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ABSTRACT 

A complete calorimetric run of a thermally induced martensitic transformation is de- 
scribed and analyzed in detail by means of a simple model of heat transfer in the calorimeter. 
The analysis is purely theoretical and no experimental data are presented. Procedures to 
obtain the difference in specific heat between the parent phase and the martensite. and to 
perform an adequate baseline correction accounting for such a difference are outlined. All the 
information obtainable from a calorimetric experiment of this kind is critically reviewed: 
first, the classical thermodynamic parameters, i.e. the transformation temperatures and the 
energy and entropy changes: second, the parameters describing the discontinuity of the 
transformation. its extension in temperature and the thermal hysteresis between the forward 
and reverse transformations: and third, the difference in specific heat between the parent 

phase and the martensite. 

INTRODUCTION 

The martensitic transformation is a diffusionless structural transforma- 
tion in the solid state between two metastable phases: the parent phase is the 
high-temperature phase, while the low-temperature phase is called the 
martensite. The martensitic transformation is the physical mechanism by 
which several alloys exhibit the shape-memory effect, i.e. a spontaneous 
recovery of shape when they are cooled or heated after having been 
deformed (see refs. l-4 for a review on the shape-memory effect and the 
physical properties of the martensitic transformation). 

In this work we deal with a certain kind of calorimeter which has been 
particularly designed to measure the thermal properties of shape-memory 
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alloys during a martensitic transformation induced by a change in tempera- 
ture [5-71. We call this calorimeter a differential-heat-conduction-scanning 
calorimeter because: (i) it works usually by programming the temperature of 
the block, (ii) the temperature differences inside the calorimeter are very 
small and therefore the heat transport is mainly due to conduction, and (iii) 
the thermobatteries, which actually measure the heat flow between the 
sample (or the reference sample) and the calorimetric block, are assembled 
in differential to minimize the influence of external perturbations. 

The high sensitivity of the device (400 mV W-’ at room temperature) is 
achieved by the use of semiconductor thermobatteries; this, in turn, limits 
the range of temperature in which the calorimeter can work ( - 180, 
+ 110 o C). The sensitivity is actually dependent on temperature and this 
effect has to be taken explicitly into account when measuring a complete 
martensitic transformation which easily extends to a range of 20 or 30 K [8]. 
The thermal inertia is minimized because the samples are metallic and have 
small dimensions (rods of 6 mm diameter and 1 mm thickness, for example) 
and because the calorimetric block is built of copper. The main time 
constant, highly dependent on the mass of the sample and the specific 
design of the calorimeter, has a value of 10 s for the calorimeters being used 
in Palma with samples of 0.5 g [8,9]. The temperature can be programmed 
from high rates (18 K min-‘) to very low ones ( - 0.3 K min-‘); it has been 
recently estimated that, for CuZnAl, the simultaneous transformation of 
portions of 4 pg are already detectable on the thermogram when working at 
minimum scanning rates [8]. 

