Note

THE TEMPERATURE INTEGRAL *

C. POPESCU

Centrul Cercetări Materii Prime, Auxiliare și Ape Reziduale, Str. Siret nr. 95, Bucharest *(Romania)*

E. SEGAL

Institutul Politehnic Bucurefti, Department of Physical Chemistry and Electrochemical Technology, Bd. Republicii 13, Bucharest (Romania)

M. TUCSNAK and C. OPREA

Centrala Industriei Mătăsii, Inului și Cînepii, Bd. Ghencea nr. 134 Bucharest, (Romania) (Received 3 November 1986; in final form 20 January 1987)

This note deals with a comparison between temperature integrals for non-linear and linear heating rates in non-isothermal kinetics. The integral equation of non-isothermal kinetics may be written as:

$$
F(1 - \alpha) = AI(T) \tag{1}
$$

where $F(1 - \alpha)$, the conversion integral and $I(T)$, the temperature integral, are given by the equations [l]:

$$
F(1 - \alpha) = \int_0^\alpha \frac{dx}{f(1 - x)}\tag{2}
$$

$$
I(T) = \int_{T_1}^{T} \frac{1}{b(y)} \exp(-E/Ry) dy
$$
 (3)

where the notations have their usual meanings. Let us assume

$$
I(T) = q(T) \exp(-E/RT) \tag{4}
$$

The derivative of eqn. (4) with temperature, taking into account eqn. (3), leads to the following relationship between the heating programme and the unknown function $q(T)$:

$$
b(T) = \frac{1}{\mathrm{d}q/\mathrm{d}T + \left(E/RT^2\right)^q} \tag{5}
$$

^{*} Dedicated to Professor W.W. Wendlandt on the occasion of his 60th birthday.

$$
t = q + \frac{E}{R} \int q/T^2 dT \tag{6}
$$

(a) For

$$
q(T) = aTi
$$
 (7)

one obtains through integration:

$$
t = \begin{cases} aT^{i} + a\frac{E}{R}T^{i-1} & i \neq 1\\ aT + a\frac{E}{R}\ln T & i = 1 \end{cases}
$$
 (8)

It is easy to observe that:

 $i = 0$ leads to $t = a - aE/RT$ which is the hyperbolic programme

 $i = 2$ leads to $t = aT^2 + aE/RT$ which is the parabolic programme

The assumed form of $q(T)$ together with eqns. (1) and (4) allow us to write:

$$
\ln F(1-\alpha) - i \ln T = -\frac{E}{RT} + \ln A + \ln a \tag{9}
$$

(b) Let us assume another form for $q(T)$:

$$
q(T) = a \exp(j/T) \tag{10}
$$

From eqn. (6) one obtains the following relationship:

$$
t = a \left(1 - \frac{E}{R} \frac{1}{j} \right) \exp\left(\frac{j}{T}\right) \tag{11}
$$

which is the exponential programme. Substituting eqn. (10) into eqn. (4) we obtain:

$$
\ln F(1-\alpha) = -\frac{E/R - j}{T} + \ln A + \ln a \tag{9a}
$$

For $j \ll E/R$, which is the common situation, eqn. (9a) becomes eqn. (9) for $i = 0$ (i.e. hyperbolic programme).

Summing up, the integral equation of non-isothermal kinetics with a non-linear heating rate may be written in a general form as

$$
\ln F(1-\alpha) - i \ln T = -\frac{E}{RT} + \ln A + \ln a
$$

The particular values of ℓ give the temperature programme which is used, and *i* can be considered as a new variable.

In a previous paper [2] the following equation was derived for the temperature integral with a linear heating programme:

$$
\ln F(1 - \alpha) - i \ln T = -\frac{E}{RT} + \ln A + \ln b + L \quad i \in \{0, 1, 2\} \tag{12}
$$

where b is the heating rate, L is an adjusting parameter and i has no physical meaning. It appears that both non-linear and linear heating programmes lead to the same form of the temperature integral but *i* has a physical meaning only for the non-linear heating programme when it becomes a variable. The three values of *i* in eqn. (12) may be interpreted as giving, together with the value of *L,* an approximation of the temperature integral with an exact solution given by a non-linear heating programme. Thus, even if the formal aspect of the integral equation is similar for linear and non-linear heating programmes, the meaning of *i* changes from eqn. (9) to eqn. (12). Another aspect indicated by eqn. (9) is the dependence of the conversion function on the temperature programme when a non-linear heating programme is used. It is obtained since *i* is independent of the right-hand side of eqn. (9). The necessity for *i* to be independent of the left-hand side also leads to the following form of the conversion integral under a non-linear heating programme:

$$
F(1 - \alpha) = \exp(i \ln T) \cdot H(1 - \alpha)
$$
\n(13)

where $H(1 - \alpha)$ may be interpreted as the integral under a linear heating programme.

REFERENCES

- 1 J. Šesták, V.V. Šatava and W.W. Wendlandt, Thermochim. Acta, 7 (1973) 333.
- 2 C. Popescu, E. Segal. M. Tucsnak and C. Oprea, Thermochim. Acta, 107 (1986) 365.