CALORIMETRIC STUDY OF THE MISCIBILITY OF POLY(2,6-DIMETHYL-1,4-PHENYLENE OXIDE) WITH STYRENE-METHYL METHACRYLATE COPOLYMERS *

S.H. GOH and S.Y. LEE

Department of Chemistry, National University of Singapore, Singapore 0511 (Republic of Singapore)

(Received 1 January 1987)

ABSTRACT

The miscibility of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with styrene-methyl methacrylate (S-MMA) copolymers was studied by differential scanning calorimetry. An S-MMA copolymer with a low MMA content is miscible with PPO when the PPO content in the blend is 40% or more. An increase in the MMA content in an S-MMA copolymer narrows the composition range in which the blend is miscible. An S-MMA copolymer containing 29.2 wt.% MMA is immiscible with PPO over the entire composition range.

INTRODUCTION

The measurement of the glass transition temperature T_g of a polymer blend provides a simple means of ascertaining the miscibility of the blend [1,2]. Provided that the T_g values for the two component polymers differ by at least 20 K, a miscible blend shows a composition-dependent value of T_g which is intermediate between the T_g values for the component polymers, while an immiscible blend shows two unperturbed T_g values for the component polymers.

The poly(2,6-dimethyl-1,4-phenylene oxide)/poly(styrene) (PPO/PS) blend is a well-known example of miscible polymer blends [3–9]. A modification in the chemical structure of either polymer can change the miscibility behaviour of the blend. Karasz, MacKnight and co-workers [10–15] have made extensive studies on the miscibility of PPO with various styrene-halogenated styrene copolymers. The ability of the halogen substituent to induce immiscibility in the PPO/PS blend was found to be in the order o-Br > p-F > p-Br > o-Cl $\approx p$ -Cl > o-F.

^{*} Paper presented at the Sino-Japanese Joint Symposium on Calorimetry and Thermal Analysis, 5-7 November 1986, Hangzhou, People's Republic of China.

We have earlier reported the miscibility of PPO with styrene–2,2,6,6tetramethylpiperidinyl methacrylate (S–TPMA) copolymers [16]. The incorporation of TPMA drastically reduced the miscibility of the PPO/PS blend. In the studies of the miscibility of blends containing homologous polymethacrylates [17–20], the miscibility of a polymethacrylate with other polymers has been found to decrease with increasing size of the pendant alkyl group. As the pendant group in TPMA is a bulky sterically hindered amine group, it will be of interest to study if the incorporation of methyl methacrylate, the first member of the methacrylates, will produce a less drastic effect on the miscibility of a PPO/PS blend.

EXPERIMENTAL

Materials

The PPO was obtained from General Electric; its weight-average molecular weight (\overline{M}_w) was 40700. Poly(methyl methacrylate) (PMMA) was obtained from Du Pont (Elvacite 2010); its \overline{M}_w was 120000.

Five styrene-methyl methacrylate (S-MMA) copolymers were prepared by bulk polymerization at 333 K for 24 h using azobisisobutyronitrile (0.3 wt.%) as initiator. The copolymers were purified by precipitation from 2-butanone solutions by methanol. The compositions of the copolymers as determined by ¹H-NMR based on the phenyl protons of styrene, together with their $T_{\rm e}$ and intrinsic viscosity [η] values are given in Table 1.

Preparation of blends

The blends were prepared by solution casting from tetrahydrofuran (THF). 0.5 g of polymer mixture was dissolved in 25 cm³ of THF. The solution was poured into an aluminium dish and the solvent was allowed to evaporate slowly at room temperature. The blend was then dried in a vacuum oven at 383 K for 48 h.

Copolymer	Wt.% MMA	$T_{g}(\mathbf{K})$	$[\eta]^{a} (dl g^{-1})$	
S-MMA4	3.9	373	0.57	
S-MMA12	11.6	373	0.33	
S-MMA17	16.5	373	0.38	
S-MMA29	29.2	374	0.54	
S-MMA55	55.0	374	0.55	

TABLE 1

Characteristics of S-MMA copolymers

^a In 2-butanone at 303 K.

