ÉTUDE CALORIMÉTRIQUE À BASSE TEMPÉRATURE DES PENTAFLUOROTELLURATES(IV) D'AMMONIUM ET DE PYRIDINIUM

M. DIOT, P. GERMAIN et R. EL MAIL

Laboratoire de Thermochimie Minérale de l'INSA associé au CNRS No. 116 I.N.S.A., 20 Avenue A. Einstein, 69621 Villeurbanne Cedex (France)

(Reçu le 9 mars 1987)

ABSTRACT

Heat capacities of ammonium and pyridinium pentafluorotellurate(IV) (NH₄TeF₅ and PyHTeF₅) were determined between 10 and 300 K. The thermodynamic functions C_p , S° , $H^\circ(T) - H^\circ(0)$ and $-[G^\circ(T) - G^\circ(0)]/T$ were tabulated in the same range of temperature.

Precise details are given about the synthesis, purification and handling conditions of these compounds.

RÉSUMÉ

Les capacités calorifiques des pentafluorotellurates(IV) d'ammonium NH₄TeF₅ et de pyridinium PyHTeF₅ ont été déterminées de 10 à 300 K. Les fonctions thermodynamiques C_p , S°, $H^{\circ}(T) - H^{\circ}(0)$ et $-[G^{\circ}(T) - G^{\circ}(0)]/T$ sont données dans le même domaine de température.

Des précisions sont apportées sur la synthèse, la purification et les conditions de manipulation de ces composés.

INTRODUCTION

Un précédent travail effectué sur les pentafluorotellurates(IV) alcalins [1,2] a permis de mettre en évidence le comportement particulier du groupement anionique TeF_5^- dans ces composés et l'évolution de la symétrie de ce groupement qui est significative en fonction du cation alcalin.

Afin de compléter cette analyse, nous avons entrepris d'étudier le comportement énergétique de pentafluorotellurates(IV) organiques à basse température. Les composés d'ammonium et de pyridinium servent de transition, au niveau de la compréhension des phénomènes, entre les sels alcalins et les sels de cations organiques de forte masse molaire pressentis pour leurs propriétés électriques intéressantes.

PARTIE EXPÉRIMENTALE

Synthèse

La préparation de ces deux composés se trouve décrite dans la littérature [4,5]. Le fluorotellurate d'ammonium s'obtient par dissolution en quantités stoechiométriques du fluorure d'ammonium NH_4F et de l'oxyde de tellure TeO₂ dans l'acide fluorhydrique à 50% en poids.

Le sel de pyridinium s'obtient par dissolution de la pyridine C_5H_5N dans l'acide fluorhydrique formant in situ le fluorure de pyridinium qui réagit avec le dioxyde de tellure en solution.

Ces réactions sont conduites dans un récipient en polytétrafluoroéthylène (PTFE) afin d'éviter toute attaque du réacteur par la solution fluorhydrique. L'excès d'acide fluorhydrique et de pyridine est éliminé par pompage sous vide primaire pendant plusieurs jours.

Séchage

Une étude particulière des conditions de séchage nous a semblé nécessaire. En effet, les produits résultant d'un séchage sous vide primaire apparaissent particulièrement sensibles à l'humidité de l'air. Cette très forte affinité est en fait liée à la présence de fluorure d'hydrogène. Cette présence a été précisée par analyse calorimétrique différentielle (ACD) (Mettler TA 2000 B) (départ de HF vers 70°C).

L'obtention de produits de haute pureté nécessite un séchage complémentaire sous vide secondaire. Les produits sont repris en boîte à gants et broyés sous atmosphère d'argon avant d'être placés dans un évaporateur rotatif en PTFE. Le séchage est poursuivi pendant un minimum de 72 h. Dans ces conditions, l'étude par ACD ne révèle plus la présence de HF. La réactivité de ces composés à l'humidité de l'air est très fortement diminuée. Ils sont malgré tout conservés et manipulés en atmosphère inerte.

