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ABSTRACT 

A method for the selection of the g(a) function describing the thermal decomposition of 
solids based on the reduced-time plot is proposed. This method allows more objective 
selection of the g(a) function best describing the experimental results from a mathematical 
point of view, when compared to the graphical method applied up to the present. With the 
use of variously defined values of reduced time, this method was applied to the investigation 
of the kinetics of the isothermal decomposition of CaCO, under nitrogen. The listing of a 
computer program enabling the carrying out of calculations and the making of ptots is given. 

INTRODUCTION 

The results of kinetic investigations aiming at determining the relation- 
ship between the rate of thermal decomposition of solids and temperature 
are often helpful in drawing conclusions about the mechanism of this 
process. The above occurs because the f( CX) function in the majority of cases 
is indispensable in deter~ning such kinetic parameters as activation energy 
E or the pre-exponential factor A in the Arrhenius equation. The mathe- 
matical form of this function depends on theoretical assumptions connected 
with real physico-chemical phenomena that take place during thermal de- 
composition. 

The rate of thermal decomposition is described by the equation 

g =k(T) f(a) 

* Author to whom requests for the full listing of the computer program should be addressed. 
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where CY is the progress of decomposition, varying in the range O-1, t is the 
time and k(T) is the rate constant of the reaction for which the dependence 
on temperature is described by the use of the Arrhenius equation 

k(T) = A exp( -E/RT) (2) 
where A is the pre-exponential factor, 
constant and T the temperature in K. 

After the separation of variables and 

J “* 
0 f(a) 

= k( T)i’dt 

E the activation energy, R the gas 

integration, equation (1) becomes 

(3) 

The expression /,“[da/f( CX)] is denoted as g( CX) in the literature. The f(a) 
and g(a) functions constitute mathematical expressions derived on the basis 
of theoretical models of the mechanism of thermal decomposition. Under 
isothermal conditions the equation 

g(a)=k(T) t=Aexp(-E/RT) t 

shows the relation among the kinetic parameters A, E and g(a). 

(4 

The determination of the above equation enables the establishment of the 
relation between (Y and time, and thus enables prediction of the progress of 
the reaction as the function of time at constant temperature T. On the basis 
of experimental data the solution of this equation requires, however, the 
knowledge of the g(a) function. 

In the literature considering the kinetics of the thermal decomposition of 
solids, one of the significant issues not solved up to the present is the 
discovery of a method that enables the selection of the g( CY) function best 
describing experimental results. One such method was proposed by the 
authors of the present paper [l] and checked for the process of the thermal 
decomposition of calcium carbonate [2]. The method of selection of the g( CX) 
function presented in this article differs from methods applied up to the 
present, and is based on the so-called “reduced-time method” [3-81. This 
kind of investigation of kinetic relations is based on the comparison of 
curves plotted in the system a-tred ( tred is the “reduced time”, generally the 
ratio t/t,,,, where to,, denotes the time of the progress of the decomposition 
(Y = 0.5 at the given temperature). If the experimental curves are transformed 
into this coordinate system, they are identical for experiments carried on at 
various temperatures, thus showing that one form of the g(a) function 
describes the decomposition of the compound investigated (so-called iso- 
kinetics process). The selection of the g( CX) function is based on the compari- 
son of experimental curves plotted in the a-tred system with theoretical 
curves made for particular forms of the g(a) function. Theoretical g(a) 
models are derived for various assumptions concerning the mechanism of 
the process dealing with the rate-limiting stage (e.g. nucleation of a new 
solid phase, the reaction at the phase boundary between the product and 
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reactant, or the diffusion of a gaseous product of reaction). The comparison 
of experimental and theoretical curves is simple because of the possibility of 
calculating the values of particular g(a) functions and comparing them to 
the ratio t/t,., in relation to the progress of the decomposition ar [3,7]. 

