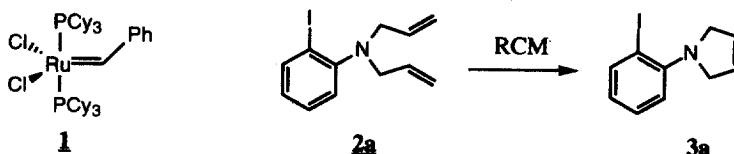


Metathesis of Aniline and 1,2-Dihydroquinoline Derivatives


 Paul Evans, Ronald Grigg*,^a and Michael Monteith^b
^aMolecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre,
School of Chemistry, Leeds University, Leeds LS2 9JT.

^bZeneca Lifesciences Molecules, Leeds Road, Huddersfield HD2 1FF.

Received 6 April 1999; accepted 13 May 1999

Abstract: Ring closing metathesis of *N,N*-diallylanilines and a related 1,2-dihydroquinoline, catalysed by Grubbs' catalyst, occurs in good yield at room temperature furnishing 3-pyrrolines and 3-piperidines. DCM and EtOAc are the solvents of choice and interesting substituent effects are identified and discussed. © 1999 Elsevier Science Ltd. All rights reserved.

The versatility of ring closing metathesis (RCM) for the construction of a wide variety of heterocycles has been amply demonstrated for small, medium and macrocyclic rings.¹ The most practical metathesis catalyst for general organic synthesis at present is Grubbs' catalyst **1**.² However, substrates possessing basic or nucleophilic nitrogen atoms suppress efficient catalysis^{1,3} and such substrates must, as a rule,⁴ be deactivated by conversion to amides / carbamates,^{5,6b-c} sulfonamides⁶ or by protonation.⁷

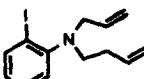
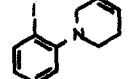
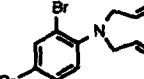
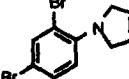
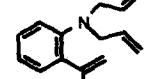
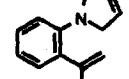
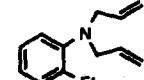
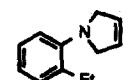
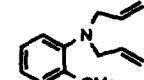
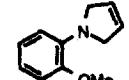
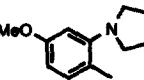
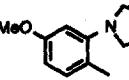
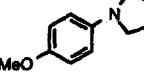
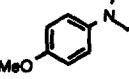
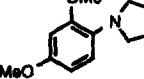
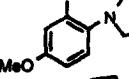
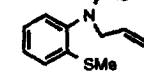
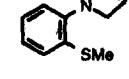
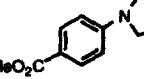
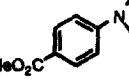
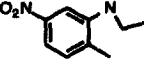
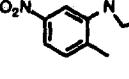
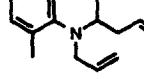
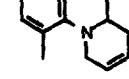
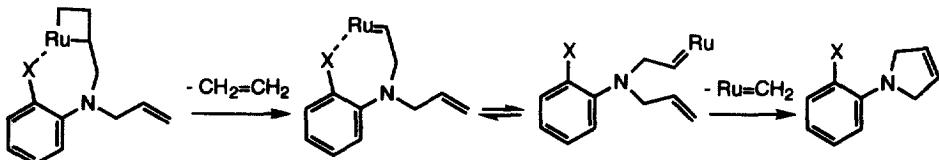
























It has been demonstrated that substituted *N*-heterocycles such as thiazole,⁸ indole⁹ and pyridine^{6b} may be used in conjunction with **1**. Therefore, since anilines are, in general, only weakly basic with pK_a 's < 5¹⁰ this prompted a preliminary study of the RCM process **2a** → **3a** (Table 1).

 Table 1. Solvent and Temperature Effects in RCM of **2a** → **3a**

Entry	$\text{Cl}_2(\text{PCy}_3)_2\text{RuCHPh}$ (1)	solvent	temp (°C)	time (h)	yield (%) ^a [2a : 3a] ^b
1	10 mol%	DCM	40	3	94 ^a
2	2 mol%	DCM	40	12	93 ^a
3	2 mol%	DCM	20	15	quant. ^a
4	2 mol%	THF	65	12	7:93 ^{b,c}
5	2 mol%	THF	20	15	27:73 ^b
6	2 mol%	PhMe	20	15	8:92 ^b
7	2 mol%	MeCN	20	15	no reaction
8	2 mol%	DMF	25	15	87:13 ^b
9	2 mol%	EtOAc	25	15	quant. ^a

^aIsolated yields following column chromatography; ^bRatio calculated from ¹H-NMR spectroscopy; ^cAt elevated temperatures some pyrrole formation is observed.

