SOLID-SOLID INTERACTIONS BETWEEN FERRIC OXIDE AND LITHIUM CARBONATE AND THE THERMAL STABILITY OF THE LITHIUM FERRITES PRODUCED

G.A. EL-SHOBAKY and A.A. IBRAHIM *National Research Centre, Dokki, Cairo (Egypt)* (Received 29 January 1987)

ABSTRACT

The interaction between α -Fe₂O₃ and Li₂CO₃ was studied using DTA, TG DTG and X-ray diffraction techniques.

The results obtained revealed that ferric oxide and lithium carbonate, when mixed in a molar ratio of 1:2, underwent solid-solid interaction at temperatures starting from 500 °C, yielding α -LiFeO₂. The degree of crystallinity of the ferrite produced was much increased by increasing the precalcination temperature of the mixed solids. The unreacted portion of lithium carbonate decomposed readily at 735° C forming Li₂O which dissolved in the α -LiFeO, lattice, giving a stable solid solution. The dissolved lithium oxide increased the thermal stability of α -LiFeO₂ and prevented its phase transformation into any other type of lithium ferrite. The heating of the mixed solids at 1080°C resulted in sublimation of about 50% of the Li₂O from the lattice of LiFeO₂ without effecting its transformation into another phase.

However, $Fe₂O₃$ and $Li₂CO₃$, in an equimolar ratio, interacted with each other at temperatures starting from 500° C also giving α -LiFeO₂ which was transformed in part into β -LiFeO, and β -LiFe₅O₈ at temperatures between 700 and 1000^oC. At 1100^oC, the β lithium ferrites and an important portion of α -LiFeO₂ underwent phase transformation forming well-crystallized α -LiFe_sO₈.

INTRODUCTION

Most monovalent ferrites exist in two forms, the first having the formula $Fe₂O₃ · M₂O$ is cubic, rhombic or orthorhombic and the second having the composition 5Fe₂O₃ \cdot M₂O is cubic spinel [1]. The alkali ferrites of Li, Na, K, Rb and Cs represent one of the two categories of monovalent ferrites.

The alkali ferrites can be prepared by electrochemical methods [2,3] and by heating, at different temperatures in air or in an inert atmosphere, a mixture containing $Fe₂O₃$ and alkali oxides or carbonates [1,4-9].

Lithium ferrite, LiFe O_2 , can be obtained by the thermal treatment, in air at 700 $^{\circ}$ C, of mixed solids with equimolar proportions of Fe₂O₃ and Li₂O or $Li₂CO₃$ [4,6,8]. The solid obtained exhibits antiferromagnetic properties and acquires a cubic FeO structure on heating above $700\degree$ C followed by rapid cooling to room temperature [l]. Lithium and ferric cations of LiFeO, could be substituted, in part, with other cations such as Al^{3+} and Mn^{2+} forming various solid solutions [1,10].

Lithium ferrite, LiFe₅O₈, could be prepared by heating, at 400–1200 °C, a powdered mixture containing Fe₂O₃ and Li₂CO₃ in a molar ratio of 5:1 [6,9]. The ferritization process starts at 450° C and reaches completion at $800\degree$ C [6]. Some physicochemical and magnetic properties of ferrites, such as lattice parameter, shrinkage, density, thermal stability, curie temperature and saturation magnetic moment, could be effectively changed by adding some foreign oxides [1,4,6,9,10]. However, the influence of such treatment on the thermal stability of lithium ferrites received less attention.

The present investigation reports a study on solid-solid interactions between $Fe₂O₃$ and $Li₂CO₃$, of varying compositions, and on the thermal stability of the lithium ferrites produced. The techniques employed were DTA, TG, DTG and X-ray diffraction.

EXPERIMENTAL

Materials

Two specimens of ferric oxide and lithium carbonate were prepared by mixing finely powdered well-crystallized α -Fe₂O₃ with Li₂CO₃ with the addition of a small amount of distilled water. The $Fe₂O₃$: Li₂CO₃ molar ratios were 1:1 and 1:2. The solid samples produced were dried at 100° C and roasted in air at temperatures between 500 and 1100° C; the time of heating was fixed at 6 h.

Techniques

DTA, TG and DTG analyses of the two prepared $Fe₂O₃$ -Li₂CO₃ solids were carried out using a Netzsch–Gerätebau simultaneous thermal analysis apparatus (STA 409, type 6.223). The rate of heating was kept at 10° C min^{-1} . A 50 mg sample of each solid specimen was employed in each case.