The selection of the g(a) function based on the comparison of the 
experimental curve with theoretical curves is very subjective. It is addition- 
ally made more difficult by the fact that for a number of functions plots are 
similar and various functions can be selected at various temperatures as best 
describing experimental data. This deficiency of “ the reduced-time method” 
was often criticised [8-lo]. 

The aim of this paper is to elaborate an objective method for the selection 
of the g(a) function that enables to select the function describing best the 
experimental data at all measuring temperatures used. The g(a) function 
selected in this way from the mathematical point of view enables the 
determination of kinetic parameters A and E, which makes possible the 
determination of the relation between (Y and time in isothermal measure- 
ments or between (Y and temperature for measurements made under rising 
temperature conditions. 

BASIC THEORY 

Graphical method of the selection of the g(a) function 

Changing the scale of time in eqn. (4) one obtains 

g(a) = N%s) (5) 

where t,, is the time corresponding to (Y = 0.5 and B is a constant 
depending on the form of the g(a) function. 

The value B is calculated by substituting the value (Y = 0.5 in the equation 
of the g(a) function. For example, for the function derived with the 
assumption that the rate-limiting stage is the reaction at the phase boundary 
and of the form 

g( CY) = 1 - (1 - (Y)“) (6) 

one obtains after substituting (Y = 0.5 

1 - (1 - 0.5)“3 = 0.2063 = kt,., (7) 

and 

k = 0.2063/t,,, (8) 

and 

g(a) = 1 - (1 - (~)i’~ = 0.2063t/t,,, (9) 
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TABLE 1 

Kinetic functions describing the thermal decomposition of solids used in the present paper 
and constants B calculated from eqn. (5) 

Function g(a) B 
No. 

a = 0.25 (Y = 0.50 (Y = 0.75 

1 l/(1- cx)-1 0.3333 1.0000 3.0000 
2 CC2 0.0625 0.2500 0.5625 
3 J/2 0.5000 0.7071 0.8660 
4 (-J/3 0.6300 0.7937 0.9086 
5 p4 0.7071 0.8409 0.9306 
6 1 - (1 - (Yy 0.1340 0.2929 0.5000 
7 1 - (1 - CIy 0.0914 0.2063 0.3700 
8 -In(l- cy) 0.2877 0.6931 1.3863 
9 [ - ln(l - CI)] 2/3 0.4358 0.7832 1.2433 

10 [ - ln(1 - 0.)]l12 0.5364 0.8326 1.1774 
11 [ - ln( 1 - (u)]‘/~ 0.6601 0.8850 1.1150 

12 [ - ln(l - a)]‘14 0.7324 0.9124 1.0851 
13 (l-a)ln(l-a)+cr 0.0324 0.1534 0.4034 
14 (l-20/3)-(l- CX)~‘~ 0.0079 0.0367 0.1031 
15 11 - (1 - 0)“3] 2 0.0084 0.0426 0.1369 

Table 1 shows the g(a) functions most often used in the literature and 
values of B corresponding to them and calculated from eqn. (5). 

Up to the present time the method of selection of the g(a) function used 
has been based on the calculation for particular g(a) functions of the values 
of (Y, and then (with the use of eqn. (5)) the values of t/t,,,. Theoretical plots 
(Fig. 1) are made for the pairs of values of (Y and t/t,,, thus obtained. 
Experimental data are plotted on the diagram with the same coordinate 
system. Time t,., corresponding to (Y = 0.5 is determined from a diagram of 
(Y exp against time. If the thermal decomposition reaction ulider investigation 
is isokinetic, experimental data for various temperatures appear on the same 
curve and the theoretical plot of the selected g(a) function should show the 
best fit to the plot of the experimental data. This is judged by visual 
comparison of the two curves, and the method is called “graphical method 
of the selection of the g( (r) function”. 