The physical features of the martensitic transformation for shape-memory 
alloys are very sensitive to the mechanical and thermal history of the 
material. Differential-heat-conduction-scanning calorimetry has already 
played a role in both a qualitative and quantitative characterization of this 
influence. Planes et al. [lO,ll] have studied the influence of the degree of 
long-range atomic order in the parent phase on the temperatures and 
enthalpy changes of the transformation. Their results suggest that the 
equilibrium temperature between the two phases is affected by the degree of 
order in the parent phase, while the thermal hysteresis and the entropy 
change of the transformation are not modified. Planes et al. [12] and 
Picornell et al. [13] have shown that, on repetitive cycling between the parent 
and the martensite phases, the amount of heat evolved in the transformation 
tends to reach a stable value and most of the sharp peaks in the thermo- 
gram, normally not reproducible from cycle to cycle, smooth down during 
the first ten cycles. Planes et al. [12] and Rapacioli et al. [14] have studied 
the correlation between the thermal power released or absorbed by the 
sample and the ultrasonic waves produced during the transformation. These 
are simultaneously detected as acoustic emission (AE) by placing a piezo- 
electric transducer on top of the sample inside the calorimeter. Their results 
show that. although an almost perfect correlation is often observed: (i) the 
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presence of precipitates of other equilibrium phases in the matrix of the 
parent phase inhibits the acoustic emission, but does not practically affect 
the calorimetric signal, and (ii) samples transforming above room tempera- 
ture which have been thermally treated to stabilize the martensite phase, 
although they only retransform partially or do not retransform at all to the 
parent phase, still give a large acoustic emission. Mantel [15] has studied in 
detail the problem of stabilization of the martensite phase, measuring the 
dependency of transformation temperatures and heat evolved during the 
transformation upon the degree of stabilization. Picornell et al. [13] have 
performed systematic studies of the transformation temperatures and of the 
energy and entropy changes on different samples of the same alloy having 
the same nominal composition, and on the same sample repeating the 
thermal treatment each time, to quantify the reproducibility of the calori- 
metric results under well-defined conditions for the samples. These calori- 
metric studies have largely contributed to a better understanding of the 
physical processes involved in a martensitic transformation. 

Nevertheless, from the point of view of calorimetry, several assumptions 
currently in use should be analyzed in detail, namely (i) the change in the 
specific heat of the sample during the transformation is always neglected, (ii) 
the influence of this change on the calorimetric baseline is not considered, 
(iii) the heat measured during a forward or a reverse martensitic transforma- 
tion is often identified with the enthalpy change or latent heat of the 
transformation, and therefore the dissipative irreversible processes taking 
place during the transformation are ignored, and (iv) the entropy change is 
calculated from the measured heat by an integration through the thermal 
path that the transformation actually follows, which is not a reversible one. 

In this work we assume that a differential-heat-conduction-scanning 
calorimeter can be reasonably described by a very simple model with 
localized constants [16-181, and analyze in this framework the assumptions 
(i) and (ii) listed above. We also discuss, in aqualitative way, the relative 
importance of assumptions (iii) and (iv) on the accuracy of the calorimetric 
results. Finally, we consider three parameters [7] related to the thermal 
hysteresis, the jerky or discontinuous character and the extension in temper- 
ature of the transformation, and speculate on their physical meaning. 

CHANGE IN SPECIFIC HEAT DUE TO THE TRANSFORMATION 

The calorimetric model [S], represented in Fig. 1, has two elements (1 and 
2) with heat capacities C, and C,, representing the sample under test and 
the reference sample, respectively. They are coupled to the calorimetric 
block, whose temperature is T,, by the thermal couplings Pi and P2. 
Thermal power dissipation takes place only in element 1, and the differential 
detectors measure the difference (Ti - T2) between the temperatures of the 
two elements. 
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Fig. 1. Model of a differential-heat-conduction-scanning calorimeter. B and D represent the 
calorimetric block, C, and C, the heat capacities of the sample under study and of the 
reference sample, respectively, and P, and PI the thermal couplings between the samples and 
the calorimetric block. 

The energy balance in every element of the model gives the following 
equations: 

d(T, - T,) 
W(t) =‘, dt + Cl% + P,(T* - To) 

o=c w-m 
2 dt 

+ CzZ + P,(T, - r,) 

If there is perfect identity between both calorimetric elements, C, = C, = C 
and P, = P2 = P. When performing the calibration of the calorimeter, from 
an experimental point of view it is not difficult to fulfil this condition. Then, 
subtracting (2) from (1) we get: 

W, - T2) 

W(t)=C dt + WI - T2) 

and the sensitivity of the calorimeter is obtained from the relation between 
the constant output signal obtained for a constant dissipation and the 
corresponding value of the thermal power: 

As mentioned in the introduction, the sensitivity of the actual calorimeter is 
highly dependent on the temperature of the calorimetric block. The in- 
fluence of temperature is due to a double effect [8]: (1) the thermal coupling 
P is dependent on temperature; (2) the magnitude of the Seebeck effect 
developed in the thermobatteries is also dependent on temperature. This 
second effect does not appear in our formulation because we are just 
considering that the output of the model is the temperature difference 
(T, - T,), not the electric signal developed in the thermobatteries as a 
consequence of this difference. We do so because the formulation is easier 
and is sufficient for future analyses. 