Analyse

L'analyse élémentaire conduit à des résultats conformes aux valeurs théoriques. Il convient de signaler cependant que les données expérimentales ainsi obtenues présentent une incertitude assez forte (jusqu'à 5%) qui ne permet pas de justifier de la haute pureté des produits. C'est la raison pour laquelle nous avons systématiquement adopté comme critère de pureté des produits la valeur de leur température de fusion. L'analyse des courbes calorimétriques relatives à la fusion permet, selon des méthodes classiques existantes [6], la détermination du degré de pureté des produits:

 $T_t(NH_4TeF_5) = 216^{\circ}C$ $T_t(PyHTeF_5) = 123^{\circ}C$

Les produits obtenus ont une pureté supérieure à 98% pour le sel d'ammonium et supérieure à 99% pour le sel de pyridinium.

Analyse radiocristallographique

Des deux fluorotellurates, seul celui d'ammonium a fait l'objet de détermination structurale [7]. L'étude sur poudre a été réalisée sur un ensemble Philips (générateur PW1120 et anticathode de cuivre) équipé d'un diffractomètre à axe horizontal et d'une chambre permettant de travailler sous pression réduite. Le conditionnement des échantillons s'effectue en boîte à gants. Les produits sont protégés par un film de polyimide transparent aux rayons X. Les distances interréticulaires observées pour le fluorotellurate(IV) d'ammonium sont conformes à celles publiées dans la littérature (Tableau 1); en ce qui concerne le fluorotellurate(IV) de pyridinium, elles sont notées dans le Tableau 2.

Étude calorimétrique à basse température

Les mesures calorimétriques ont été effectuées au moyen du calorimètre adiabatique développé au laboratoire. Cet appareil ainsi que la technique utilisée ont été décrits précédemment [8].

Pour les présentes déterminations, la cellule de mesure contenait respectivement 21,57 g de NH_4TeF_5 (masse molaire 240,6 g) et 16,33 g de PyHTeF₅

$\overline{I/I_0}$	d _{obs}	d _{litt}	I/I_0	d _{obs}	d _{litt}
30	5,94	5,921	10	2,97	2,960
15	5,54		5	2,94	
20	5,31		5	2,79	2,799
40	5,13	5,151	5	2,71	
20	4,68	4,683	5	2,69	
100	4,42	4,400	30	2,57	
30	4,34		10	2,48	
5	4,08		5	2,44	
15	3,67	3,66	10	2,39	
20	3,62		40	2,32	2,310
50	3,54		20	2,25	2,247
20	3,48	3,466	10	2,16	
40	3,33	3,316	15	2,12	
25	3,26		5	2,06	2,08
20	3,18	3,176	5	1,995	1,994
5	3,15		5	1,958	1,951
15	3,04		15	1,931	

TABLEAU 1

Diffraction X de NH₄TeF₅

$\overline{I/I_0}$	d _{obs}	I/I_0	d _{obs}	I/I_0	dobs
7	6,44	7	2,80	7	1,92
47	6,33	32	2,60	4	1,83
5	6,22	8	2,57	4	1,76
8	5,99	4	2,48	12	1,67
65	5,87	5	2,43	6	1,66
29	4,83	9	2,28	6	1,62
31	4,34	8	2,22	9	1,57
24	4,22	4	2,21	9	1,52
100	4,03	5	2,15	4	1,46
14	3,68	25	2,12	6	1,41
21	3,58	11	2,09	5	1,32
10	3,50	23	2,07	4	1,27
32	3,41	17	2,04		
19	3,21	5	2,02		
9	2,95	11	1,98		
14	2,87	6	1,95		
5	2,84	11	1,93		

TABLEAU 2 Diffraction X de PyHTeF₅

(masse molaire 302,6 g). La pression d'hélium gazeux servant à améliorer les échanges thermiques dans la cellule de mesure était d'environ 200 Torr dans chacun des cas.

Fig. 1. Variation de la capacité calorifique en fonction de la température.

