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ABSTRACT 

The use of high heating rates when studying the thermal decomposition kinetics of 
cellulose gives rise to a gap between the solid temperature and the thermogravimetric system 
temperature. A model is proposed which accounts for this temperature gap and permits the 
calculation of the actual solid temperature. The results for various heating rates are fitted 
using the same kinetic equation. 

INTRODUCTION 

The use of dynamic thermogravimetric methods to study the thermal 
decomposition kinetics of cellulose has several advantages over the isother- 
mal approach. One of these advantages is the possibility of obtaining results 
at higher temperatures. 

Various methods of data analysis have been proposed to determine the 
kinetic parameters from TGA curves obtained by a variety of procedures 
[l-6]. These methods are based on the applicability of the Arrhenius 
equation after accounting for diffusion effects. 

In a previous paper [7] Bilbao et al. used TGA techniques to study the 
kinetics of cellulose pyrolysis in a nitrogen atmosphere. Their results indi- 
cate that the dynamic experiments performed at a low heating rate (p = 
1.25” C mm-‘) provide kinetic data up to a temperature of 330°C. How- 
ever, for the same temperature, the values of the kinetic coefficient decrease 
as the heating rate is increased. This does not seem reasonable considering 
the known mechanisms of pyrolysis of cellulose materials. Therefore, an 
explanation was proposed based on the difference between the true tempera- 
ture T of the solid and the temperature Tf measured for the system 
(thermobalance oven). 
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The present work proposes a model to account for this temperature gap. 
The model permits the calculation of T as a function of T,, and hence the 
value of the kinetic coefficient corresponding to the actual temperature of 
the solid. 

MODEL DEVELOPMENT 

The model proposed assumes the variation in the solid temperature T to 
have two causes: heat transferred by convection from the system at a 
temperature Tf and heat absorbed or released in the solid by decomposition 
and/or evaporation processes. These assumptions were similar to those used 
by Lede [8]. 

According to the assumptions stated, for a time interval dt in which there 
is a weight loss dW it follows that 

WC, dT=hS(T,- T) dt+ (-AH,)(-dW) (1) 

This equation has been solved considering various temperature (or time) 
intervals, defined from the analysis of the TGA curves obtained. An 
example of these curves is shown in Fig. 1. 

Four temperature intervals have been considered. 
(a) Tf -c T,: the solid temperature increases without weight loss. 
(b) T,, -c Tf -c Tf2: a slight weight loss can be observed (between 1 and 4 

wt.% of the original sample). This is mainly due to the loss of moisture, as 
well as the evolution of CO and CO, in the first stages of cellulose 
decomposition. 

(c) T, < Tf < Tf3: no significant weight loss is observed. 
(d) Tf > Tf3: the main weight loss takes place in this interval. 
Equation (1) has been applied to the various intervals after appropriate 

simplifications. 
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Fig. 1. Temperature intervals observed in the decomposition of cellulose. 
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(a) Tf -c q,. For this interval, dW= 0, W= W,. Then eqn. (1) becomes 

IV&, dT=hS(T,- T) dt (2) 

where 

T, = To + j3t (3) 

The values of Cr, h and S can be considered to be constants. Thus 

g=B(T,-T) (4 

where 

B = hS/C,W, (5) 

Integration of eqn. (4) gives the temperature of the solid as a function of 
time for this temperature interval 

T= Tf- (B/B)(l - ePBr) (6) 

At the end of the interval 

Tl = T,, - (/3/B)(l - ewB’l) (7) 

According to eqn. (7), the temperature difference between solid and system 
at the end of the first interval increases as the heating rate is increased. This 
effect is mitigated to some extent by the fact that t, decreases with 
increasing B, and hence the value (1 - emB1l). 

(b) T,<T,<T,. In this temperature interval a slight (less than 5%) 
weight loss is observed as a result of the loss of water and of small amounts 
of CO and CO,. 

Equation (1) has been applied to this interval with the following assump- 
tions. Firstly, the sample weight is approximately constant; thus in the heat 
accumulation term we can consider W = W,. Secondly, C,, and AH,, are 
taken as constant throughout the interval. Thirdly, a linear relationship has 
been assumed for weight change with time in the term corresponding to heat 
absorbed or released. 

With these assumptions, and bearing in mind that W = W,(l - X), eqn. 