Determination of the dijjf erence in specific heat between the two phases 

In an actual calorimetric run of a martensitic transformation, the variable 
x will give, at every temperature, the relative fraction of parent phase 
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already transformed into martensite. Therefore, before the forward transfor- 
mation starts on cooling we have x = 0, while at the end of the forward 
transformation x = 1. Considering that the specific heat of the martensite is 
different from the specific heat of the parent phase, the heat capacity of 
element 1, representing the transforming sample, will change during the 
transformation: 

C, = C,(x) (5) 

Then, we define AC(x): 

C,(x) = C, - AC(x) (6) 

Additionally, we restrict ourselves to a linear program of the block’s 
temperature: 

T,(t) = TOi + TOt (7) 

and consider two different situations. 

(i) The -forward transformation has not yet started, and consequently x = 0 
and W = 0, i.e. there is no thermal dissipation 

Then, assuming a linear dependency of T, 

(1) and (2) gives: 
and T2 on t, solution of eqns. 

(8) 

(9) 

Assuming the thermal couplings to be identical, P, = P2 = P, the tempera- 
ture difference detected by the thermobatteries will be: 

( T7 - T, ) = F fb (10) 

which is a constant value. This constant temperature difference, arising from 
the different heat capacities of elements 1 and 2, can be described, con- 
versely, as an extra-dissipation in a perfectly differential model. The extra- 
dissipation will be 

(11) 

This is in agreement with the result obtained by subtracting eqn. (2) from 
eqn. (1) considering that dT,/dt = dT,/d t = PO as deduced from eqn. (8) 
and C, = C: 

AC(O& = C 
d(T, - 73 

dt +p(T, - T,) (12) 
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(ii) The forward transformation has already finished and consequently x = 1 
and W = 0, i.e. there is no thermal dissipation 

Following the same procedure, the temperature difference detected by the 
thermobatteries is given by: 

( Tl - T2 ) = y PO 03) 

and can be regarded again as an extra-dissipation in a perfectly differential 
model: 

W*(x = 1) = AC(l& (14) 

Equations (11) and (14) show that the difference in specific heat between 
the parent and the martensite phases can be obtained, in every calorimetric 
run, from the experimental thermogram corrected for sensitivity, as sche- 
matically shown in Fig. 2. The difference 

W*(x=l)- W*(x=O)= [AC(l)-AC(0)]pb (15) 

between the power dissipated before and after the forward transformation is 
dependent on the difference in specific heat between the two phases and on 
the rate of temperature change. The higher the rate of temperature change, 
the more accurate the difference in heat capacities determined. However, 
high scanning rates will at the same time enhance any disymmetry in the 
calorimeter and therefore distort the flatness of the baseline [8]. An ap- 
proximate value for the specific heat of the parent phase is CPA = 0.420 J g-’ 
K-’ [19]. To o ur knowledge, there are no measured values for the specific 
heat of the martensite, but it is always assumed to be very similar to the 
specific heat of the parent phase. Assuming a 5% difference between them, 
and a sample of mass 0.310 g, runs at pb = 0.3 K min-’ will produce 

MS Mf 
TO 

Fig. 2. Schematic plot of the thermogram corresponding to a forward transformation after 
correction of the calorimetric sensitivity. The difference between the values of the baseline 
before and after the transformation is proportional to the difference in specific heat between 
the parent phase and the martensite, the rate of cooling Tb being the proportionality factor. 
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differences in the corrected thermogram of the order of 0.032 mW. which 
can already be detected by the calorimeter as it has a power resolution 
around room temperature of 0.0025 mW. 