Numerical method of the selection of the g(a) function 

The graphical selection of the g(a) function requires drawing correspond- 
ing plots and is based on a subjective evaluation of the “fit” of the 
theoretical plot to experimental data. The numerical method described 
below Allows us to make an objective selection of the g( CY) function for all 
temperatures used in the experiment. 
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0.5 1.0 1.5 2.0 2.5 t,d 

Fig. 1. Theoretical relationships between (Y and t,& for different g(a) functions; tred 

calculated as the ratio t/t,,,, where l0.5 is the time at which the progress of the decomposi- 
tion (Y = 0.5. For designation of the functions see Table 1. 

The data for calculation constitute the set of m pairs of values of the 
progress of the decomposition cr and corresponding values of time t (for a 
particular temperature). If among experimental data the value CY = 0.5 
occurs the determination of reduced times t/t,,, is simple. Otherwise the 
value t,, can be calculated with the use of the least squares method of the 
following polynomial equation [ 111 

g(a) =a,+a,t+a,t*f...+a,t" 00) 

and the value t,,, can be calculated on this basis. The following equation is 
to be solved 

0.5 = a. + a,t + . . . -ta,t” 01) 

The degree of a polynomial n is determined beginning with degree 1 (a 
straight line) up to the (n + 1)th degree. Since the residual variance de- 
creases for the polynomial from 1 to n degree and then increases, the degree 
of the polynomial n is determined for the minimum of the residual variance. 
After the calculation of t0.5, the experimental reduced time (~/t~,~) exp for the 
experimentally determined values of the progress of the decomposition (Y,,~ 
can be calculated. Theoretical reduced time ( f/t,,5)i, where i denotes the 
number of the g( CX) function, can be calculated for the value (Y,,, from eqn. 

In order to select the g( CX) function best describing the experimental data 
the following sum should be calculated 



1.0 1.5 2.0 2.5 3%Jx=a75 

Fig. 2. The interpretation of the D, criteria (see eqn. 12) for the case when two values of (Y are 
being considered. Theoretical points for different g(a) functions, 0; experimental points, 0. 

The value D, is calculated for particular temperatures and various functions 
denoted i = 1, 2,. . . ,15, and simultaneously the value D,,, can be denoted 
being the sum of values Dj for particular temperatures. Thus the value of Di 
constitutes the sum of squares of differences between experimental and 
theoretical values. D, can be also interpreted as a square of the Euclidean 
distance between the point representing the experimental curve and the 
point representing the theoretical curve (center of gravity of the class) in a 
multidimensional space created by the axis of coordinates (t/to,s) for 
various values of (Y. In this case one should make use of notions connected 
with the pattern recognition method [12-141. In the case when only two 
values of (Y (e.g. (Y = 0.25 and (Y = 0.75) are being considered the interpreta- 
tion of Di can be shown on the plane (Fig. 2). Each g(a) function 
corresponds to the theoretical point determined by two coordinates 

(t/t0.5)~,a=Cl.25 and (t/f0.5)i,tx=0.75* The experimental point will have the 
following coordinates (t/t0,5)exp,a=0,25 and ( f/t,,,~)exp,a=,,75. The square of a 
distance between points corresponding to theoretical and experimental curves 
constitutes the measure of their fit and in this case is calculated with the use 
of the eqn. (12) for m = 2. 

Regardless of the method of determination of the value of Di, the 
selection of the most appropriate g(a) function resolves itself into the 
selection of the function with the minimum value of Di, which equals zero in 
the case of an ideal conformity of the experimental and theoretical curves. 

