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ABSTRACT 

Using a one-body RC model, we analyse the output signal of a calorimetric system with 
temperature programming, simulating different evolutions in the sample heat capacity. 

This model allows us to study the influence of the scanning rate p on the system output 
shape. The calorimetric response signal divided by j3 reproduces, with good accuracy, the 
studied heat capacity evolutions for small enough /3 values. 

INTRODUCTION 

Simulation of calorimetric systems has been usually carried out through 
localized constant models (RC models). These studies have generally applied 
only to isothermal conditions using an invariant formulation (constant 
parameters) [l-4] as well as non-invariant models [4-81. 

In a previous paper [9] the output of a calorimetric system with tempera- 
ture programming was simulated by means of a one-body RC model. The 
body, of heat capacity C, was coupled (coupling coefficient P) to a 
thermostat whose temperature Tb varied at a constant scanning rate p 

(Tb(f) = PI). 
We analysed heat capacity variations due to either temperature or mass 

exchange with the exterior. Despite the simplicity of the model, we could 
obtain the sensitivity expression and analyse the applicability of the stan- 
dard inverse filtering technique to calorimeters with temperature program- 
ming. 

In the present study we analyse, using the model described above [9], the 
influence that different types of heat capacity variations have on the system 
output when the power released equals zero. 
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MODEL 

In Fig. 1 we show the model used. The balance equation when the power 
released equals zero ( W = 0) is 

w=o=c$+P(T-T,)=C& + P(T- T,) 
b 

0) 

Below we present the four cases studied. 

Discontinuity in heat capacity 

Let us suppose that there is a discontinuity in the heat capacity at Tb = Tl 

defined by 

c= ci for T,, < Tl 

c= c, for Tb > Tl 
(2) 

The temperature T for Tb < Tl can be evaluated by solving eqn. (l), 
previously substituting C for C,: 

- - + Tb for Tb < Tl (3) 

When the stationary state is reached, i.e. when t is large enough and for 
Tb < T,, then 

(4) 

This equation points out that, if the heat capacity remains constant, the 
body and the thermostat temperatures evolve in the same way with a 
constant delay equal to C,p/P. The system output AT, defined as the 
difference between T in eqn. (4) and Tb, is 

AT=-y for Tb<Tl 

Solving eqn. (1) with C = C, we can obtain the expression for T for Tb > T,. 
If we impose a continuity in AT at T,, the output for Tb > Tl is 

AT= &(Tl-Tb+y for Tb 2 Tl (6) 

The evolution of AT, when a discontinuity in C occurs at Tb = T,, is 

pq-di+r 
Fig. 1. Scheme of the analysed model. 
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Fig. 2. C/P (lint a) and AT/b (curves b) values for a discontinuity in the heat capacity as a 
function of the thermostat temperature for a change of 400 K: curve b,, j3 = 15 x 10e3 K SC’; 
curveb,, ,8=5x1O-3 KS-‘; curveb,, ,B=0.5x10-3 K s-l. 

obtained from eqns. (5) and (6). We observe in eqn. (6) that AT tends 
towards - C,j3/P when Tb increases. Thus, the difference in the stationary 
levels of AT above and below the temperature at which the capacity varies, 
is directly proportional to C, - C,, to the scanning rate /3 and to the 
sensitivity (S = l/P). 

In Fig. 2 we represent the AT/P signal as well as the evolution with T,, of 
the heat capacity divided by P in order to have the same units. This figure 
shows that AT/j3 tends more quickly towards C/P when p diminishes, 
since the relaxation constant &/P in eqn. (6) is directly proportional to /3. 

Linear variation of the heat capacity with temperature 

Let us consider a heat capacity variation in the form: 

c= c, for T,, G Tl 

C=mT,+n for T,<T,<T, 

c = c, for Tb >, T2 
(7) 

In order to simulate the linear variation of the heat capacity we accept an 
evolution of the value of C with the thermostat temperature Tb. This 
assumption simplifies the resolution of the balance equations and will be 
more acceptable for lower values of the scanning rates because, under these 
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conditions, T approaches Tb. Substituting in (eqn. 1) the expressions for the 
capacity given in eqn. (7) we obtain the balance equations for this case. 

If we impose the continuity in AT at T,, = Tl and Tb = T2, we can write 
the equations that correspond to the output evolution with the thermostat 
temperature: 

AT= -y for Tb<Tl 

for T, G T,, < T2 

(8) 

(9) 

AT= P(P+Pm) 
P2m [C2-C,(~j”‘m]exp[&(T2-Tb)]-~ 

for T,, a T2 (10) 

In Fig. 3 we represent the values of AT/,!? and C/P in front of Tb. This 
figure shows the influence of j3 on the system response. This representation 
reveals that, when the scanning rate diminishes, the AT/p signal follows 
more clearly the evolution of C/P with the temperature because the 
relaxation constant increases linearly with /? as in the former case. 