Correction of the baseline 

During a thermally induced martensitic transformation the fraction x of 
parent phase transformed into martensite continuously increases. Corre- 
spondingly, the sample is at any moment formed by the addition of a 
fraction (1 - x) of the parent phase and a fraction x of martensite, and 
therefore its specific heat will be given by: 

where CPA and CPM denote the specific heats of the parent phase (called 
austenite) and of the martensite, respectively. The change in specific heat of 
the sample will then produce an evolution in the extra-dissipation, IV*, 
from the value given by eqn. (11) to that given by eqn. (14): 

W*(x) = [ AC(O)(l - x) + AC(l)x] fb (17) 

This extra-dissipation represents the baseline to be corrected for a proper 
integration of the thermogram. To monitor the evolution of the baseline 
with the temperature of the calorimetric block, we need a relationship 
between this temperature and the transformed fraction x. This is a very 
difficult question, as it involves, in fact, the whole problem of growth of the 
martensite in the parent phase. Nevertheless, such a relationship can be 
easily derived using two reasonable assumptions [20]: 

(i) The entropy change is proportional to the transformed fraction, as 
both come from the same structural change: 

aAS 
- = A = constant 

ax (18) 

(ii) The enth a py change is proportional to the absolute temperature, i.e. 1 
the difference in specific heats between the two phases does not change with 
temperature: 

aAH 
- = B = constant 

a& 
09) 

Then, using that 

dAS = +dAH 
0 

(20) 

we have 

aas 1 aAH 

ax =x7= 

A 
(21) 
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dAH aAH ax 

-=rar,=B Go 
(22) 

to get 

1ar, A --=_ 
T,?x B (23) 

Integrating between x = 0 (To = MS) and x = 1 (To = Mf) we obtain finally, 

where MS and Mr are the temperatures at which the forward transformation 
starts and finishes, respectively. 

Combining eqns. (17) and (24) we have: 

W*(T,)= [ AC(O) i 1 14 T,/K > 14 WK) - 14 Mf/K ) i + AC(l) 1eww) 1 f O 
(25) 

A baseline correction based on a straight line joining the values of the 
thermal power at A4, and Mr would read: 

wL(To)= [AC(O)(l- jfjf-2j +AC(l);f:~s]~ (26) 

Taking the difference between the two baselines and integrating for the 
temperature To between MS and Mr we get: 

J”,[W*(T,) - WL(T,)] dT, 
Mr 

-Mf 
I 

-+[AC(O) + AC(l)](M,-MS) (27) 
which represents the difference in energy below the corrected thermogram 
resulting from the use of one or other baseline. It is worth noting from eqn. 
(27) that the difference in energy is independent of the cooling rate at which 
the run is carried out. Figure 3 is a plot of this difference, using the values of 
MS and M, obtained in an actual run of a p + y’ transformation, and the 
same values of the specific heat and mass of the sample as for eqn. (15) 
above. The resulting energy difference is 0.0025 J, around 0.15% of the total 
energy measured in the transformation, and therefore it is negligible in 
practise. Nevertheless it could become relevant if the difference in specific 
heat between the austenite and the martensite was much larger than the 5% 
assumed. 

In the preceding analysis we have considered only the forward transfor- 
mation, i.e. the transformation induced on cooling that brings the parent 
phase or austenite into the martensite phase. It is not difficult to see, 
however, that the same features would also appear during a reverse transfor- 
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235 225 215 205 1 0 

Fig. 3. Comparison between (0) the baseline resulting from the consideration of the change in 
specific heat of the sample during the transformation and (0) a baseline based on a 
straight-line interpolation between the beginning and the end of the transformation. The 
numerical values used in the comparison correspond to an actual p -+ y’ transformation of a 
Cu:8.50 Zn:11.30 Al (wtW) alloy performed at a cooling rate dT,/dt = -0.31 K min-‘. The 
specific heat used for the austenite is C,” = 0.420 J g-’ K-’ and for the martensite is 