EXPERIMENTAL 

The investigation of the process of the thermal decomposition of CaCO, 
(calcite) was carried out under nitrogen atmosphere. Experiments were made 
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under isothermal conditions (temperature range 928-993 K) on a Mettler 
2000 C thermoanalyser. The mass of samples was - 10 mg. Table 2 shows 
the times (in min) required at a given temperature, to attain corresponding 
values of the progress of decomposition CL 

RESULTS AND DISCUSSION 

Table 3 shows for particular temperatures the values of Di determined on 
the basis of eqn. (12), thus for the reduced time calculated for (Y = 0.5. This 
way of calculating reduced time with the use of t,, is most often used in the 
literature without theoretical justification. It seems reasonable to check 
whether the application of reduced time defined differently will enable 
confirmation of the isokinetics of the process and influence the results of the 
selection of the g( (.u) function. Calculations were made with the use of the 
reduced time defined as tred = t/t,,, and t,, = t/t,,,, where to.,, and t,,, 

denote time during which the progress of the decomposition IX, at a given 
temperature, attains the values 0.25 and 0.75 respectively. Theoretical plots 
of particular g(a) functions with the values of the reduced time defined this 
way are shown in Fig. 3 ( tred = t/t0.25) and Fig. 4 ( trd = t/t0.75). 

The global comparison of the criterion Dsum for the reduced times defined 
differently are shown in Table 4. The values of t,,,, and t,,,, were,calculated 
by the solution of the polynomial (eqns. 10, 11). 

Figure 5 shows the three theoretical curves for the case when the selection 
of the g(a) function best describing experimental results is simple. In the 
case given experimental results are best described by function (10) (for the 
meaning of numbers see Table 1). The selection of the g(a) function is much 

0.5 1.0 15 2.0 

Fig. 3. Theoretical relationships between a and tred for different g(a) functions; t red = t/ta.zs. 



a 
Cl&5 
-1 

Fig. 4. Theoretical relationships between (Y and tred for different g(a) functions; fred = t/t,.,,. 

more difficult when the curves in the system (~---t,,~ differ slightly. This is 
presented in Fig. 6 where experimental points are described by the curves 
corresponding to g(a) functions of eqns. (6), (9) and (10) (see Table 1). In 
this case the graphical method of the selection of the function used up to the 
present does not allow objective results. 

The issue of graphical selection of the g(a) function is more complicated 
when results obtained at various temperatures are being considered. Figures 

TABLE 4 

The values of Dsum calculated for variously defined reduced time tred 

t red = */to.25 t red = t/rosa t red = t/to.15 

No. D S"m No. D SUITI No. D sum 

9 12.212 10 2.024 6 0.874 
10 50.994 6 5.765 10 1.218 
6 53.448 9 5.797 9 1.912 
7 144.537 11 9.594 7 2.474 

11 145.105 3 13.707 2 3.639 
3 153.645 12 16.201 11 3.963 

12 196.624 7 16.774 3 4.245 
4 218.286 4 21.429 12 7.119 
5 250.036 5 26.142 4 8.520 
8 727.192 2 52.916 13 9.959 
2 2825.367 8 88.901 5 11.791 

13 8209.693 13 188.827 8 12.456 
14 13197.180 14 324.552 14 16.543 
15 35769.720 15 933.540 15 45.195 

1 79883.630 1 8390.799 1 803.800 
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Fig. 5. Experimental results for decomposition of CaCO, at 993 K (0) 
g(a) functions: (l), (4) and (10) (see Table 1); tred calculated for (Y = 0.5. 

described by three 

7 and 8 present global results for the thermal decomposition of CaCO, 
under nitrogen atmosphere at temperatures 928, 933, 943, 953, 963, 973 and 
993 K. In Fig. 7 experimental points are described by the theoretical curve 
for function (10) i.e. g(a) = [ - ln(l - a)]‘/* and in Fig. 8 by the theoretical 
curve for function (6) i.e. g(cw) = 1 - (1 - (~)l/*. The “numerical” method 
presented in this paper enables an objective selection of the function that 
mathematically best describes experimental results-the value Dsum is 
minimal for function (10) with reduced time defined t,, = t/t,, (Table 4). 
The above could indicate that the mechanism of isothermal decomposition 

a 

025 

0;5 110 1:5 2.0 2;5 td 

Fig. 6. Experimental results for decomposition of CaCO, at 
functions (6), (9) and (10) (see Table 1); 1, calculated for (Y 

993 K (0) 
= 0.5. 

described by g(a) 
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Fig. 7. Experimental results for decomposition of CaCO, in the temperature range 928-993 
K described by the function g(a) = [ - ln(1 - a)]“‘; [red calculated for (Y = 0.5. 

of calcite under nitrogen is best described by the Avrarn-Erofeev equation 
with the value of n = 2. 