Table 2. Ring Closing Metathesis of **2b-2l** and **4**^a


Entry	Substrate	Product	Yield (%)
1			3b 83
2			3c 98
3			3d 80
4			3e 44 (69) ^b
5			3f 93
6			3g 70
7			3h 65
8			2i:3i:7i:29 ^c
9			2j:3j:90:10 ^c
10			3k 83
11			3l 88
12			5 68 (95) ^b

^a2 mol% Grubbs 1, DCM (0.05 M), rt, 12 to 24 h; ^byield based on recovered SM; ^cRatio determined by¹H-NMR spectroscopy; products not isolated due to low conversions under the standard optimum conditions.

It is clear from Table 1 that RCM of anilines is a viable process and that RCM of **2a** occurs most efficiently at room temperature in DCM (Entry 3) or EtOAc (Entry 9). The latter observation will be of particular interest to process R and D chemists. The failure of the reaction in acetonitrile (Entry 7) indicates

the incompatibility between this coordinating solvent and the catalyst **1**. When the reaction was carried out in THF at 65°C (Entry 4) some dehydrogenation of **3a** occurred, resulting in the formation of the corresponding pyrrole.

Following this initial success a variety of *N,N*-diallylanilines **2b-2l** and the 1,2-dihydroquinoline **4** were investigated under the optimum DCM conditions.^{11,12} The RCM process occurred in good to excellent yields in most cases (Table 2). The excellent yields in the case of the *ortho*-halo (Table 2, Entries 1 and 2) and *ortho*-vinyl (Table 2, Entry 3) anilines suggest these substituents promote the RCM by acting as "soft" donors to the ruthenium metal, see Scheme (where X = donor moiety).¹³

In contrast an *ortho*-ethyl group retards (steric effects dominant) the RCM process (Table 2, Entry 4). Table 2, provides evidence that a single methoxy-substituent (Entries 5, 6 and 7) does not impede the RCM process. In the cases of 2-methylthio (Entry 9) and 2,4-dimethoxyaniline (Entry 8) the RCM is strongly retarded. In the former case we presume the methylthio-substituent is sequestering the ruthenium species, thereby preventing catalyst recycling. The precise nature of the rate retardation in the case of the 2,4-dimethoxyaniline requires further study.

The location of electron withdrawing groups *meta* and *para* to the amino functionality (Table 2, Entries 10 and 11) allows the RCM to proceed to completion in excellent yield. Finally the RCM of the 1,2-dihydroquinoline **4** was carried out to assess the steric impact of the *peri*-methyl substituent (Table 2, Entry 12). The RCM was somewhat retarded but noticeably less so than the *ortho*-ethyl case (Table 2, Entry 4).

Future work on the processes described is in hand. We thank the EPSRC, Zeneca and Leeds University for support.

References and Notes:

1. Alkene metathesis reviews: (a) Schuster, M.; Blechert, S. *Angew. Chem. Int. Ed. Engl.*, **1997**, *36*, 2037; (b) Armstrong, S. K. *J. Chem. Soc. Perkin Trans. 1*, **1998**, 371; (c) Grubbs, R. H.; Chang, S. *Tetrahedron*, **1998**, *54*, 4413; (d) Grubbs, R. H.; Pine, S. H. *Comprehensive Organic Synthesis*, vol 5, pp1115-1127, Pergamon Press, Oxford (1991), Trost, B. M.; Fleming, I.; L. A. Paquette, L. A., Eds.
2. Schwab, P.; Grubbs, R. H.; Ziller, J. W. *J. Am. Chem. Soc.*, **1996**, *118*, 100.
3. Shon, Y. -S.; Lee, T. R. *Tetrahedron Lett.*, **1997**, *38*, 1283.
4. To the best of our knowledge there is only one example of the use of **1** with "un-deactivated" amines: Rutjes, F. P. J. T.; Schoemaker, H. E. *Tetrahedron Lett.*, **1997**, *38*, 677.