C,” = 0.441 J gg’ K-r, resulting in a 5% difference. The mass of the sample is m = 0.310 g 
and the transformation temperatures are M, = 235 K and M, = 203 K. The energy enclosed 
between the two baselines amounts to 0.0025 J, which represents 0.15% of the total energy 
measured in this transformation. 

mation, induced by heating, 
the corresponding analysis 
forward transformation. 

from the martensite to the austenite, and that 
would follow exactly the same lines as the 

RELEVANT PARAMETERS TO BE OBTAINED FROM A CALORIMETRIC RUN 

In this section we review the relevant parameters to be obtained, either 
directly or after certain calculations, from a calorimetric run. We also 
speculate on their physical significance and in several cases give the proce- 
dure to calculate them. 

Transformation temperatures 

A4, and J4r refer to the temperatures at which the forward transformation 
(P + M, induced on cooling) starts and finishes, respectively, while A, and 
A, denote the temperatures at which the reverse transformation (M + P. 
induced on heating) starts and finishes, respectively. 

On cooling (heating), the first calorimetric point to become separated 
from the noise in the baseline determines A4, (A,), while the last one 
determines A4r (A,). 

For very low temperature scanning rates, or for highly discontinuous 
transformations (i.e. transformations with long intervals of no thermal 
dissipation), these first and last points departing from the baseline can be 
difficult to determine, and some authors [9] have suggested the use of the 
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quantities M,* , MP, A,* and A:, defined as the temperatures at 10 and 
90% of the total energy dissipation for the forward and reverse transforma- 
tions, respectively. 

Thermal energy of the transformation 

The martensite phase nucleates and grows inside the parent phase. Since 
the shape of the basic unit cell changes, during a martensitic transformation 
martensite plates with a different shape than the original parent phase are 
accommodated by strains set up both in the original matrix and in the new 
phase. During the transformation the strain energy dominates the kinetics 
and morphology [21,22]. In a completely thermoelastic transformation the 
strain energy is elastically stored in the material during the forward transfor- 
mation and elastically recovered in the reverse transformation. 

Dissipative energies also appear in the course of a martensitic transforma- 
tion, mainly due to the frictional resistance at the interfaces between parent 
and martensite and between martensite with different orientations, and in 
the grain boundaries of a polycrystalline parent phase. 

Finally, since the transformation is first order, there is a latent heat of 
transformation associated with the structural change, which is probably 
different for the forward and reverse transformations as they proceed at 
different temperatures. 

The thermal energy measured in a calorimetric run is given by: 

QM = I--‘[ J+‘(T,) - J+‘*(T,)] dt 
\ 

for the forward transformation, and by: 

PA = S;“‘r J+%) - W*(T,)] dt 

for the reverse one. It will be the sum of three contributions: the latent heat 
of transformation, which is exothermal in the forward transformation and 
endothermal in the reverse one; the strain energy, which is elastically stored 
during the forward transformation and reversibly recovered during the 
reverse one; and the frictional energy which, as any dissipative energy, will 
oppose both the forward and reverse transformations. 

The energy E lost in a complete cycle, including a forward and a reverse 
transformation, can be calculated (neglecting the change in specific heat 
between the two phases) as E = - QM + QA, corresponding to the area 
enclosed by the curves: 

J 
T 

dQ,/T and 
M, 

I;(‘dQ,/T - LTdQA/T vs. temperature 
\ 

where dQM and dQA represent the absolute value of the heat measured at 
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reverse transformations, respectively. 

ArdQ/i/T- LTdQ/,/T + (4 - M,)/4AidQ,/T 
\ 1 * 

(30) 

where 

-QM= -AH&E/2 (31) 

and AH, stands for the reversible contributions to the heat measured, 
namely the elastic energy and the latent heat of transformation. 

