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ABSTRACT 

Following earlier work, this paper deals with some new aspects concerning the mathemati- 
cal theory of non-isothermal kinetics. After a short introduction which emphasizes that in 
non-isothermal kinetics the temperature T and time f are dependent variables, one of the 
main problems of non-isothermal kinetics, which involves the derivation of adequate non-iso- 
thermal differential kinetic equations, is discussed. The derivation of such equations from 
isothermal differential kinetic equations using the “classical” transformation (change), i.e. 
expressing T as a function of t or vice versa is shown to be equivalent to the postulation of 
some “primary isothermal differential kinetic equations” (PIDKEs). After a discussion 
concerning the model of infinitesimal isothermal portions (MIIP) in connection with PIDKEs. 
a non-isothermal kinetic treatment of the nucleation and nuclei growth is suggested. A short 
discussion of the non-isothermal integration of the Johanson-Mehl-Avrami-Yerofeyev-Kol- 
mogorov (JMAYK) equation completes the paper. 

INTRODUCTION 

Non-isothermal investigations of physical and chemical systems are done 
by monitoring the continuous change in temperature with time [l-7]. In this 
paper, only systems with a uniform space distribution of temperature, i.e. 
without heat transfer will be considered. 

Generally, in non-isothermal conditions, the temperature T and time t are 
related through an implicit functional relationship of the form 

$(t, T) = 0 (1) 

which tells us that T and t are dependent variables [l]. From the relation- 
ship (1) one can obtain in principle the following two relationships: 

T= O(t) (2) 

t = v(T) (3) 
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The derivative of the temperature with respect to time is called the heating 
rate and is given by 

g = B’(t) =/3,(t) 

or by 

dT -= 
dt -&) =P,P> 

The most usual case is that with a constant value of the heating rate, i.e. 

g = p = const 

On integration of relationship (6) one obtains 

T= To+@ 

or 

t= CT- &J/P 

where To is the initial temperature of the system. 

03) 

A FUNDAMENTAL PROBLEM OF NON-ISOTHERMAL KINETICS 

The problem is to find a differential kinetic equation valid for non-iso- 
thermal conditions and describing adequately the physical or chemical 
changes undergone by the system investigated. 

In most cases this is done starting from the differential kinetic equation 
which is valid in isothermal conditions. This method of obtaining non-iso- 
thermal kinetic equations is discussed below. The derivation of a non-iso- 
thermal differential kinetic equation without using differential isothermal 
equations remains an open question. Thus, let us consider the change with 
time of a characteristic property x of the system given by the following 
isothermal rate equation: 

dx 
- = F(x, T, t, u) 
dt (9) 

where u represents other variables, which for the moment will not be taken 
into account (u = const). As far as the variable t is concerned, its presence 
in the right-hand side of eqn. (9) is not obligatory. 

The classical way to derive the non-isothermal kinetic equation makes use 
of the fact that under non-isothermal conditions T and t are dependent 
variables. There are two possibilities: 

(a) The substitution of T with B(t) according to eqn. (2) in eqn. (9) leads 
to the equation 

dx, 
- = F[x,, e(t), t] dt 

which expresses xN as a function of t. 

(10) 
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(b) The substitution of t with q(T) according to eqn. (3) in eqn. (9) and 
considering relationship (5) gives 

dx, 1 - = --F[ xN> 
dT P,(T) 

T, V(T)] (11) 

which equation expresses xN as a function of T. 
In eqns. (10) and (11) the subscript N means non-isothermal. Equations 

(10) and (11) have been obtained by most interested researchers [l-7,11,12]. 
As will be shown later, the classical way to derive non-isothermal dif- 

ferential kinetic equations from isothermal ones does not always lead to 
correct results. 

Relationships (10) and (11) are equivalent from the standpoint of infor- 
mation about the system investigated. This equivalency is due to the fact 
that T and t are dependent variables. The question is whether eqns. (10) and 
(11) are in principle correct or not. 

To illustrate these problems we shall consider a very simple physical 
system, namely, the non-isothermal mathematical pendulum. 

THE NON-ISOTHERMAL MATHEMATICAL PENDULUM 

It is known that the mathematical isothermal pendulum consists of a 
punctiform mass suspended from a fixed point through an inextensible rod 
of constant length 1 at a variable angle z with respect to the vertical (Fig. 1). 
The non-isothermal variant of the mathematical pendulum is obtained by a 
gradual heating of the system, the only effect being the change in the length 
1 with temperature. 