An X-ray investigation of the thermal products of various solids was performed with a Philips diffractometer (type PW 1390). The patterns were run with iron-filtered Co radiation ($\lambda = 1.7889$ Å) at 40 kV and 30 mA with a scanning speed of 2° in 2θ min⁻¹.

RESULTS AND DISCUSSION

Thermal behaviour of Fe,O,-Li,CO, solids

Figures 1 and 2 represent DTA, TG and DTG curves of mixtures of ferric oxide and lithium carbonate having molar ratios of $1:1$ and $1:2$. Two

Fig. 1. DTA curves of mixtures of ferric oxide and lithium carbonate solids with the compositions (a) $Fe₂O₃$: Li₂CO₃ and (b) $Fe₂O₃$: 2Li₂CO₃.

endothermic peaks are observed for the first solid; the first peak is broad extending between 400 and 650° C and the second peak is sharp and strong having its maximum located at 735°C. The solid having the composition $Fe₂O₃$: 2Li₂CO₃ exhibits three endothermic peaks; the first peak is also broad extending between 400 and 650° C, the second peak is sharp and strong located at 735° C and the third peak is relatively sharp and strong located at 1080° C. The loss in weight accompanying the broad endothermic peak attains about 13% for both solids. The endothermic peak at 1080° C is followed by a 12% loss in weight. The loss in weight corresponding to the peaks at 735° C reaches 6% and 4% for the solids having the composition $Fe₂O₃$: Li₂CO₃ and $Fe₂O₃$: 2Li₂CO₃ respectively. These two solids lose 24% and 32% of their weight when heated between room temperature and $1100 °C$.

The broad endothermic peak at $400-650$ °C might correspond to a solid-solid interaction between ferric oxide and lithium carbonate producing lithium ferric compound(s). In fact, it has been reported by Shorina and Lisnyak [6] that $Fe₂O₃$ interacted with $Li₂CO₃$ at temperatures starting from 450 °C to yield lithium ferrite LiFe₅O_g. These researchers also showed that with increasing temperature and sintering time, the ferritization rate increased and the ferrite formation was completed at 800" C. The sharp endothermic peak at 735°C might indicate the decomposition of the unreacted portion of Li_2CO_3 into Li_2O [1,11] which interacted with Fe,O, to form ferric lithium compound(s). The endothermic peak at 1080° C, only observed for the solid having the composition $Fe₂O₃$: 2Li₂CO₃ might char-

Fig. 2. TG and DTG curves of mixtures of ferric oxide and lithium carbonate solids with the compositions (a) $Fe₂O₃$: Li₂CO₃ and (b) $Fe₂O₃$: 2Li₂CO₃.

acterize a decomposition process of lithium ferric compounds or more probably sublimation of $Li₂O$. The identification of lithium ferric compounds produced at different temperatures will be given using XRD measurements in the following section.

X-ray investigation of the thermal products of ferric oxide treated with different proportions of lithium carbonate

XRD revealed that the ferric oxide employed consisted entirely of the well-crystallized α -Fe₂O₃ phase. Figures 3 and 4 represent the X-ray diffraction patterns of $Fe₂O₃$: Li₂CO₃ and $Fe₂O₃$: 2Li₂CO₃ solids precalcined in air for 6 h at 500, 700, 800, 900, 1000 and 1100° C. All the diffraction lines of the α -Fe₂O₃ and Li₂CO₃ phases, together with three lines of reasonable intensity, were detected in the diffraction patterns of the solids heated at

Fig. 3. X-ray diffraction patterns of the thermal products of the solid $Fe₂O₃$ (1) Li,CO₃, (2) α -Fe₂O₃, (3) α -LiFeO₂, (4) β -LiFeO₂, (5) α -LiFe₅O₈, (6) β -LiFe₅O₈.

500 °C. The *d* spacings of these lines were calculated and found to be 2.08_x , 2.40_{0.8} and 1.47_{0.7}.

These lines corresponded to the lithium ferrite phase, α -LiFeO, [12]. The formation of this compound might proceed according to the reaction

Fe₂O₃ + Li₂CO₃
$$
\frac{500-700^{\circ}C}{2}
$$
 2LiFeO₂ + CO₂(g)

The completion of this reaction should be followed by an 18.8% loss in weight of the reacting species. The observed loss in weight at temperatures between 450 and 650° C was only 13%, indicating the presence of unreacted portions of both ferric oxide and lithium carbonate.