51

Les courbes représentatives de la variation de la capacité calorifique à pression constante, en fonction de la température, sont données sur la Fig. 1. L'exploitation mathématique des résultats expérimentaux conduit aux cal-

\overline{T}	C	S	Н	H/T	-G/T
(K)	$(J K^{-1} mol^{-1})$	$(J K^{-1} mol^{-1})$	$(J \text{ mol}^{-1})$	$(J K^{-1} mol^{-1})$	$(J K^{-1} mol^{-1})$
10,00	0,626	0,763	5,725	0,572	0,190
15,00	7,729	2,393	27,022	1,801	0,591
20,00	14,148	5,506	81,890	4,095	1.411
25,00	20,337	9,329	168,12	6,725	2,604
30,00	26,570	13,586	285,34	9,511	4.074
35,00	32,972	18,160	434,12	12,403	5,756
40,00	39,547	22,990	615,35	15,384	7,606
45,00	46,215	28,033	829,74	18,439	9,594
50,00	52,841	33,246	1077,4	21,549	11.697
55,00	59,265	38,586	1 357,8	24,688	13,898
60,00	65,340	44,006	1669,5	27,825	16,181
65,00	70,955	49,461	2010,4	30,930	18,531
70,00	76,074	54,910	2378,2	33,975	20,935
75,00	80,765	60,320	2770,4	36,940	23,381
85,00	89,670	70,989	3623,7	42,632	28,356
90,00	93,960	76,236	4082,8	45,365	30,871
95,00	98,240	81,430	4563,3	48,035	33.395
100,00	102,51	86,578	5065,2	50,652	35,926
110,00	110,97	96,747	6132,8	55,753	40,994
120,00	119,12	106,75	7283,6	60,697	46.058
130,00	126,71	116,59	8513,3	65,488	51,107
140,00	133,56	126,24	9815,4	70,110	56.130
150,00	139,67	135,66	11182	74,548	61.120
160,00	145,20	144,86	12607	78,794	66,068
170,00	150,42	153,82	14085	82,855	70,967
180,00	155,61	162,56	15615	86,752	75,814
190,00	160,86	171,12	17197	90,515	80,606
200,00	165,72	179,50	18831	94,158	85,342
210,00	169,05	187,67	20 507	97,657	90,021
220,00	170,63	195,58	22210	100,95	94,624
230,00	171,24	203,18	23 917	103,99	99,190
240,00	173,64	210,53	25639	106,83	103,70
250,00	177,18	217,70	27 395	109,58	108,12
260,00	180,77	224,70	29183	112,24	112,45
265,00	182,51	228,17	30091	113,55	114,61
270,00	184,09	231,57	31 004	114,83	116,74
273,15	185,05	233,74	31 590	115,65	118,08
280,00	186,60	238,33	32859	117,35	120,96
290,00	187,25	244,91	34731	119,76	125,15
298,15	187,03	250,07	36 260	121,61	128,45
300,00	187,03	251,21	36602	122,00	129,20

TABLEAU 3

Fonctions thermodynamiques standards de NH₄TeF₅

culs des différentes fonctions thermodynamiques regroupées dans les Tableaux 3 et 4. L'incertitude sur les mesures de C_p est de l'ordre de 3% en-dessous de 50 K et inférieure à 1% au-dessus de cette température.

TABLEAU 4

Fonctions	thermodynamique	s standards	de	PvHTeF.

