Note

COMPUTER-DETERMINED KINETIC PARAMETERS FROM TG CURVES. PART XX

LEO REICH, PAUL ALLEN, JR. * and S.S. STIVALA

Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (U.S.A.)

(Received 9 February 1987)

INTRODUCTION

For an "*n*-order" unimolecular decomposition involving isothermal TG (ITB), we can write [1]

$$\left[\left[1 - (1 - \alpha_1)^{1-n}\right] / \left[1 - (1 - \alpha_2)^{1-n}\right]\right] - (t_1/t_2) = 0$$
(1)

which can be employed with two different pairs of $\alpha - t$ data, and where *n* is the reaction order, α is the degree of decomposition and *t* is the reaction time.

The aim of this paper is to employ a devised computer procedure which will ascertain the value of n (and subsequently rate constant k) from eqn. (1) and to determine the effect of changes in the number of significant figures of the data upon these values.

RESULTS AND DISCUSSION

Average values (AVG) of the left-hand side (LHS) of eqn. (1) were determined for the various pairs of ITG data for a particular value of n. Values of n were then initially incremented by 0.10001 and subsequently by smaller values (after an approximate value of n had been estimated). This procedure was carried out until a minimum AVG was obtained (which occurred either with a change in sign of the LHS, Tables 1 and 2, or without a sign change, Table 3). The value of n corresponding to the minimum AVG was considered to be the appropriate value for n. Once n had been

^{*} Professor Emeritus (deceased).

AVG	Reaction order (n)	
550.59×10^{-4}	0.100	
464.47×10^{-4}	0.200	
373.54×10^{-4}	0.300	
277.71×10^{-4}	0.400	
176.92×10^{-4}	0.500	
711.91×10^{-5}	0.600	
$394.32 \times 10^{-5}(-)$	0.700	
711.91×10 ⁻⁵	0.600	
603.47×10^{-5}	0.610	
494.55×10^{-5}	0.620	
385.13×10^{-5}	0.630	
275.23×10^{-5}	0.640	
164.84×10^{-5}	0.650	
539.76×10^{-6}	0.660	
$573.80 \times 10^{-6}(-)$	0.670	
539.76×10^{-4}	0.660	
428.60×10^{-6}	0.661	
317.44×10^{-6}	0.662	
206.19×10^{-6}	0.663	
948.61×10^{-7}	0.664	
$164.00 \times 10^{-7}(-)$	0.665	

Results from a computer analysis of eqn. (1) for AVG and n using theoretical ITG data $(\alpha - t)$ [2]

Minimum AVG = $164.00 \times 10^{-7}(-)$ and n = 0.665Value of $k = 2.185756 \times 10^{-2}$.

estimated, an average value of k was then obtained from the various data pairs using the expression

$$k = \left[1 - (1 - \alpha)^{1 - n}\right] / (1 - n)t$$
⁽²⁾

In Tables 1–3, various final values of n and k obtained by the preceding computer procedure are shown. In Table 1, the ITG theoretical data [2] gave values of n and k of 0.665 and 0.0219 respectively (theoretical values are 2/3 and 0.022). When the number of significant figures (s.f.) for α was reduced to 2, the following values of n and k were obtained, respectively 0.648 and 0.0203.

In Tables 2 and 3, derived values of AVG and n along with their final values, utilizing various data sources, are shown [3,4]. In the former table, when the s.f. for α was reduced from 3 to 2, values of n and k changed to 0.945 and 0.00641 respectively. In the case of the latter table, when the s.f. for α was 3 or 4, there was no change in the values of n and k. However, when the s.f. was reduced to 2, although the value of n remained as 1.000, the value of k decreased to 0.007932 (dy⁻¹).

TABLE 1

TABLE 2

Results from a computer analysis of eqn. (1) for AVG and n using isothermal data $(\alpha - t)$ [3]

AVG	Reaction order (n)	
820.21×10 ⁻⁴	0.100	
734.82×10^{-4}	0.200	
645.05×10^{-4}	0.300	
550.83×10^{-4}	0.400	
452.15×10^{-4}	0.500	
349.00×10^{-4}	0.600	
241.46×10^{-4}	0.700	
129.61×10^{-4}	0.800	
136.03×10^{-4}	0.900	
$106.03 \times 10^{-4}(-)$	1.000	
136.03×10 ⁻⁵	0.900	
178.02×10^{-6}	0.910	
$100.80 \times 10^{-5}(-)$	0.920	
178.02×10^{-6}	0.910	
595.20×10^{-7}	0.911	
$586.56 \times 10^{-7}(-)$	0.912	

Minimum AVG = $586.56 \times 10^{-7}(-)$ and n = 0.912Value of k = 0.0062886.

TABLE 3

Results from a computer analysis of eqn. (1) for AVG and n using isothermal data $(\alpha - t)$ [4]

AVG	Reaction order (n)	
786.46×10^{-5}	0.100	
730.09×10^{-5}	0.200	
673.66×10^{-5}	0.300	
617.25×10^{-5}	0.400	
560.78×10^{-5}	0.500	
504.16×10^{-5}	0.600	
447.70×10 ⁻⁵	0.700	
391.11×10 ⁻⁵	0.800	
334.18×10^{-5}	0.900	
0.00	1.000	
221.72×10^{-5}	1.100	
0.00	1.000	
270.15×10^{-5}	1.010	
0.00	1.000	
267.66×10^{-5}	1.001	

Minimum AVG = 0.00 and n = 1.000

Value of $k = 7.95756 \times 10^{-3}$.

REFERENCES

- 1 L. Reich, L.Z. Pollara and S.S. Stivala, Thermochim. Acta, 88 (1985) 485.
- 2 M.E. Brown and C.A.R. Phillpotts, J. Chem. Educ., 55 (1978) 556.
- 3 J. Nicholas, Chemical Kinetics. A Modern Survey of Gas Reactions, Wiley, New York, 1976, p. 19.
- 4 K.J. Laidler, Chemical Kinetics, 3rd edn., Harper & Row, New York, 1987, p. 49.