Mo}_2\text{Fe}_2(\mu_3-\text{S})_2(\text{CO})_6$ (R = H).⁴ The other carbonyl C(18)—O(18) is similar to C(17)—O(17). Hence, the two carbonyls attached to the molybdenum atoms are reasonably assigned to be μ_3 -coordinated. So, the formula of this molecule may be written as $(\eta^5-\text{MeO}_2\text{CC}_5\text{H}_4)_2(\mu_3-\text{CO})_2\text{Mo}_2\text{Fe}_2(\mu_3-\text{S})_2(\text{CO})_6$.

The electron-withdrawing group on the cyclopentadienyl ring appears to influence the reaction of the Mo=Mo compound with $(\mu$ -S₂)Fe₂(CO)₆. Thus, although the butterfly Mo₂Fe₂ cluster was formed and its structural data are little changed, the isomeric planar Mo₂Fe₂ cluster was not found. The detailed influence of the electron-withdrawing group towards the reaction and the functional transformation of the methoxycarbonyl group are under investigation.

Acknowledgement—We thank the National Science Foundation of China for support of this work.

REFERENCES

- 1. D. Coucouvanis, Acc. Chem. Res. 1991, 24, 1.
- M. R. Dubois, M. C. VanDerveer, D. L. Dubois, R. C. Haltiwanger and W. K. Miller, J. Am. Chem. Soc. 1980, 102, 7456.
- 3. M. R. Dubois, Chem. Rev. 1989, 89, 1.
- P. Braunstein, J.-M. Jud, A. Tiripicchio, M. Tiripicchio-Camellini and E. Sappa, Angew. Chem. Int. Ed. Engl. 1982, 21, 307.
- 5. P. D. Williams, M. D. Curtis, D. N. Duffy and W. M. Butler, *Organometallics* 1983, **2**, 165.
- M. D. Curtis, P. D. Williams and W. M. Butler, *Inorg. Chem.* 1988, 27, 2853.
- L.-C. Song and J.-Y. Shen, Chem. J. Chin. Univ. 1992, 13, 1227.
- R. J. Klinger, W. M. Butler and M. D. Curtis, J. Am. Chem. Soc. 1978, 100, 5034.