It can be shown from Figs. 3 and 4 that the increase in the precalcination temperature up to $700\degree$ C resulted in the disappearance of the characteristic diffraction lines of α -Fe₂O₃ and in a considerable decrease in the intensity of the lines corresponding to the free $Li₂CO₃$ phase with a subsequent increase in the intensity of the diffraction lines of the α -LiFeO₂ phase. These results clearly indicate that ferric oxide interacted almost completely with Li_2CO_3 at 700°C, yielding α -LiFeO₂.

Fig. 4. X-ray diffraction patterns of the thermal products of the solid $Fe₂O₃$: $2Li₂CO₃$ (1) Li₂CO₃, (2) α -Fe₂O₃, (3) α -LiFeO₂.

The rise in roasting temperature to $800\degree$ C led to the disappearance of the diffraction lines of free lithium carbonate, indicating its decomposition into Li₂O which interacted readily with $Fe₂O₃$, present in minute amounts and therefore not detected by XRD, producing α lithium ferrite. The lithium oxide formed might also dissolve in the LiFeO, lattice $[1,10]$. The formation of lithium ferrite at $800\degree$ C might occur according to the reaction

$$
Fe2O3 + Li2O \xrightarrow{800^{\circ}C} 2LiFeO2(\alpha)
$$

When the precalcination temperature of the $Fe₂O₃$: Li₂CO₃ solid reached 900 \degree C, the α -LiFeO₂ produced underwent partial phase transformation into β -LiFeO₂ and α -LiFe₅O₈. The intensity of the diffraction lines of the first phase is bigger than that of the lines corresponding to the second phase. This might indicate that the amount of α -LiFe₅O₈ is much smaller than the amount of β -LiFeO₂. The formation of lithium ferrite in the form of α -LiFe₅O₈ might take place according to the reaction

$$
2Fe_2O_3(\alpha) + \text{LiFeO}_2(\alpha) \frac{900 \text{ °C}}{2} \text{LiFe}_5O_8(\alpha)
$$

The diffraction lines of both β -LiFeO₂ and α -LiFe₅O₈ disappeared from the patterns of the Fe,O₃: Li₂CO₃ solid preheated at 1000° C (Fig. 3). The patterns of this solid include the diffraction lines of α -LiFeO₂, with the highest intensity, together with three other lines. The *d* spacings of these lines were calculated and found to be 2.53_x , $2.97_{0.5}$ and $1.61_{0.4}$. These lines correspond to β -LiFe₅O₈ [12]. The formation of this compound might occur according to the reaction

$2Fe_2O_3 + \text{LiFeO}_2(\alpha \text{ and } \beta) \frac{1000^{\circ}\text{C}}{2}$ LiFe₅ $O_8(\beta)$

The augmentation of the calcination temperature of the $Fe₂O₃$: Li₂CO₃ solid to 1100° C resulted in a complete disappearance of the lines of the β -LiFe₅O_s phase with the subsequent appearance of all the diffraction lines of α -LiFe₅O₈ together with the lines of the α -LiFeO₂ phase. The intensities of the main lines of the two α ferrite phases are almost the same which might indicate their presence in equivalent amounts. The absence of any exothermic or endothermic peaks in the DTA curve of the solid having the composition Fe, O_3 : Li,CO₃ at temperatures between 1000 and 1100 °C, might show that the phase transformation β -LiFe, $O_8 \rightarrow \alpha$ -LiFe, O_8 occurred at a relatively slow rate and/or its occurrence is not accompanied by an important thermal effect.

Concerning the solids having the composition $Fe₂O₃$: $2Li₂CO₃$, the diffraction lines of the well-crystallized α -LiFeO, phase were only detected in the patterns of the specimens precalcined in air at temperatures between 800 and $1100\textdegree$ C (Fig. 4). These results clearly indicate that the presence of an excess of lithium, more than is required for the formation of lithium ferrites, resulted in an important increase in the thermal stability of the α -LiFeO, phase and prevented its transformation to any other ferrite phase. The absence of free lithium oxide in these solids indicated that it had dissolved in the lattice of the LiFeO, solid produced. It has been shown in ref. 13 that lithium oxide dissolved in a Co_3O_4 solid with a spinel structure [14] much increased its thermal stability and prevented its decomposition into Co0 even when heated at 1100 $^{\circ}$ C. Pure Co₃O₄ is known to decompose on heating in air at about 850° C yielding CoO [13]. It is plausible that lithium ions could be dissolved in the lattice of α -LiFeO, by substituting some of the host iron cations and/or through location in interstitial positions of the host lattice. The solid solution produced has remarkable thermal stability. The dissolution of $Li₂O$ in LiFeO, might create some lattice defects in the ferrite lattice such as the transformation of some iron cations to a high valence state and/or the creation of anionic vacancies [15,16]. The identification of such lattice defects lies beyond the scope of this work. The X-ray characteristics of the $Li₂O-LiFeO₂$ solid solution might be different from those of pure lithium ferrite. However, the *d* spacings of both compounds are almost the same, indicating the absence of an effective broadening due to dissolution of $Li₂O$ in the LiFeO₂ lattice. Nevertheless, the relative intensity of the diffraction line at $d = 2.40$ Å, one of the main lines of the α -LiFeO, phase, was found to decrease from 50% to 40% and 20% and then increased to 40% for Fe, O_3 : $2Li$, CO_3 solids calcined at 800, 900, 1000 and $1100\textdegree$ C respectively. Furthermore, the intensity of all the diffraction lines of α -LiFeO, suffered a decrease of about 35% by increasing the calcination temperature from 900 to 1000°C. These results might indicate some type of disordering of the α -LiFeO, lattice due to dissolution of Li₂O. This effect attains a maximum at a calcination temperature of 1000° C.