C, = 1 J/K 

C2 = 2 J/K 

P = 0.0002 W/K 

400 TITI 

Fig. 3. C/P (line a) and AT/b (1’ ‘nes b) values for a linear variation of the heat capacity as a 

function of the thermostat temperature for a change of 400 K: curve b’, p =15X 10e3 K 

S -‘; curve b,, p = 5 x lop3 K s-‘; curve b,, /3 = 0.5 X10-j K S-‘. 
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Heat capacity variation in a triangular form 

Let us suppose a variation of the heat capacity defined by 

c= c, for Tb G T, 

C=mT,+n for Tl G T,, G T2 

C= -mT,+n’ for T2<T,,<T3 
(11) 

c= c, for Tb 2 T3 

The balance equations corresponding to this case will be obtained by 
substitution in eqn. (1) of the expressions given in eqn. (11). Solving these 
balance equations and imposing the continuity in AT at T,, T2 and T3 we 
obtain 

AT= -y for T,,<Tl 

for Tl G T,, =G T2 

AT= 
G 2mP2C2 

-mT,+n p2-_2/32 - 

- p_‘mp(-mTb+n’) for T2<Tb<T3 

(12) 

(13) 

AT= 
-mC,P2 2mb2C, C, -P’mP C,P2m 

P(P-mp) + P2-m2fi2 CI i-1 

Xexp $(T, - Tb)j - y 
i 

for Tb>- T3 

where C, is the heat capacity value at Tb = T2. 
Figure 4 includes the representation of AT/p and C/P as a function of 

Tb for the evolution of the heat capacity defined by eqn. (11). In this figure 
one observes a displacement in the temperature of the peak tips correspond- 
ing to the input (fixed evolution of heat capacity) and the output signals. 
This displacement diminishes with /3. However, though AT increases with 
the scanning rate (without dividing by p), the rounding-off effect is more 
evident for greater j3 values. A widening of the peak corresponding to the 
output signal when /? increases is also observed. 

Potential variation in the heat capacity 

In this case the evolution of the heat capacity is defined by 

C = C, for Tb G T, 

for Tl sg T, < Tp (16) 



188 

c,E! 
P I3 

P = 0.0002 W/K 

45001 I 
0 T T, T, 4ol 

Fig. 4. C/P (line a) and AT/j3 (curves b) values for a triangular variation of the heat 
capacity as a function of the thermostat temperature for a change of 400 K; curve b,, 
,@=15~10-~ K s-‘; curve b,, /3 = 5 x 10m3 K SC’; curve b,, /3 = 0.5 x 1O-3 K s-l. 

where A and (Y are constants and Tp is the thermostat temperature at which 
C+oO. 

Through this evolution in the heat capacity we attempt to simulate a 
second-order transition with a critical exponent (Y. 

Substituting C for C, in eqn. (1) and solving the balance equation we get 
the AT expression for Tb sz T,: 

C# 
AT= -p for Tb G T, (17) 

We solve numerically the balance equation corresponding to a potential 
variation in C for T, G T,, < T,, by the Runge-Kutta method. 

The evolution of AT/p and C/P as a function of Tb is represented in 
Fig. 5 for cy = 0.3 and (Y = 0.5 values that are included in the critical 
exponents interval typical for second-order transitions. This figure indicates 
that AT/p values are nearer to those of C/P when /3 decreases. 

It is possible to extend the present study to differential calorimetric 
systems having a weak thermal coupling between sample and reference. If 
the reference heat capacity C, remains unvarying, there will be a constant 
difference (C,.p/P) between the differential signal (T, - T,) and q - T,, 
where T,, T, and T, are the sample, reference and thermostat temperatures 
respectively. This difference has no influence on the output signal shape. 
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Fig. 5. C/P (curve a) and AT/p (curves b) values for a potential variation of the heat 
capacity as a function of the thermostat temperature for a change of 200 K: curve b,, 

) TFCI 

p=15xlO-’ K s-‘; curve b,, p = 5 x lo- K s-‘; curve b,, j3 = 0.5 X 10m3 K s-‘. 

CONCLUSIONS 

We have studied the output of a calorimetric system with temperature 
programming using a one-body RC model, considering different types of 
heat capacity variations. 
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The model, in spite of its simplicity, has allowed us to analyse the 
influence of the scanning rate /3 on the system output shape. In the different 
cases studied this simulation justifies the possibility of following the evolu- 
tion of the heat capacity by using a reduced representation (system response 
divided by /3) with low enough scanning rates. Under these conditions, the 
AT//3 signal reproduces accurately the heat capacity evolution with temper- 
ature. 
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