First estimations of the dissipative energy in a CuZnAl polycrystalline 
material, based in eqn. (30), give a value around 6% of the total heat. In eqn. 
(31) we assume that the same amount of frictional energy is present in the 
forward and reverse transformations and, therefore, its contribution can be 
separated from the heat measured by calorimetry. To our knowledge, 
however, there is no way to separate the elastic contribution and the latent 
heat of transformation. 

Entropy change of the transformatiorl 

The entropy change is usually calculated from the calorimetric output 
through the following expressions: 

AS,=/;‘[W(r,) - W*(T,)]$dt (32) 
\ 

for the forward transformation, and: 

AS,=[‘[W(T,)- W*(To)]$dt 
\ 

(33) 

for the reverse one. The integrals are calculated following the actual thermal 
path of the transformation, i.e. associating to each temperature TO a thermal 
dissipation [ W( To) - W * (To)]. 

For eqns. (32) and (33) to be correct from a thermodynamic point of view, 
two conditions should be fulfilled: (1) the thermal dissipation measured by 
the calorimeter should correspond to a reversible process; (2) the thermody- 
namic path followed in the integration should be a reversible one. The first 
condition does not hold due to the dissipative energies involved in the 
transformation, as discussed above. The second one corresponds to the 
assumption that, if no dissipative energies were released, the transformation 
would follow exactly the same path on going from the same initial (repre- 
sented by MS or A,) to the same final (represented by M, or A,) thermody- 
namic state. Considering that the dissipative energies are small compared 
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Fig. 4. The accumulated heat released and absorbed during the forward and reverse p G= y’ 
transformations, respectively, of a Cu: 8.50 Zn: 11.30 Al (wt%) alloy, is plotted (in units 
normalized to unity) versus the absolute temperature T, of the sample (in K). The figure 
shows the geometrical interpretation of the parameters AT,, and +. 

with the total heat measured in the transformation, eqns. (32) and (33) have 
to be considered as the only possible appoximations to be used for estimat- 
ing the entropy changes. It should be remembered, however, that these 
entropy changes will carry not only the contribution of the structural change 
during the transformation, but also the contribution of the elastic strain and 
dissipative energies. 

Thermal hysteresis 

The hysteresis in temperature between the forward and reverse transfor- 
mations is characterized by a parameter (see Fig. 4): 

AT,., = TGs(M+ J’) - T,.,(P + M) (34) 

where TO,, represents the temperatures at which half of the total energy of 
the transformation has already been measured. Similar information could be 
obtained from (A, - M,) or (A, - M,), and in many cases these quantities 
will coincide with AT,,,. 

The thermal hysteresis is originated by the presence of dissipative effects 
in the transformation, mainly associated with interfacial resistive energies 
[23]. Under certain assumptions the energy dissipated in a complete cycle, as 
given by eqn. (30), is directly proportional to the thermal hysteresis AT0.5 

WI- 

Extension of temperature 

It has already been mentioned that a thermoelastic martensitic transfor- 
mation often presents a large extension of temperature, e.g. 20 or 30 K. To 
characterize this extension, a parameter + is defined as: 

(35) 

where q represents the fraction of the heat measured at a certain moment, 
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relative to the total heat of the transformation. $ will be measured in units 
of temperature, and Fig. 4 gives a geometrical interpretation for it. From the 
figure it is clear that this parameter does not coincide with quantities like 

W, - W) or (A, - A,); while these quantities are greatly affected by the 
earlier and later stages of the transformation, + gives the extension of 
temperature of the bulk of the transformation. 

The temperature extension of a thermoelastic martensitic transformation 
is a consequence of the strain energy set up in the matrix due to the shape 
change accompanying the transformation. A single-crystal, single-interface 
transformation, for which no strains need to be accommodated, proceeds 
isothermally [23] and has (p = 0, although it presents a thermal hysteresis due 
to the frictional force at the interface. 