The results included in this paper indicate, however, that conclusions 
about the mechanism of decomposition, based on the fact a given g(a) 
function describes the thermal decomposition better than others, should be 
drawn very carefully. Data included in Table 4 indicate for example, that the 
arbitrary selection of the way of defining the reduced time significantly 
changes the values of II,,, for particular functions and, what is even more 
significant, changes also their sequence. 

a 

05 1.0 15 2.0 2.5 'red 

Fig. 8. Experimental results for decomposition of CaCO, in the temperature range 928-993 
K described by the function g(a) = 1 - (1 - (Y)‘/~; tred calculated for (Y = 0.5. 
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According to the way of defining the reduced time other g(a) functions 
best describe experimental data. If t,, = t/t,,, results are best described by 
function (9) derived on the basis of the assumption of two-dimensional 
growth of nuclei under constant nucleation rate, or three-dimensional growth 
of a constant number of nuclei if the rate of nucleation is zero [15]. 

If the definition of t, used is t,, = t/t,, results are best described by 
function (10) (one- or two-dimensional growth of nuclei under conditions 
cited above). If t,, = t/t0.75 the best fit is function (6) based on advance of 
the reaction interface (contracting area model). Thus, depending on the 
accepted way of calculating tred the results based on various models of the 
real physico-chemical phenomena occurring during thermal decomposition 
appear to be “best”. 

Selecting the g(a) function by the method described in this paper, or by 
methods discussed previously [1,2], one of these functions (the best form for 
mathematical description of the experimental results) is chosen from their 
set. Any modification, from the mathematical point of view, of the method 
of calculation (in this case the change of tred definition) does not influence 
significantly the fit of experimental data. It can, however, significantly 
change conclusions referring to the mechanism of reaction of thermal 
decomposition, making them less reliable. 

The method of selection of the g(a) function proposed by the authors, 
based on the application of reduced time, enables the selection to be more 
objective in comparison with the graphical method currently used. The 
method, however, much the same as other kinetic investigations not based 
on morphological investigation or structural considerations [16], does not 
enable us to draw conclusions about the real mechanism of the thermal 
decomposition of solids. 

DESCRIPTION OF THE PROGRAM 

The results in Tables 2-4 and Figs. 5-8 were obtained using a program 
written in BASIC (for IBM PC or compatible; operating system MS DOS). 
The listing of the main part of program is presented in Fig. 9. The full listing 
of the program can be obtained from the first-named author. 

The execution of the program begins with defining reduced time by giving 
the appropriate value of (Y (line 130). Next, experimental data (from the 
keyboard or as block data): number of sets (temperatures), and for a 
particular set: the value of temperature, global mass loss and pairs of time 
and mass loss (no more than 20 pairs, the set ending with the pair 0,O) are 
loaded (lines 140-160). If necessary values loaded incorrectly can be cor- 
rected (lines 270-340). On the basis of these data the values of cy,_, (lines 
240 and 320) are calculated. After printing experimental data (if necessary) 
and after declaring the arrays (lines 350-400) the program calculates the 
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value of time corresponding to the value of (Y (line 450) previously selected, 
the value of Di for particular temperatures and the global criterion D,,, (the 
program allows print-out of ordered values of the criterion). The program 
will plot the relation between (Y and tred within the range of tred calculated 
from experimental data or assumed (o-3.0) (a range: O-1.0) for arbitrarily 
selected g(a) functions and temperature (lines 480-640). Charts can also be 
plotted for the range of the values of (Y arbitrary chosen (lines 650-680). It 
is also possible to redraw charts for some other temperatures and g(a) 
functions (lines 690-710). Next the program establishes the sequence of the 
global criteria and enables drawing plots of the relation between (Y and t,, 
(lines 720-950). After finishing the calculations one can change the way of 
defining reduced time (lines 950-980) or can check and modify experimental 
data if necessary. 

