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Based on experimental data collected over the last 15 years 
(ATHAS data bank) a system has been developed that permits the 
computation of the heat capacities of solid polymeric materials. 
It relies on separation of the vibrational spectrum into group 
and skeletal vibrations. The former are known from computations 
fitted to IR and Raman data, the latter can be fitted to low 
temperature heat capacities using the Tarasov equation. Knowing 
the chemical structure, the parameters of the Tarasov equation may 
be predicted by comparison with known heat capacities of related 
materials. Agreement between prediction, computation and experiment 
is usually better than 2 5 %. 

INTRODUCTION 

The computation method of heat capacities to be discussed here 

is part of our Advanced Thermal Analysis System (ATHAS, ref. 1) 

which is based not only on work of our laboratory, but uses also 

the collective work of all other laboratories. First, a critically 

reviewed data bank was established (ref. 2). Work on instrumenta- 

tion improvement (ref. 31, development of computation programms 

(ref. 4) and the theory of heat capacities (ref. 5) completed the 

background for the broad-ranging discussion of heat capacities 

of solids to be summarized here. The detailed publications can be 

found in refs. 6 and empirical addition schemes for heat capaci- 

ties were derived (ref. 7). 

HEAT CAPACITY DESCRIPTION 

The head capacity of linear macromolecules is best subdivided 

into four temperature regions. Heat capacities below 5 - IO K, 

though interesting from a theoretical point of view, will not be 

treated here in detail since they contribute only little to the 

integral thermal properties at higher temperature. They are 
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strongly dependent on the physical state (crystalline,amorphous, 

or semicrystalline). 

In the 10 to 100 K temperature range, heat capacity measure- 

ments are completely dominated by adiabatic calorimetry. The 

theory of heat capacity is well understood. Since practically 

all macromolecules are solids below 100 K, i. e. glassy, crys- 

talline, or partially crystalline and partially glassy, the heat 

capacity is of vibrational origin and well described by the 

harmonic oscillator approximation. It proved useful to separate 

the vibrations into skeletal and group vibrations. The former are 

of relatively low frequency, strongly coupled, and represent the 

intra- and inter-molecular vibrations of the chain molecules as 

a whole. They can be modelled by making the assumption that the 

atoms are attached rigidly to the backbone chain. The skeletal 

vibrations dominate the heat capacity in this 10 to 100 K tempe- 

rature range. All effort to calculate the intermolecular, skeletal 

vibrations from crystal-structure and force-constant data alone 

have badly failed in the past. Heat capacity measurements provide 

the best means for evaluation of the low-frequency, integral 

vibrational spectrum. The intramolecular skeletal vibrations are 

somewhat higher in frequency and are accessible in their upper 

frequency range through isolated-chain,normal mode calculations. 

Such calculations also permit the evaluation of the usually 

numerous group vibrations. Once the vibrational spectrum is 

established, the heat capacity (at constant volume) can be calcu- 

lated up to high temperatures. 

The Einstein function (ref. 8) inverts frequency of the spec- 

trum to its heat capacity contribution and vice versa, so that 

the overall heat capacity is: 

Cvi(NR) = (E)iT)%xp(O/.7)& I 

[exp (O/T)-l]* 

where T is the temperature and 0 is the frequency, both expressed 

in kelvin (% = hv/k with v representing the frequency in Hz, h and 

k are Planck's and Boltzmann's constant, respectively; 1 Hz is 

4.799 x 1O-11 K, 1 cm 
-1 

= 1,4388 K). The integral extends over all 

skeletal and group vibrations. 

The integral of eq. 1 is evaluated in steps. The lowest vibra- 

tional frequencies (skeletal) usually follow a quadratic function 

up to a frequency limit called f3D or 83. This is the well-known 

Debye approximation (ref. 9) of low temperature heat capacities. 
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3@dT 2 
exPb)-I exp(On/Q-l 

For two- or one-dimensional structures such as found in crystals 

of layer and chain molecules the frequency distribution changes 

to a linear and constant function, respectively. These intergrals 

are called the two-(ref. 10) and one-dimensional (ref. 11) Debye 

functions. 