I= l(T) = Z[O(t)] = I, (12) 

In order to derive the differential equations for the isothermal mathematical 
pendulum as well as for the non-isothermal one, we shall use the Lagrange 
equations [8,9] for a system with s degrees of freedom 

d aL 3L ----= 
dt &j/ a4i 

o 
i=1,2,...s (13) 

where L( q, 4, t) is the Lagrange function which depends on the generalized 

Fig. 1. Isothermal mathematical pendulum. 
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position coordinates q, the velocities 4 and the time t. For the mathematical 
pendulum the function L is given by [8] 

L=T-V (14) 

where T is the kinetic energy and V is the potential energy. Taking into 
account the fact that for the mathematical pendulum 

T= (m/2)Z2i2 

and 

v= -mgl cos z 

relationship (14) becomes 

L = (m/2)1*i2 + mgl cos z 

The system has only one degree of 
and from eqn. (13) one obtains 

Ii’= -g sin 2 

which is a differential equation 
pendulum. 

The classical way to obtain 

05) 

06) 
freedom, the angle z ( q1 = z, d1 = i, s = 1) 

07) 

describing the motion of the isothermal 

the differential equation describing the 
motion of the non-isothermal pendulum is to replace I = const by 1,, a 
variable with time, in the isothermal eqn. (17). Thus, the following equation 
is obtained: 

I,,?, = -g sin zN (18) 

Using as a starting point the Lagrange function for the non-isothermal 
pendulum 

L,= Y(i:+@:) +mg/, cos ZN (19) 

another differential equation may be derived. In this case the system has two 
degrees of freedom. Taking into account the known dependence I, = l[ 0( t)] 
= f(T), we shall apply eqn. (13) to the other degree of freedom of the 
system, namely zN. After performing the detailed calculations one obtains 
the following correct differential equation for the non-isothermal pendulum: 

INi’, + 2i,i, = -g sin zN (20) 

A comparison between eqn. (18) for the isothermal case and (20) for the 
non-isothermal shows that the latter contains the additional term 21,i,. 
Thus eqn. (18) is not valid. 

This result leads to the following questions. If in such a simple case the 
classical way to derive the non-isothermal differential equations is 
questionable, what happens when dealing with more complicated systems 
such as chemical systems? Is the classical procedure valid or not for such 
systems? 
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SOME GENERAL CONSIDERATIONS CONCERNING THE PROCEDURES TO DE- 
RIVE NON-ISOTHERMAL DIFFERENTIAL KINETIC EQUATIONS 

The following considerations suppose that the reader is familiar with the 
fundamentals of both isothermal and non-isothermal kinetics [l-7,10-13]. 

(1) The classical change of the isothermal differential kinetic equation 
into the non-isothermal one as shown by eqns. (10) and (11) is not generally 
valid. The existence of some isothermal differential kinetic equations for 
which the classical change is correct remains an open question. If such 
equations exist they will be called primary isothermal differential kinetic 
equations (PIDICEs). 

(2) For the non-isothermal kinetic investigation of complex phenomena it 
is necessary to postulate at least one isothermal differential kinetic equation 
as PIDKE. This is called a postulated primary isothermal differential kinetic 
equation (P-PIDKE). The P-PIDKE should be chosen in such a way that it 
has not undergone previous mathematical operations such as integration in 
isothermal conditions. 

(3) Taking into account the mathematical complications connected with 
the derivation of the non-isothermal differential kinetic equation the P- 
PIDKE cannot always be introduced from the very beginning. Actually 
there are three possibilities. 

(a) Beginningpostulated-PIDKE (BP-PIDKE). In this case the existence of 
a PIDKE is postulated from the very beginning so that all the calculations 
should be performed in non-isothermal conditions. In this case one has to 
face considerable mathematical complications. 

(b) Finally postulated-PIDKE (FP-PIDKE). In this case all the calcula- 
tions to derive the rate equation are performed in isothermal conditions, the 
classical change being made in the final equation. This is the case of the 
classic non-isothermal kinetics [l-7, 11,121. 

(c) Intermediary postulated-PIDKE (IP-PIDKE). In this case, after perfor- 
ming some calculations in isothermal conditions, the classical change is 
made in an intermediary isothermal differential kinetic equation, the rest of 
the calculations being performed in non-isothermal conditions. 