(I) b ecomes 

dT/dt=B(T,-T)-D (8) 

where 

(-AH,,) dX t-AH,,) H 
D=- c 

P 

dt= c 
P lOO( t, - 11) 

(9) 

t, and t, being the times for Tf = T,, and Tf = T,, respectively; H repre- 
sents the solid weight fraction lost at T-c 150” C. Integration of eqn. (8) 
with the initial conditions t = t,, T = Tl yields 

T = To + Pt - $ (1 - eeBf) _ i (1 _ e-B(r-t,)) 
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Applying this equation to the end of the second interval and taking into 
account eqn. (3), the following expression is obtained 

T2 = Tf2 _ g (1 _ emBf2) _ p (1 _ e-B(f2-rl)) 

According to eqn. (ll), the temperature gap between the solid sample and 
the oven at the end of the second interval depends mainly on two factors. 
Firstly, the heating rate /3 is important. An increase in the value of /3 gives 
rise to a higher temperature gap, in the same way as pointed out above for 
Tl and T,,. Secondly, the value of D in eqn. (9) depends on the percentage 
weight loss H at T < 150’ C. An increase in the value of H produces an 
increase in D, and thus, according to eqn. (ll), a higher temperature gap is 
obtained. This effect is more pronounced for higher values of /3, since the 
value of (t, - ti) is lower, and therefore D increases for a given H. This last 
effect is somewhat compensated since when (t, - tl) decreases, the value of 
(1 - e- B(rz-tl)) in eqn. (11) also decreases. 

(c) Tf2 < Tf < Tf3. The calculation of the solid sample temperature is 
based on the fact that no noticeable weight loss is observed for this interval. 
Therefore, eqn. (1) can be simplified to give eqn. (2). With the same 
assumptions as in section (a) above, eqn. (4) can be obtained. Integration of 
this equation with the initial conditions t = t,, T = T2 yields 

T= 7” + /jt - $(l _ e-Ef) _ z e-Br(eBt2 _ eB1l) 02) 

This equation can be applied at the end of the interval, considering also eqn. 
(3). Then 

T3 = Tf3 _ g(l _ epBr3) _ $ ehBr3(eBr2 _ eBfl) (19 
According to this equation, the temperature difference between T3 and Tf3 
depends on the same factors mentioned for T2 and T,; in other words, for a 
given fi, the temperature gap increases when increasing H, while for a given 
H the temperature gap increases when increasing p. 

(d) Tf > Tf3. In this interval, a significant weight loss, given by W= 
W,(l - X), can be observed. Equation (1) can now be written as 

W,(l - X)C$ = hS(T, - T) + (-AHr2)W$ 

where AH,, is the heat of reaction for this interval. Rearranging 

(-AH,,) 1 dX 

l_Xdt (15) 

This equation can be solved by numerical methods, using the initial condi- 
tions t = t,, T = T3. 

According to eqn. (15) the temperature difference between the oven and 
the solid sample during the “true” pyrolysis period depends on two factors. 
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Firstly, the temperature difference at the start of the pyrolysis process 
( Tf3 - T’), which in turn depends on the factors mentioned in section (c) 
above, is a major factor. Secondly, the heat of reaction of the pyrolysis 
process, A Hr2, whose effect becomes more pronounced as ,l3 is increased, is 
also involved. The effect of the heat of reaction can be very different, 
depending on whether the reaction is endothermic or exothermic. In the first 
case it will give rise to a higher temperature gap, while in the second, the 
temperatures will be closer with respect to the initial difference Tf3 - T3. 

RESULTS 

Knowledge of the “ true” solid temperature for a given set of T,, j3 and H 
values requires the previous determination of B and AH,,. These parameters 
can be calculated using eqns. (7), (11) and (13) with the appropriate values 
of Tfl, T, and Tf3 for each experiment. The following assumptions have 
been made for the purposes of calculation. Firstly, the solid sample tempera- 
tures (T,, T2 and T3) which mark the boundaries of the intervals obtained in 
the TGA curves do not depend on the values of p and H. Secondly, when 
very low heating rates are employed (p = 1.25 o C min-‘), there is no 
temperature gap between the solid sample and the oven: thus Tl = T,,, 
T2 = T,, G = I&. 

Table 1 shows the values of T,,, To, Tf3 and t,, t,, t, obtained experimen- 
tally for various heating rates. It may be observed that the values shown 
follow trends similar to those predicted by eqns. (7) (11) and (13), i.e.: T,, 
increases as the heating rate increases; for a given /3, Tf2 increases as H 

increases; Tf3 increases as p and H increase. 