O,/T 4 
exp(xj-1 exp(BltTZ-1 

N in eqs. 1 - 4 refers to the appropriate number of vibrators and 

x = hv/kT = 9/T. The sum of all N is three times the number of 

atoms in a repeating unit, the number of degrees of freedom. Tara- 

sov (ref. 12) proposed a combination of eqs. 2 and 4 for the 

skeletal vibrations of a linear chain 

T(03/T, 0,/T) = C"INR =&(&IT) - 
03/0,[D,(03/T) - D,~o,ml 5 

This equation was shown on the examples to hold for most linear 

macromolecules to a precision of several per cent. Its limits are 

reached when phenylene groups are included in the backbone chain 

as in poly(phenylene oxide) or poly(ethylene terephthalate), or 

alternating heavy and light mass backbone unit occur, as in poly- 

(vinylidene fluoride) or poly(vinilidene chloride). 

For the group vibrations which are of much narrower distribu- 

tion it is usually sufficient to use single frequency Einstein 

terms or to average over a frequency range which leads to a box 

distribution function. 

B(&JT,QJT) = CvIh'R = 

O"/(QU-eL)[D1(Q"IT) - toLio”moLm1 6 

where 0, and 8 D are the upper and lower frequencies of the qroup- 

vibration range. 



228 

The final step of computation is to connect Cv with the measured 

C 
P' 

For this purpose one can use the thermal expansivity a and the 

isothermal compressibilityx. 

c,.c,= a%7Yx 7 

Since a andx are usually, at best, available at one temperature, 

one makes often use the semiempirical Lindemann expression: 

C,-C, = Cp2(TlP,,,)A, 8 

where T 
0 
m is the equilibrium melting temperature and A0 is a 

constant which for many polymers has a value close to 5.11 x 10 
-3 

Kmol/J (per mole of heavy atoms). 

The next temperature region is from about 100 K to the glass or 

meltinq transition. Solid heat capacities are uracticallv inde- 

pendent of crystallinity in this temperature ranqe. Most measure- 

ments are made by differential scanning calorimetry (DSC). In most 

cases it is possible, after computation of the qroup vibrations, 

to evaluate the intramolecular skeletal vibrations. The intermole- 

cular vibrations are commonly already excited at these temoeratu- 

res and thus contribute a constant amount to the heat capacity. Of 

soecial problem are the semicrystalline macromolecules between 

the qlass and meltinq transitions. They have a micronhase-separa- 

ted, twoohase structure with most molecules bridging both phases. 

This special influence of phase boundaries on molecular mobility 

gives rise to positive and negative Cp-deviations from the value 

computed under the assumption of a macroscopic, two-phase system 

(crystallinity model). The deviations from the purely vibration 

and liquid C 
P 

permit to analyze such structure-sensitive proper- 

ties. 

The last temperature range is that of the liquid state, it 

starts at the glass transition or at the melting temperature. Very 

little theoretical knowledge exists about its heat capacity, ex- 

cept that the group vibrations change little on fusion. The change 

of the skeletal vibrations in frequency due to the volume expan- 

sion is also of little influence on heat capacity, since, once 

excited, the heat capacity contribution of a vibrational degree 

of freedom remains unchanged on lowering of the frequency. The 

change in volume-expansion makes itself felt through a sizeable in- 

crease in C 
P 

at the glass transition, caused largely by potential 

energy increase (hole formation). Empirically liquid heat capaci- 

ties are often changing linearly with temperature. 
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CONCLUSIONS 

Starting from a detailed analysis of heat capacity of linear 

macromolecules, it has been shown that considerable advance in 

thermal analysis is possible. Not only can the equilibrium thermo- 

dynamic properties be better established and linked to fundamental, 

atomic-scale properties, such as the vibrational frequency spec- 

trum and order as well as mobility, but it is also possible to 

discuss non-equilibrium states crystalline, and microphase-separa- 

ted polymers. 
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