It is obvious that the correct procedure for a non-isothermal kinetic 
investigation is BP-PIDKE in spite of the mathematical difficulties. Using 
the other two procedures the calculations are simpler but the results are 
quite far from a real description of the system in non-isothermal conditions. 
These procedures lead to the axiomatic form of classical non-isothermal 
kinetics. 

(4) It should be emphasized that all the considerations 
paper [l] are valid for the hypothesis of the axiomatic 
isothermal differential kinetic equation 

from our previous 
acceptance of the 

g =Af(x)k(T) (21) 
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as P-PIDKE. The particular 

J& = Af( CX) exp( -E/RF) 

form of eqn. (21) for x = (Y, i.e. 

(22) 

where a: is the degree of conversion, A is the pre-exponential factor and E 
is the activation energy, is also axiomatically accepted as FP-PIDKE. 

(5) An isothermal differential kinetic equation of the form 

g =F(x, Tt t) (23) 

is not acceptable as a P-PIDKE because of the presence of t on the 
right-hand side of the equation. This implies at least one integration without 
taking into account the non-isothermal evolution of the system. 

THE MODEL OF INFINITESIMAL ISOTHERMAL PORTIONS (MIIP) IN CONNEC- 
TION WITH P-PIDKEs 

MIIP (Fig. 2) appeared in connection with the integration of the non-iso- 
thermal differential kinetic equations [I). This integration allows: (a) the 
evaluation of the non-isothermal kinetic parameters; (b) the determination 
of the dependences xN( T) or xN( t ) for known non-isothermal kinetic 
parameters. 

Now we shall apply MIIP for a P-PIDKE with a more general form than 
(21), namely, 

g =Af(x)k(T)h(x, t) 

where A = const and h(x, r) a function of two inseparable variables. A 
particular case of eqn. (24) was found in the kinetics of the non-isothermal 

XN3 
X 

N2 

XN, 

XNO 

Fig. 2. Infinitesimal isothermal portions on a non-isothermal curve. 
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heterogeneous decomposition of solids when the activation energy changes 
linearly with the degree of conversion ~1 [14]. For this case 

h(a, T) = exp( -E,a/RT) E, E R (25) 

In ref. 15 two other equations which can be reduced to the form (24) have 
been suggested. Introducing the notation 

xN =Y (26) 

and applying the classical change (relationship (10)) in eqn. (24) one obtains 

(27) 

According to the method of separation of variables for the integration of 
eqn. (27) in non-isothermal conditions, one can distinguish two cases: 

(1) It is supposed that an analytical dependence of the form 

T=u(x,)=u(y) (28) 

such as an interpolation polynomial is known. In such conditions the 
variable separation in eqn. (27) leads to 

dy 
f(Y)NY, U(Y)1 

=Ak[O(t)] dt 

On integration, eqn. (29) becomes 

=A J i[B(t)] dt 
fo 

By applying MIIP [l] one obtains 

J 
Yl dy 

YO f(YP[YT 4Y)l =Ak 
J 

YZ dy 
Yl f(Y)NYY 4Y)l =/4/k 

[Wdl At 

[ O( t, + At)] At 

=Ak{B[t,+(n-1) At]} At 

The summation of relationships (31) leads to 

/ 

Yn dy 
f(Y)NYY U(Y)1 

=A~k{B[t,+(i-1) At]} At=s 
YO i=l 

As in ref. 1, the sum S is given by 

s Y, dy 
f(Y)NYY U(Y)1 

=A i k[d(t,+jAt)] At=S 
YO j=l 

(2% 

(30) 

(31) 

(34 

(33) 
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For n-, cc and At--+0 

lim y,=Y (34) 
n+oO 

lim n At=t-t, (35) 
n+co 
Ar-+0 

The sums s and S (Darboux’s sums) have the same finite limit which equals 
the integral Aj,ik[O(t)] dt. Thus for n --, cc relationships (32) and (33) 
become 

=A 1 ‘k[B(t)] dt 
10 

i.e. relationship (30). 
(2) In this case a functional dependence of the form 

XN =y= u(T) = r@(t)] 

is assumed to be known. On variable separation eqn. (27) leads to: 