TABLE 1 

Experimental values of Tn, T,, and T,, for various /3 and H 

B 
FL 

Tf, 11 Tf2 f2 

:3c) 

t3 

(°Cmin-l) (“C) (tin) (“C) (fin) Wn) 

80 3.87 87 0.55 210 2.18 279 3.05 
80 1.43 81 0.50 178 1.78 265 2.87 
40 3.85 77 1.05 174 3.47 239 4.75 
40 1.06 75 1.00 157 3.05 230 4.87 
20 3.19 64 1.45 142 5.35 225 8.55 
20 1.13 63 1.40 13.5 5.00 206 15.0 
10 2.26 58 2.30 126 9.10 204 16.0 
10 1.47 55 2.00 123 8.80 195 16.0 
5 4.70 53 3.60 120 17.0 190 31.0 
2.5 2.28 52 6.80 115 32.0 188 61.3 
1.25 2.80 51 12.8 110 60.0 185 120 
1.25 4.00 51 12.8 111 60.8 185 120 
1.25 5.20 51 12.8 111 60.8 185 120 
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Calculation of B 

The value of the parameter B has been obtained from eqn. (7), using the 
appropriate values of T,, and t, for each /3. Table 1 shows that. when the 
heating rate is decreased, T,, decreases until it reaches the constant value of 
51 o C corresponding to j3 = 1.25 o C min- ‘, Ti = T,,. The average value 
obtained for B was 1 mm-‘. 

Calculation of AH,, 

From eqns. (11) and (13) it may be derived that 

AH 
rl 

= -BC,(t, - t,)lOO(T, - G, + (P/B)(l - edBf3)) 
H e-B13 (eBf2 _ eBf1) 06) 

The determination of T3 has been carried out using the same procedure as 
for T,, since Tf3 is considered to be very close to T3 when the heating rate is 
1.25”C min- i. Thus, according to Table 1, T3 has been taken to be 185 o C. 
The average value of AH,, found was close to 540 cal gg’, which confirms 
that the slight weight loss observed in the second temperature interval is 
mainly due to the evaporation of water from the solid sample. 

Calculation of the true solid temperature 

When different heating rates or values of H are involved, the determina- 
tion of the intrinsic kinetics of the process requires the previous calculation 
of the temperature gap between oven and solid sample. To this end, T is 
determined as a function of T,, p and H. The calculation is carried out 
according to the following procedure. 

(i) The solid temperature is assumed to be equal to the temperature 
measured for the system (T = T,) when the heating rate is set to 1.25” C 
min-1. This permits the calculation of the boundaries of the true tempera- 
ture of the solid for each interval T,, T2, T3. 

(ii) For heating rates higher than 1.25 o C mm-‘, eqns. (3) and (7) can be 
used together with the values of Tr and B to calculate t, and T,, for a given 
value of j3. 

(iii) The values of t, and Tf2 can be calculated from eqns. (3), (9) and (11) 
together with the values calculated for T,, t,, B and AH,,. 

(iv) Using the parameters calculated above, t, and Tf3 can be obtained 
from eqns. (3) and (13). Thus, these four steps enable us to calculate the 
relationship between T and Tf for the first three intervals. 

(v) Equation (15) has been solved by numerical methods to determine the 
temperature gap between solid sample and oven for the temperature interval 
Tf > Tf3. In eqn. (15), AH,, is a variable with a very strong influence. 
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Fig. 2. Differences between T and T, for various values of AHr2. 

A number of authors [9-111 agree regarding their classification of the 
thermal decomposition of cellulose in the temperature range studied in this 
work as an endothermic process with values for AH,, of between 0 and 88 
cal g-l. 

A study has been carried out of the influence of the heat of reaction 
between these limits on the function T =f( T,). For instance, Fig. 2 shows 
that for T, -c 400’ C, an increase in the endothermic heat of reaction gives 
rise to a slightly higher temperature difference. Given the high degree of 
scattering in the values of AH,, reported in the literature, correction of 
temperatures for the fourth interval has been carried out here assuming 
AH,, = 0. Figure 3 shows T as a function of Tf for AH,, = 0 and various 
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Fig. 3. Differences between T and T, for various heating rates. 
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Fig. 4. Values of k for dynamic experiments in which the temperature has been corrected. 

values of p. From the figure it is clear that the difference Tr - T can be 
taken as constant throughout the interval. 

From the values of T = f( Tf) in the first three intervals and assuming that 
for a given heating rate (Tf - T) is constant in the fourth interval, the 
temperature corrections can be carried out. Thus the value of the true solid 
temperature has been determined for each temperature of the system. This 
in turn allows the calculation of the kinetic constant corresponding to the 
temperature of the solid. Figure 4 shows the plot of k vs. l/T obtained 
from the experiments. The results are fitted by the same straight line, which 
correspond to the equation 

k(min-‘) = 9.5 x 101s e-53800/RT 
07) 

This expression is similar to the one obtained [7] with /3 = 1.25 o C mm’. 
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