Discontinuity of the thermal dissipation 

Due to the high sensitivity of a differential-heat-conduction-scanning 
calorimeter the thermogram of a martensitic transformation reveals fine 
details and a substructure that cannot be observed using standard DSC or 
DTA equipment. It is interesting to quantify this information by means of a 
parameter x which gives a measure of the discontinuity of the thermal 
dissipation: 

x+e, 
Q (36) 

where Qb is the energy given by the area delimited by the smooth back- 
ground of the thermal peaks in the calorimetric curve, and Q is the total 
energy. The parameter x + 0 for a very smooth thermogram in which no 
peaks can be distinguished from the continuous background, while x + 1 if 
the thermal dissipation is highly discontinuous and a smooth background 
cannot be defined. Figure 5 shows an example in which the continuous 
background is drawn below the thermal peaks and the corresponding value 
of x is calculated. 

The physical origin of the discontinuous character of the thermal emission 
is not yet clear. Recently [24] it has been related to the sudden growth or 
shrinkage of the martensite plates at the moment that enough driving force 
has been created to overcome the energy barriers opposing the continuous 
growth or shrinkage of the plates. In this sense the parameter x would be 
statistically related to the origin of these barriers, namely point defects and 
dislocations in the parent phase, grain boundaries and interfaces. x. for 
instance, decreases practically to zero when a sample is thermally cycled for 
more than ten cycles [7]. 

x is strongly dependent on the performance of the calorimeter (mainly its 
thermal inertia and its thermal signal resolution), the dimensions of the 
sample, the cooling or heating rate of the measurement and the calculation 
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4 
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220 230 240 To(K) 

Fig. 5. Thermogram (corrected for calorimetric sensitivity) corresponding to a reverse /3’ - p 
transformation of a Cu:18.18 Zn:7.41 Al (wtW) alloy. The discontinuous line defines the 
smooth background of the thermal peaks. In this case x = 0.20. 

procedure used to define the background of the thermal peaks. For this 
reason x is only meaningful when comparing different runs of similar 
samples performed in the same calorimeter at the same scanning rates. 

Difference in specific heats 

The difference in specific heat between the austenite and the martensite 
can also be determined in the calorimetric run, as detailed in the preceding 
section. At the present moment there are no experimental values for this 
difference, and only few measurements of the specific heat of the parent 
phase [ 191. 

Nevertheless, apart from their intrinsic interest, the difference in specific 
heat is important for a proper correction of the baseline and to determine, 
with other calorimetric data, the dissipative energy in the transformation, as 
discussed in the preceding sections. 

CONCLUSIONS 

A complete run of a thermally induced thermoelastic martensitic transfor- 
mation in a differential-heat-conduction-scanning calorimeter gives the fol- 
lowing: 

(i) The difference in specific heat between the austenite and the marten- 
site. This difference is obtained from the difference in the constant thermal 
power (baseline) before and after the transformation. The effect is propor- 
tional to the cooling or heating rate. The difference in specific heat has to be 
taken into account to perform a proper baseline correction, although the 
correction in energies achieved, independent of the thermal rate, is practi- 
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tally negligible compared to straight-line interpolation (0.15%) for small 
differences in specific heat (5%). 

(ii) The transformation temperatures M,, M,, A, and A,. 
(iii) The total h ea re eased or absorbed during the transformation. Three t 1 

different kinds of energies contribute to the total heat: the reversible latent 
heat of the transformation, the reversible elastic energy stored in the matrix 
and the irreversible dissipative energies mainly due to frictional processes. 
The latter, however, can be determined independently using the calorimetric 
data. 

(iv) An estimate of the entropy change of the transformation, from the 
three contributions mentioned before. 

(v) The thermal hysteresis between the forward and reverse transforma- 
tions; an expression of the relative importance of the dissipative contribu- 
tions in the total energy of the transformation. 

(vi) The extension in temperature of the transformation; an expression of 
the elastic contributions to the total energy of the transformation. 

(vii) The discontinuity of the thermal dissipation; probably related to the 
obstacles and barriers encountered during the growth or shrinkage of the 
martensite. 
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