5. (a) Miller, S. J.; Grubbs, R. H. *J. Am. Chem. Soc.*, **1995**, *117*, 5855; (b) Goldring, W. P. D.; Hodder, A. S.; Weiler, L. *Tetrahedron Lett.*, **1998**, *39*, 4955; (c) Overkleef, H. S.; Bruggeman, P.; Pandit, U. K. *Tetrahedron Lett.*, **1998**, *39*, 3869; (d) Ghosh, A. K.; Hussain, K. A. *Tetrahedron Lett.*, **1998**, *39*, 1881; (e) Williams, R. M.; Liu, J. *J. Org. Chem.*, **1998**, *63*, 2130; (f) Fürstner, A.; Koch, D.; Langemann, K.; Leitner, W.; Six, C. *Angew. Chem. Int. Ed. Engl.*, **1997**, *36*, 2466.

6. (a) Mori, M.; Sakakibara, N.; Kinoshita, A. *J. Org. Chem.*, **1998**, *63*, 6082; (b) York, M.; Sridharan, V.; Grigg, R. *Tetrahedron Lett.*, **1998**, *39*, 4139; (c) Evans, P.; Grigg, R.; Ramzan, M. I.; Sridharan, V.; York, M. *Tetrahedron Lett.*, **1999**, *40*, 3021.

7. Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. *J. Am. Chem. Soc.*, **1993**, *115*, 9857.

8. Yang, Z.; He, Y.; Vourloumis, D.; Vallberg, H.; Nicolaou, K. C. *Angew. Chem. Int. Ed. Engl.*, **1997**, *36*, 166; (b) Meng, D.; Su, D. -S.; Balog, A.; Bertinato, P.; Sorensen, E. J.; Danishefsky, S. J.; Zheng, Y. -H.; Chou, T. -C.; He, L.; Horwitz, S. B. *J. Am. Chem. Soc.*, **1997**, *119*, 2733.

9. Birman, V. B.; Rawal, V. H. *J. Org. Chem.*, **1998**, *63*, 9146.

10. pK_a of anilines in: Perrin, D. D. *IUPAC Dissociation Constants of Organic Bases in Aqueous Solution*, Butterworths, London (1965); supplement: Perrin, D. D. *IUPAC Dissociation Constants of Organic Bases in Aqueous Solution-Supplement*, Butterworths, London (1972).

11. Representative procedure: Solid Grubbs' catalyst **1** (18 mg, 0.022 mmol, 2 mol%) was added to the dialkenylaniline **2l** (254 mg, 1.1 mmol) dissolved in DCM (22 cm³, 0.05 M) under argon at room temperature. Stirring was maintained for 15 h and the reaction was monitored by thin layer chromatography. The RCM 3-pyrroline **3l** (196 mg, 88%) product was obtained as an orange solid following flash column chromatography (petroleum ether-EtOAc; 9:1). m.p 68°C; δ_H (CDCl₃) 2.49 (3H, s, CH₃), 4.28 (4H, s, CH₂), 5.94 (2H, s, CH), 7.17 (1H, d, *J* 8.0 Hz, CH), 7.56-7.61 (2H, m, 2 x CH); δ_C (CDCl₃) 22.5 (CH₃), 57.8 (CH₂), 110.0, 114.1, 126.6, 133.1 (CH), 133.9, 147.7, 149.2 (C); Found C, 64.75; H, 6.10; N, 14.0%; C₁₁H₁₂N₂O₂ requires C, 64.7; H, 5.9; N, 13.7%; m/z (EI) 204 (M⁺, 100%).

12. Synthesis of starting materials: RCM precursors **2a**, **2c** to **2l** were synthesised from commercially available anilines with allyl bromide. **2b** was prepared following initial treatment of 2-iodoaniline with 4-bromo-1-butene, then conversion of the initial monoalkylated aniline to **2b** with allyl bromide. **4** was prepared from 8-methyl quinoline by allyl Grignard addition and allyl bromide quench.

13. (a) Oxygen to ruthenium(IV) coordination: Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J. Jr.; Hoveyda, A. H. *J. Am. Chem. Soc.*, **1999**, *121*, 791; (b) bromine to tungsten(VI) coordination: Nugent, W. A.; Feldman, J.; Calabrese, J. C. *J. Am. Chem. Soc.*, **1995**, *117*, 8992; (c) diethylether to tungsten(VI) coordination: Couturier, J. -L.; Tanaka, K.; Leconte, M.; Basset, J. -M.; Ollivier, J. *Angew. Chem. Int. Ed. Engl.*, **1993**, *32*, 112.