Note

pH-METRIC STUDIES ON TRIS(*p*-CHLOROBENZALDEHYDE-THIOSEMICARBAZONATO)M(III) (M = Pr, Nd)

S.S. SAWHNEY and GOPAL CHETTRI Chemistry Department, D.A.V. (P.G.) College, Dehra Dun 248001 (India) (Received 3 April 1987)

Sawhney et al. [1-4] have investigated in depth systems consisting of a metal and a derivative of semithiosemicarbazide in solution, in order to understand their chemistry and to throw light on the carcinostatic features of these compounds. This time we have selected Pr(III)- and Nd(III)-*p*-chlorobenzaldehydethiosemicarbazone (henceforth abbreviated to p.Cl.BZH.THSMC) systems for solution pH-metric study.

EXPERIMENTAL

All chemicals used were of analytical grade. The synthesis of p.Cl.BZH.THSMC and solution study details have been reported elsewhere [3].

RESULTS AND DISCUSSION

Bjerrum's treatment [5] was adopted to calculate the formation constants of the various systems. The whole study was thermodynamically valid as the investigation was conducted at infinite dilution and constant ionic strength (0.1 N KNO₃). Values of the proton-ligand stability constant reported earlier [3] (log ${}^{P}K^{H} = 10.25$ at 28°C and 9.70 at 38°C) were employed to calculate the metal-ligand stability constants of the systems under study.

 \overline{n} approached 3 in both cases at the prevailing temperatures, indicating the existence of 1:1, 1:2 and 1:3 complex species in solution.

The metal stability constants calculated from formation curves for each of the systems did not adhere to Bjerrum's relationship (log $k_1/k_2 \ge 2.5$); therefore the constants had to be determined by more dependable graphical methods.

The stability data for the systems revealed a decreasing trend in the stepwise stability constants, indicating a decrease in bond strength with the successive attachment of molecules of p.Cl.BZH-THSMC (log $k_1 > \log k_2 > \log k_3$). Further analysis hinted that higher temperatures were favourable for both reactions; this may be attributed to the increased frequency of

TA	BL	Æ	1

Stability and thermodynamic data^a for the Pr(III)- and Nd(III)-p.Cl.BZH.THSMC systems

Parameter	Temperature (°C)		
	28	38	
Pr(III) - p.Cl.BZH.T	HSMC		
$\log k_1$	8.40 (7.85)	8.90 (8.90)	
$\log k_2$	6.10 (6.00)	6.20 (5.95)	
$\log k_1/k_2$	(1.85)	(2.95)	
$\log k_3$	4.95 (5.00)	5.00 (5.05)	
$\log \beta_3$	19.45	20.10	
ΔG°	- 26790	+ 21418	
ΔH°	+21418	+21418	
ΔS°		+ 161	
Nd(III) – p.Cl.BZH.T	ТНSMC		
$\log k_1$	8.20 (8.10)	8.7 (8.4)	
$\log k_2$	5.05 (5.85)	5.8 (6.6)	
$\log k_1/k_2$	(2.25)	(1.8)	
$\log k_3$	5.00	5.2 (5.2)	
$\log \beta_3$	18.85	19.7	
ΔG°	- 25964	-28036	
ΔH°	+ 25701	+ 25701	
ΔS°		+ 173	

^a Units: ΔG^0 , cal mol⁻¹; ΔH^0 , cal mol⁻¹; ΔS^0 , cal mol⁻¹ o_C⁻⁻. Data in parentheses are from the formation curves of Bjerrum [5].

collisions due to the increased kinetic energy of the participating molecules. The reactions are endothermic in nature $(+\Delta H^0)$, supporting these inferences. Negative ΔG^0 values indicated the thermodynamic feasibility of the reactions: this increased with the more negative ΔG^0 values encountered at higher temperatures. Positive ΔS^0 values were favourable for the reactions.

The solution data are given in Table 1.

Based on the present study and on our earlier report on p.Cl.BZH.THSMC [3] we propose the following tentative structure for tris(*p*-chlorobenzal-dehydethiosemicarbazonato)M(III), where M = Pr or Nd:

REFERENCES

- 1 S.S. Sawhney and S.K. Chandel, Thermochim. Acta, 71 (1983) 209.
- 2 S.S. Sawhney and S.K. Chandel, Thermochim. Acta, 72 (1984) 381.
- 3 S.S. Sawhney and S.K. Chandel, Thermochim. Acta, 86 (1985) 379.
- 4 S.S. Sawhney and R.M. Sati, Thermochim. Acta, 61 (1983) 365.
- 5 J. Bjerrum, Metal Ammine Formation in Aqueous Solution, P. Haase, Copenhagen, 1941, p. 298.