100 
110 
114 
115 
120 
130 
131 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
241 
250 
260 
270 
280 
290 
310 
320 
340 
350 
351 
360 
370 
388 
390 
400 
405 
410 
420 
460 
470 
480 
490 
500 
510 

REM Thermal analysis. Time reduced method. 
CLS: ’ Data input 
PRINT "ATTENTION": PRINT " For each temperature (set) "; 
PRINT "max.20 pair of measurments: time. mass loss.": PRINT 
OPTION BASE 1: KEY OFF: NUMTAB-0: NUMFIG-0 
PRINT “What ” ::PRINT CHR$(224); 
INPUT w is used for reduced time calculation";ALFAS 
READ L ’ numbers of temperatures (sets) 
DIM TEMP(L). NUMEXP(L) ’ NUMEXP(II - numbers of data in i-th set 
DIM ALEXP(L,201,TIEXP(L,ZO) ’ experimental values of alpha and time 
FOR I-l TO L 
CLS: PRINT "Set"-1 .. READ TEMP(1): PRINT " temperature";TEMP(Il 
READ FML: PRINT '"Final mass 1oss:":FML 
FOR J-1 TO 20 
READ TIEXP(I,J), ML ' ML - exp. mass loss at time TIEXP(1.J) 
IF ML-O AND TIEXP(I,JI-0 THEN GOT0 270 
ALEXP(I.J)=ML/FML 
PRINT‘J:iPRINT USING "time ##.##, mass loss #X.)X+. ";TIEXP(I.JI.ML: 
PRINT USING "alpha ##.X###":ALEXP(I,JI 
NUMEXP(I)=NUMEXP(I)+l 
NEXT J 
PRINT "Data correct? y/n" 
A$=INKEY$:IF A$=""THEN 280 
IF A$="y" THEN GOT0 340 ELSE IF A$<>"&' THEN GOT0 280 
INPUT "Input correct data: nr. time and mass loss";A.TIEXP(I.A),ML 
ALEXP(I,AI=ML/FML: GOT0 270 
NEXT I 
PRINT "Printing ";:PRINT CHR$(224): 
INPUT " experimental data (no more then 7 sets)? y/n".PR$ 
IF PR$="y" THEN GOSUB 4120 ELSE IF PR$-"n" THEN GOT0 380 ELSE GOT0 350 
REM Declaration of tables 
DIM B(7). A(7.7). P(7.7). COEF(7). TIALS(L), TIRED(L.20). K(15) 
DIM DIS(15,LI. ORD(15.L). SUMflSI, ORDSUM(15I. GRAPH(15) 
FOR I=1 TO L:TIALS(II-0: FOR J-l TO 20: TIRED(I.JI=0: NEXT J:NEXT I 
FOR I=1 TO 15: SUM(I)-0 : NEXT I 
REM Time (TIALS(I)) calculations corresponding to ALFAS 
GOSUB 1130 ’ Polynomial and TIALS(II calculations 
REM Calculations of criteria 
GOSUB 2320 ’ Calc. of K(I), DIS(1.J). SUM(I) and screening 
PRINT "Make a plot for selected temperature? y/n" 
PRINT "When the plot is complete: PrtSC or hit any key." 
A$-INKEY$: IF A$-""THEN GOT0 500 'Printing screen 
IF A$-"y" THEN GOT0 520 ELSE IF A$<>"n" THEN GOT0 500 ELSE GOT0 720 