\overline{T}	C _n	S	Н	H/T	-G/T
(K)	$(\mathbf{J}^{\mathbf{F}}\mathbf{K}^{-1} \operatorname{mol}^{-1})$	$(J K^{-1} mol^{-1})$	$(J \text{ mol}^{-1})$	$(\mathbf{J}\mathbf{K}^{-1} \operatorname{mol}^{-1})$	$(J K^{-1} mol^{-1})$
10,00	3,119	0,910	7,310	0,731	0,179
15,00	10,527	3,379	38,988	2,599	0,780
20,00	24,953	8,188	124,27	6,214	1,974
25,00	40,430	15,517	289,93	11,597	3,920
30,00	52,062	23,960	522,35	17,412	6,548
35,00	61,488	32,714	806,91	23,055	9,659
40,00	69,660	41,468	1135,1	28,379	13,089
45,00	77,087	50,108	1 502,2	33,384	16,724
50,00	83,987	58,591	1905,1	38,103	20,488
55,00	90,400	66,901	2341,3	42,570	24,331
60,00	96,294	75,023	2808,3	46,805	28,218
65,00	101,63	82,945	3 303,3	50,821	32,124
70,00	106,42	90,655	3823,7	54,624	36,031
75,00	110,75	98,148	4366,8	58,224	39,924
80,00	114,79	105,42	4930,7	61,635	43,791
85,00	118,77	112,50	5514,6	64,879	47,626
90,00	122,94	119,41	6118,8	67,987	51,423
95,00	127,50	126,17	6744,7	70,998	55,180
100,00	132,51	132,84	7 394,6	73,946	58,897
110,00	142,82	145,96	8772,2	79,748	66,217
120,00	148,72	158,65	10231	85,262	73,397
130,00	155,50	170,83	11752	90,405	80,426
140,00	162,08	182,59	13340	95,292	87,306
150,00	168,46	194,00	14993	99,959	94,041
160,00	174,62	205,07	16709	104,43	100,63
170,00	180,58	215,83	18485	108,73	107,09
180,00	186,37	226,32	20 3 20	112,89	113,43
190,00	192,04	236,55	22212	116,90	119,64
200,00	197,62	246,54	24161	120,80	125,73
210,00	203,16	256,32	26164	124,59	131,72
220,00	208,69	265,89	28224	128,29	137,60
230,00	214,26	275,29	30 3 39	131,90	143,39
240,00	219,86	284,53	32509	135,45	149,07
250,00	225,49	293,62	34736	138,94	154,67
260,00	231,13	302,57	37019	142,38	160,19
270,00	236,70	311,40	39 358	145,77	165,63
273,15	238,42	314,16	40107	146,83	167,33
280,00	242,11	320,11	41753	149,11	170,99
290,00	247,22	328,70	44200	152,41	176,28
298,15	251,05	335,60	46230	155,05	180,54
300,00	251,86	337,16	46696	155,65	181,50

Le comportement thermique des fluorotellurates d'ammonium et de pyridinium rappelle fortement celui de leurs homologues alcalins. En particulier, l'étude calorimétrique montre une forte instabilité thermique de ces produits dans le domaine 150-220 K. Cette instabilité se traduit par des temps de mise en équilibre de la cellule de mesure très longs.

La courbe représentative $C_p = f(T)$ pour le sel d'ammonium présente une "bosse" vers 210 K (Fig. 1). Il est possible d'y associer une transition du type H de McCullough. L'évaluation de son entropie intégrée est difficile, faute d'une ligne de base fiable. La recherche de cette ligne de base a été faite suivant le modèle de calcul que nous avons développé précédemment [1]. La capacité calorifique calculée à partir des modèles d'Einstein ou de Debye est relative à C_{v} (capacité calorifique à volume constant), alors que l'expérience donne accès à C_p . La différence $C_p - C_v$ s'obtient théoriquement à partir de la relation thermodynamique classique $C_{\rm p} - C_{\rm v} = \alpha^2 V T / \beta$ (β est le coefficient de compressibilité et α est le coefficient de dilatation). La contribution interne du groupement ammonium est calculée à partir des fréquences de vibration obtenues (au laboratoire, par J.C. Bureau) par diffusion Raman (3220, 3300, 1100 et 1680 cm⁻¹). Dans ces conditions, l'excès d'entropie serait de $S_{ex} = 1.5 \pm 0.2$ J K⁻¹ mol⁻¹, valeur relativement faible laissant présager l'existence de corrélations résiduelles importantes. Si un désordre existe, attribuable aux mouvements de libration de NH_4^+ , entraînant une entropie d'excès, il est probable que pour ce composé, comme pour toute la série des fluorotellurates étudiés, le groupement TeF_{5}^{-} joue un rôle primordial sur le comportement thermodynamique.

RÉFÉRENCES

- 1 P. Germain, S. Bendaoud et M. Diot, J. Fluorine Chem., 31, (1986) 265-273.
- 2 P. Germain et M. Diot, J. Fluorine Chem., 31 (1986) 275-291.
- 3 N.N. Greenwood, A.C. Sarma et B.P. Straugham, J. Am. Chem. Soc., (1966) 1446.
- 4 E.E. Aynsley et G. Hetherington, J. Chem. Soc., (1953) 2802.
- 5 J.W. Mellor, Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. XI, Longmans, London, 1931, p. 98.
- 6 D.L. Sondak, Anal. Chem., 44 (1972) 888.
- 7 J.C. Jumas, F. Vermot et E. Philippot, C.R. Acad. Sci., Ser. C, 282 (1976) 843.
- 8 J. Bousquet, M. Diot et M. Prost, J. Chim. Phys., 3 (1973) 496.