Calorimetric measurements

A Perkin-Elmer DSC-4 differential scanning calorimeter was used to measure the T_g values of various samples. Each sample was scanned several times between 323 and 523 K using a heating rate of 20 K min⁻¹ and a cooling rate of 320 K min⁻¹. The initial onset of the slope in the DSC curve was taken as T_g . The reported T_g value is the average value based on the second and subsequent runs.

RESULTS AND DISCUSSION

The DSC curves of various PPO/S-MMA4 blends are shown in Fig. 1. For a blend containing 40, 50, 75 or 90 wt.% PPO, each showed a single glass transition, indicating its single-phase nature. The glass transitions of these blends are broader than those of PPO and S-MMA4. The glass transition width is about 10 K for either PPO or S-MMA4, but it is 30-40 K for a miscible PPO/S-MMA4 blend. Such a broadening in the glass transition of a miscible blend has been observed for blends of PPO with polystyrene and other styrenic polymers [10,12,21,22]. The reason for the glass transition broadening is uncertain, and it has been attributed to changes in relaxation time, glass structure and degree of interaction or to composition fluctuation [22,23]. As shown in Fig. 1, a PPO/S-MMA4 blend containing 25% PPO showed two broad glass transitions, indicating its two-phase nature. Thus the copolymerization of a small amount of MMA with styrene does affect the miscibility behaviour of a PPO/PS blend.

The results for PPO/S-MMA12 blends are similar to those for

Fig. 1. DSC curves of PPO/S-MMA4 blends.

Wt.% PPO in blend	$T_{\rm g}$ (K) ^b							
	PPO/ S-MMA4	PPO/ S-MMA12	PPO/ S-MMA17	PPO/ S-MMA29	PPO/ S-MMA55	PPO/ PMMA		
0	373	373	373	374	374	373		
25	379, 473	375, 478	375, 478	374, 476	374, 471	373, 471		
40	403	415	375, 448	a	a	^a		
50	421	425	374, 449	374, 470	374, 473	373, 474		
75	438	440	444	375, 467	374, 473	373, 471		
90	451	457	a	^a	a	a		

T values of various blen

^a Blends of these compositions were not prepared.

^b T_{g} of PPO, 483 K.

PPO/S-MMA4 blends. The T_g values of these blends are given in Table 2. Blends containing 40% or more of PPO are miscible, while a blend containing 25% PPO is immiscible.

The DSC curves of various PPO/S-MMA17 blends are shown in Fig. 2. A blend containing 75% PPO showed a broad glass transition. For a blend containing 25, 40 or 50% PPO, two glass transitions were observed. The lower T_g values are in good agreement with that of S-MMA17. However, the upper glass transition for a blend containing 40 or 50% PPO is quite broad and the T_g value is about 35 K lower than that of PPO which indicates the presence of a substantial amount of S-MMA17 in the PPO-rich phase. However, the upper glass transition of a PPO/S-MMA17 blend containing 25% PPO is narrower and the T_g value is close to the T_g value of

Fig. 2. DSC curves of PPO/S-MMA17 blends.

TABLE 2

PPO. Thus the phase separation in this blend is more complete compared with that in a similar blend containing a higher proportion of PPO.

The DSC curves of various PPO/S-MMA29 blends are shown in Fig. 3. Two glass transitions were observed for a blend containing 25, 50 or 75% PPO. Thus, an S-MMA copolymer containing 29% MMA is immiscible with PPO at all compositions. A further increase in the MMA content in the S-MMA copolymer is then expected to lead to the formation of immiscible PPO/S-MMA blends. This is confirmed by the immiscibility of PPO/S-MMA55 blends as shown in Table 2. Table 2 also shows the T_g values for PPO/PMMA blends which indicate the immiscibility of these blends. The immiscibility of PPO/PMMA blends has been reported earlier [24].

The miscibility behaviour of PPO with S-MMA copolymer is similar to that with S-TPMA copolymer as reported earlier. A copolymer with a low TPMA or MMA content is miscible with PPO if the weight percentage of PPO in the blend is 40% or more. An increase in the TPMA or MMA content in the copolymer narrows the composition range in which the blend is miscible. However, a closer look at the results shows that the miscibility of S-MMA copolymer with PPO is slightly better than that of S-TPMA copolymer when comparison is made with a copolymer of similar molar composition. For example, a PPO/S-MMA12 (12.0 mol.% MMA) blend containing 40% PPO is miscible, while a PPO/S-TPMA18 (8.9 mol.% TPMA) blend of the same composition is immiscible [16].