Fig. 9. The listing of the main part of the program. 
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520 
530 
540 
550 
560 
570 
580 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
981 
990 

FOR I-l TO 15: GRAPH(I)-0: NEXT I 
NUMFIG=NUMFIG+1 
PRINT "Input numbers of selected functions." :NUMWN-0 
INPUT "Function 'no or 0";NR 
IF NR<O OR NR>15 THEN GOT0 550 
IF NR<>O THEN GRAPH(NRl==1: NUMFUN-NUMFUN+l: GOT0 550 
INPUT "Set nr ";D 
GOSUB 2820 ’ Selecting of extreme value of x and y 
GOSUR 2940 ’ Drawing of axis 
GOSUB 3150 ’ Drawing of given functions 
GOSUB 3300 ’ Drawing of experimental data 
A$=INKEY$: IF A$="" THEN GOT0 640 ’ Printing screen 
LOCATE 24,l: PRINT "Another scale of the plot? y/n" 
A2$=INKEY$: IF A2$="" THEN GOT0 660 
IF A~$="Y" THEN GOSUB 3410 ELSE IF A2$<>"n" THEN GOT0 660 
IF A2$-"y" THEN NUMFIG=NUMFIG+1: GOT0 610 
CLS: SCREEN 0: PRINT "Print another plot? y/n" 
A$=INKEY$: IF A$="" THEN GOT0 700 
IF A$="y" THEN GOT0 480 ELSE IF A$<>"n" THEN GOT0 700 
REM Ordering and display of global criteria 
GOSUB 3560 
PRINT “Make a plot for global criterion? y/n" 
PRINT "When the graph is complete: PrtSc or hit any key." 
A$=INKEY$: IF A$=""THEN GOT0 760 
IF A$="Y" THEN GOT0 780 ELSE IF A$<>"n" THEN GOT0 760 ELSE GOT0 960 
NUMFUN-0: FOR I=1 TO 15: GRAPH(Il=O: NEXT I 
NUMFIG=NUMFIG+1 
PRINT "Input numbers of functions." 
INPUT "Function no or 0";NR 
IF NR<O OR NR>15 THEN GOT0 800 
IF NR<>O THEN GRAPH(NR)=l: NUMFUN=NUMFUN+1: GOT0 810 
GOSUB 3740 ’ Selection of extreme value of x and y 
GOSUR 2940 ’ Drawing axis 
GOSUB 3150 ’ Drawing of selected functions 
GOSUB 3880 ’ Drawing experimental points 
A$=INKEY$: IF A$="" THEN GOT0 880 ’ Printing screen 
LOCATE 24.1: PRINT "Another scale of the plot? y/n" 
A2$=INKEY$: IF A2$="" THEN GOT0 900 
IF ALFAS=O THEN GOT0 990 ELSE GOT0 400 
IF A2$="y" THEN NUMFIG=NUMFIG+l: GOT0 850 
CLS: SCREEN 0: PRINT "Print another plot? y/n" 
A$-INKEY$: .IF A$-"" THEN GOT0 940 
IF A$-"Y" THF.N GOT0 740 ELSE IF A$<>"n" THEN GOT0 940 
CLS: PRINT "The calculations were done for ";CHR$(224);"=";ALFAS;"." 
PRINT :PRINT "Input another value of ";CHR$(2241;" or 0";:INPUT ALFAS 
IF ALFAS<O OR ALFAS>l THEN GOT0 970 
IF ALFAS-0 THEN GOT0 990 ELSE GOT0 400 
PRINT "May be you wish to verify the data? y/n" 

1000 A$=INHEY$: IF A$="" THEN GOT0 1000 
1010 IF A$="t" THEN GOT0 4000 ELSE IF A$<>"n" THEN GOT0 1000 
1020 CLS: PRINT "HAPPY END.":END 

Fig. 9 (continued). 
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