3 =NW)l h { +w)lT WI 

On integration of eqn. (38) one obtains 

J y;& =AJfk[e(t)lh{u[e(t)l, WI dt 
to 

By applying MIIP the sums s and S are obtained: 

J “*=A &{B[t,+(i-1) At]} x 
Yo f(y) i=l 

h(r!(8[t,+ (i- 1) At]}, 8[t,+ (i-l) At])=.s 

(36) 

(37) 

(38) 

(39) 

(40) 

yn d y 

J- ,!J” f(Y) 
=A i k[B(t,+jAt)]h{u[8(t,+jAt)], B(t,+jAt)} =S (41) 

j=l 

For n -+ co, relationships (40) and (41) turn into 

J y;& =A/‘k[B(t)]h{u[B(t)], e(t)} dt 
fo 

(42) 

i.e. relationship (39). The equalites of the two pairs of integrals (30)-(36) 
and (39)-(42) demonstrate that by applying MIIP one obtains in fact the 
same result as by the classical change of a P-PIDKE followed by variable 
separation and integration. Thus MIIP gives mathematical support for the 
classical change of the isothermal differential kinetic equation but it does 
not help in the derivation of a PIDKE or a P-PIDKE. As we have seen, if 
PIDKE gives a real description of a non-isothermal system (after the 
classical change), MIIP gives an equivalent result. 
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SOME APPLICATIONS IN HOMOGENEOUS KINETICS 

To be aware of the “in principle” mathematical complications which 
appear in the derivation of non-isothermal kinetic equations, the classical 
sequence of two consecutive reactions (11) A --+ B + C will be considered. 
The differential kinetic equations describing this sequence are 

dx 

dt= 
-k,x 

dy - = k,x - k, y 
dt 

dz 
- = k,y 
dt 

where x, y and z are the time-variable concentrations of A, B and C 
respectively. By applying the classical change to eqns. (43), (44) and (45) and 
considering them as BP-PIDKE, it turns out that 

d-54 - = -k#(t)]x, 
dt 

dYN 
- =k,[~(t)]x,-k#(t)]y, dt 

d z, 
- = kzP(~)l YN dt 

Fortunately eqn. (46), after variable separation, is easy to integrate, i.e. 

J *“2 = -ck#(t’)] dt’ 
XIJ 

or expressing xN after integration 

xN=xo exp (- jdw(t’)l dt) 

Taking into account this result, eqn. (47) becomes 

(47) 

(48) 

(50) 

This is a differential kinetic equation valid for non-isothermal conditions 
whose solution (if there is any exact solution) is very difficult. Introducing, 
in principle, this solution into eqn. (48) zN can be obtained. Without 
considering eqns. (43) (44) and (45) as BP-PIDKE, even these results could 
not be obtained. 
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GENERAL CONSIDERATIONS CONCERNING THE NON-ISOTHERMAL KINETICS 
OF SOLID-GAS DECOMPOSITIONS, A(s) + B(s) + C(g) 

One-stage nucleation 

The isothermal differential kinetic equation of the one-stage nucleation is 

[7,W~l 

gL,(N,-N) (52) 

where NO is the number of energetically favourable sites and N the number 
of nuclei at the moment t. We shall consider eqn. (52) as BP-PIDKE. 
Through variable separation and integration in isothermal and non-isother- 
mal conditions, eqn. (52) leads to 

In & = k,t (isothermal) (53) 

In No!, = l:k,[B(t’)] dt’ (non-isothermal) (54 
0 N 

and 

N=N,[l -exp(-k,t)] (55) 

NN=No[l-exp(-p,[6’(t’)] dt’}) (56) 

Taking the derivatives with respect to time of eqns. (55) and (56) one obtains 

dN 
- =N,exp(-k,t)k, 
dt 

(57) 

d NN 
- = No exp - 

dt ( ~‘k,[@(t’)l dt’)kl[e(r)l (58) 

From a mathematical standpoint, it is obvious that even in this very simple 

case 

dN dN, 

i-i - dt N* dt 

where (dN/dt), is the expression obtained after the classical 
eqn. (57). For small values of k, and /,‘k,[ fl( t’)] dt’, taking only 

(59) 

change of 
two terms 

from the exponentials in (55) and (56) one obtains the following equations: 

N = Nok,t (60) 

N, = No 
J 

‘k,[B(t’)] dt’ (61) 
0 
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The derivatives of these equations with respect to time are 

dN=Nk 
dt Or (62) 

d N, 
- = Nok, [‘j(t)] dt (63) 

In this case (dN/dt),=dN,/dt, where (dN/dt). is the expression ob- 
tained after the classical change of eqn. (62). Thus, while the classical change 
of eqn. (57) does not lead to eqn. (58), the same change to eqn. (62) leads to 
eqn. (63). 