The endothermic peak observed at $1080\degree C$ in the DTA curve of $Fe₂O₃$: 2Li₂CO₃, accompanied by a 12% loss in weight (Fig. 1), might correspond to the departure of some $Li₂O$ from the LiFeO, by sublimation from the outermost surface layers of the ferrite phase. The complete sublimation of Li,O from the LiFeO, lattice should be accompanied by a 25% loss in weight. However, the amount of Li₂O remaining in the solid preheated at 1100° C was sufficient to stabilize the α -LiFeO₂ phase.

REFERENCES

- 1 P. Pascal, Nouveau Trait6 de Chimie Minerale, Tome II, Masson, Paris, 1966, p. 741.
- 2 N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Sot., 131 (3) (1984) 543.
- 3 J.P. Deininger, Patent, U.S. US 4, 435, 256 (Cl. 204-86; 25 Bl/OO), 06 Mar. 1984, US Appl. 246. 790. 23 Mar. 1981; 10 pp. Cont.-in-part of US. Ser. No. 246, 790.
- 4 E.M. Kriger and Yu.D. Tretyakov, Izv. Akad. Nauk, SSSR, Neorg. Mater., 8 (2) (1972) 404.
- 5 L.M. Letyvk, Zh. Khim. U.S.S.R., 2 (1975) 32.
- 6 L.L. Shorina and S.S. Lisnyak, Mater. Mezhotrasl. Soveshch. Method. Poluch. Anal. Ferritovykh, Segento-Pezoelektricheskikh Mater. Syr'ya Nikh., 3rd, 1969 (published 1971) 3, 162. V.V. Klimov (Ed.), Issled. Inst. Tekh., Donetsk U.S.S.R. Chem. Abstr., Vol. 81 (2) (1974) 6562d.
- 7 D.G. Chekhovskoi, Ibid., Chem. Abstr., Vol. 81 (2) (1974) 6563e.
- 8 D.W. Seetharaman and L.I. Staffanson, Scand. J. Metall., 13 (1) (1984) 32.
- 9 A. Gonzalez Arias, Rev. Cubana Fis., 3 (1981) 135.
- 10 B.M. Ulanovskii, P.V. Lipatov, E.A. Babish and A.M: Obuthova, U.S.S.R. SU 933, 248 (Cl. $B_{22}F_{1/00}$), 07 June 1982, Appl. 3, 214, 842, 19 Nov. 1980 (21), 40; Chem. Abstr., Vol. 98 (1983) 45692s.
- 11 G.A. El-Shobaky, I.F. Hewaidy and N.M. Ghoneim, Thermochim. Acta, 53 (1982) 105.
- 12 Powder Diffraction File (JCPDS), International Centre for Diffraction Data, Swarthmore, P.A., 1979.
- 13 G.A. El-Shobky, I.M. Morsi and M.M. Ghoneim, Thermochim. Acta, 70 (1983) 325.
- 14 H. Schmalzried, Z. Phys. Chem. (Frankfurt), 31 (1962) 184.
- 15 A. Bielanski. K. Dyrek, Z. Kluz, J. Slozynski and T. Tombiasz, Bull. Acad. Pol. Sci., 9 (1964) 657.
- 16 P.C. Gravelle, G.A. El-Shobaky and S.J. Teichner, in K. Hauffe and Th. Volkenstein (Eds.). Proc. Symp. Elect. Phen. Chem. and Catal., Walter de Gruyter, Berlin, 1969, p. 124.