The formation of a miscible blend requires some specific interactions between the component polymers. The miscibility of PPO/PS blends has been attributed to dispersive interaction between the phenyl groups of the two polymers [8]. The incorporation of TPMA or MMA therefore interferes with the dispersive interaction, leading to a reduction in the miscibility. Lastly, a recent patent [25] covers the applications of blends of S-MMA copolymers containing less than 15% of MMA with PPO. Such blends offer good heat and chemical resistance as well as good mechanical properties.

ACKNOWLEDGEMENT

Financial support of this work by the National University of Singapore is gratefully acknowledged.

REFERENCES

- 1 S.W. Shalaby and H.E. Bair, in E.A. Turi (Ed.), Thermal Characterization of Polymeric Materials, Academic Press, New York, 1981, Chap. 4.
- 2 J.R. Fried, in J.V. Hawkins (Ed.), Developments in Polymer Characterization, Vol. 4, Applied Science, London, 1983, Chap. 2.
- 3 H.E. Bair, Polym. Eng. Sci., 10 (1970) 247.
- 4 A.R. Shultz and B.M. Beach, Macromolecules, 7 (1974) 902.
- 5 A.R. Shultz and B.M. Gendron, J. Macromol. Sci., Chem., 8 (1974) 175.
- 6 W.J. MacKnight, J. Stoelting and F.E. Karasz, Adv. Chem. Ser., 99 (1971) 29.
- 7 N.E. Weeks, F.E. Karasz and W.J. MacKnight, J. Appl. Phys., 48 (1977) 4068.
- 8 S.T. Wellinghoff, J.L. Koenig and E. Baer, J. Polym. Sci., Polym. Phys. Ed., 15 (1977) 1913.
- 9 T.K. Kwei and H.L. Frisch, Macromolecules, 22 (1978) 1267.
- 10 J.R. Fried, F.E. Karasz and W.J. MacKnight, Macromolecules, 11 (1978) 150.
- 11 R. Vukovic, F.E. Karasz and W.J. MacKnight, J. Appl. Polym. Sci., 28 (1983) 219.
- 12 R.E. Wetton, W.J. MacKnight, J.R. Fried and F.E. Karasz, Macromolecules, 11 (1978) 158.
- 13 R. Vukovic, V. Kuresvic, F.E. Karasz and W.J. MacKnight, Thermochim. Acta, 54 (1982) 349.
- 14 R. Vukovic, V. Kuresvic, C.L. Ryan, F.E. Karasz and W.J. MacKnight, Thermochim. Acta, 85 (1985) 383.
- 15 R. Vukovic, V. Kuresvic, F.E. Karasz and W.J. MacKnight, J. Appl. Polym. Sci., 30 (1985) 317.
- 16 S.H. Goh and S.Y. Lee, Eur. Polym. J., 23 (1987) 315.
- 17 D.R. Paul, J.W. Barlow, R.E. Bernstein and D.C. Wahrmund, Polym. Eng. Sci., 18 (1978) 1225.
- 18 D.J. Walsh and J.G. McKeown, Polymer, 21 (1980) 1335.
- 19 S.H. Goh, D.R. Paul and J.W. Barlow, Polym. Eng. Sci., 22 (1982) 34.
- 20 J.S. Chiou, D.R. Paul and J.W. Barlow, Polymer, 23 (1982) 1543.
- 21 J.R. Fried and G.A. Hanna, Polym. Eng. Sci., 22 (1982) 705.
- 22 J.R. Fried, T. Lorenz and A. Ramdas, Polym. Eng. Sci., 25 (1985) 1048.
- 23 E.M. Woo, J.W. Barlow and D.R. Paul, J. Appl. Polym. Sci., 30 (1985) 4243.
- 24 R.J. Peterson, R.D. Corneliussen and L.T. Rozelle, Polym. Prepr., 10(1) (1969) 385.
- 25 German Patent 3,346,303; Chem. Abstr., 103 (1985) 216351h.