Two-stage nucleation 

In this case the following systems of isothermal differential kinetic 
equations are valid [lO,ll]: 

d N, 
- = No/?, 

dt (64) 

dN2 
- = N,k, . 

dt (65) 

From eqns. (64) and (65) it is easy to obtain 

Ni = NokIt (66) 

dN2 
- = N,k,k,t 

dt (67) 

To obtain the non-isothermal differential kinetic equation, one has to 
consider eqns. (64) and (65) as BP-PIDKE. Thus, integration of eqn. (64) in 
non-isothermal conditions leads to 

NAN = No k [%>I dt, 
J 

(68) 
0 

Introducing this result into eqn. (65) one obtains 

dN,, 
- = Nok,[B(r)l j,‘k,[e(r,)l dt, dt 

This is an integro-differential equation whose integrated form is 

N,,=No~(k,[B(t,)ljlb2k,[8(1,)) dr,)) dtz 

By comparing eqns. (67) and (69) it is obvious that 

(69) 

(70) 

where (dN,/dt), is the expression obtained after the classical change of 
eqn. (67) and that eqn. (67) cannot be considered as a P-PIDKE as it has in 
its right-hand side the factor t which comes from an isothermal integration. 
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Kinetics of nucleation-growth 

In isothermal kinetics the total volume of the solid reaction product at the 
time t is given by the nucleation-growth equation [7,10,11] 

(72) 

where r is a so-called form factor, G, is the growth rate of the nuclei, h is 
an exponent which equals 1, 2 or 3 according to the unidimensional, 
two-dimensional or three-dimensional growth of the nuclei. To make the 
change of the isothermal eqn. (72) into its non-isothermal variant one has to 
take into account that G, can be temperature dependent and that dN/dt 
should be replaced by dN,/dt, i.e. 

(73) 

This result was obtained earlier by Kemeny and Sestak [13]. The use of 
relationship (73) requires difficult calculations. Indeed the evaluation of the 
factor dN,/dt from (73) needs, in many cases, solutions of non-isothermal 
kinetic equations which are very difficult to obtain. Taking into account 
these difficulties one has to accept FP-PIDKEs. 

Another problem raised by the use of relationship (73) is the calculation 
of the integrals on the right-hand side. Indeed, for d N,/dt given by eqn. 
(58) and G, given by [13] 

G, = G, exp( -E,/RT dt) (74) 

relationship (73) turns into 

G(t) = /:j4/’ exp( - R[;x), ] dx 1 hN0 
0 Y 

X exp (- !!$[@(t’)] dt’)k,[8(y)] dy 

where k, is most usually given by [l-8,10-13] 

k,=A, exp -2 
( i 

(75) 

(76) 

The difficulties in the calculations in eqn. (75) are obvious. Once again one 
has to emphasize that for systems of complex reactions even dN,/dt cannot 
be obtained, so until the appearance of new standpoints one has to prefer 
the axiomatic form, type FP-PIDKE of the classical non-isothermal kinetics. 



The axiomatic formulation type FP-PIDKE of the non-isothermal kinetics 

This formulation accepts as FP-PIDKE the following general differential 
kinetic equation [12]: 

g = ka”(l- a)“[ -ln(l- a)]’ (77) 

where 

k=Aexp -gT 
i i 

(78) 

With regard to the classical change of eqn. (77), as shown by a rich 
literature, its mathematical determination is one of the major concerns of 
the many people involved in non-isothermal kinetics. 

The JMA YK equations 

The integral and differential forms of the JMAYK equation are respec- 

tively 

-ln(l - CX) = kt” (79) 

g =kn(l -a)t”-’ (80) 

As shown by Kemeny and Sesthk [13] a classical change cannot be per- 
formed on eqn. (80) as it contains the factor t”-’ on the right-hand side. 

CONCLUSIONS 

The notion of PIDKE introduced in this article proves itself to be useful 
for the derivation of the non-isothermal kinetic equations from isothermal 

ones. 
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