EXCESS MOLAR VOLUMES OF TRIBUTYL PHOSPHATE(TBP) +n-ALKANOL, n-ALKANOL + n-ALKANE MEASURED WITH A MODIFIED CONTINUOUS-DILUTION DILATOMETER *

LIU YUN, WANG ZHEN LONG, SUN XIAN DA and ZHOU RUI Department of Chemistry, Tsinghua University, Beijing (P.R.C.) (Received 5 February 1987)

ABSTRACT

Excess molar volumes V_m^E as a function of mole fraction x for CH₃OH+TBP, n-C₅H₁₁OH+TBP, n-C₄H₉OH+TBP, n-C₄H₉OH+n-C₈H₁₈, n-C₅H₁₁OH+n-C₁₀H₂₂, and n-C₅H₁₁OH+n-C₁₂H₂₆ at 298.15 K and n-C₄H₉OH+TBP at 303.15 K were measured in a modified continuous-dilution dilatometer. Excess molar volumes are positive over the entire range of mole fraction x for eight binary systems. The values of V_m^E increase with increasing chain length of the molecule of n-alkanol or n-alkane.

INTRODUCTION

The systems for n-alkanol + TBP (tributyl phosphate) are important for the extraction industry. Many works on excess volumes of n-alkanol + nalkane have been reported [1-3]. The present work was undertaken in order to study the interactions between polar and weak polar as well as polar and non-polar molecules and the effect of chain length of n-alkane or n-alkanol molecules on V_m^E values.

EXPERIMENTAL

Analytical reagents TBP, methanol, n-butanol, n-pentanol, n-octane, ndecane, n-dodecane, benzene and cyclohexane were purified by fractional distillation using a 1.5 m long column packed with fine copper rings. All of these distilled reagents were stored over 4 Å molecular sieves. Before loading them into the dilatometer, the compounds were degassed. The densities and refractive indices agree well with those reported in the literature [4,5].

Excess volumes were measured in a modified continuous-dilution dilatometer. The apparatus [6] is shown in Fig. 1 and is based on the Stokes and Levien dilatometer [8] and the Kumaran and McGlashan tilting dilution

^{*} Paper presented at the Sino-Japanese Joint Symposium on Calorimetry and Thermal Analysis, Hangzhou, People's Republic of China, 5–7 November 1986.

Fig. 1. The modified continuous-dilution dilatometer illustrated in detail in ref. 6.

dilatometer [7]. The proper working of the apparatus was checked by $xc-C_6H_{12} + (1-x)C_6H_6$, where x is the mole fraction of cyclohexane (c- C_6H_{12}). The results were fitted to eqn. 1.

Fig. 2. Deviations of V_m^E of $xc-C_6H_{12} + (1-x)C_6H_6$. •, Experimental values; curve 1, Kumaran and McGlashan [7]; curve 2, Stokes et al. [8].

TABLE 1

The least-squares parameters and standard deviations s for $xc-C_6H_{12} + (1-x)C_6H_6$ at 298.15 K

$\overline{a_0}$	<i>a</i> ₁	<i>a</i> ₂	$s (\mathrm{cm}^3 \mathrm{mol}^{-1})$	Reference
2.5981	-0.0893	0.0493	0.0007	This work, [6]
2.5983	-0.0990	0.0518	0.0006	[7]
2.5988	-0.0901	0.0345	0.0008	[8]

$$V_{\rm m}^{\rm E} = x(1-x) \Big[a_0 + a_1(1-2x) + a_2(1-2x)^2 + a_3(1-2x)^3 \Big]$$
(1)

The least-squares parameters and standard deviations are given in Table 1 for comparison with the results of Kumaran and McGlashan and Stokes et al. [7,8]. The excess volumes were reproducible to $0.001 \text{ cm}^3 \text{ mol}^{-1}$. Fig. 2 gives a comparison of measurements at 298.5 K between the present results and Kumaran et al. from the literature. Our results agree with those by Kumaran and McGlashan [7] as shown in Fig. 2 in the form of

 $\Delta V_{\rm m}^{\rm E} = V_{\rm m,exp}^{\rm E} - V_{\rm m,calc.(eqn.(1))}^{\rm E} \qquad \text{for 298.5 K}$

RESULTS

The experimental values of V_m^E measured for $n-C_nH_{2n+1}OH + TBP$ and $n-C_nH_{2n+1}OH + n-C_nH_{2n+2}$ are given in Tables 2 and 3, the parameters a_0 ,

Fig. 3. Excess molar volumes V_m^E at 298.15 K. _____, Calculated from eqn. (1)., \blacktriangle , $x CH_3OH + (1-x)TBP$; \blacksquare , $xn-C_4H_9OH + (1-x)TBP$; \blacksquare , $xn-C_5H_{11}OH + (1-x)TBP$.

TABLE 2

Experimental excess molar volumes V_m^E for $n-C_nH_{2n+1}OH + TBP$ at 298.15 K and 303.15 K, $S_m^E = V_{mexp}^E - V_{meal}^E$

x	$V_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	$S_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	x	$V_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	$S_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)		
xCH ₃ OH + (1 – x)TBP at 298.15 K							
0.1313	0.0335	0.0019	0.8691	0.0888	-0.0014		
0.3180	0.0762	-0.0031	0.8883	0.0809	-0.0005		
0.4203	0.1004	0.0000	0.9028	0.0740	0.0000		
0.5567	0.1231	0.0033	0.9164	0.0681	0.0008		
0.6549	0.1269	0.0012	0.9196	0.0667	0.0013		
0.7649	0.1164	-0.0024	0.9258	0.0662	0.0018		
0.8244	0.1037	-0.0022	0.9342	0.0585	0.0023		
0.8464	0.0970	-0.0019	0.0556 0.0556		0.0026		
$x n-C_4 H_0 OH + (1-x)TBP$ at 298.15 K							
0.0733	0.1003	0.0010	0.6716	0.4729	-0.0001		
0.1685	0.2143	-0.0008	0.7180	0.4417	-0.0010		
0.2640	0.3188	0.0006	0.7630	0.4004	-0.0008		
0.3679	0.4102	-0.0013	0.7930	0.3668	-0.0002		
0.4694	0.4752	0.0008	0.8171	0.3354	-0.0004		
0.5484	0.4974	0.0004	0.8407	0.3024	0.0004		
0.6178	0.4940	0.0008	0.8635	0.2676	0.0012		
$x n-C_5 H_{11}OH$	(1-x)TBP at	298.15 K					
0.0649	0.0888	-0.0006	0.6701	0.4998	0.0007		
0.1486	0.1965	-0.0005	0.7001	0.4818	0.0004		
0.2313	0.2948	0.0007	0.7401	0.4494	0.0001		
0.3426	0.4083	0.0017	0.7667	0.4223	-0.0002		
0.4335	0.4279	-0.0025	0.7963	0.3869	-0.0005		
0.5875	0.5219	0.0009	0.8207	0.3539	-0.0005		
0.6330	0.5143	0.0004	0.8529	0.3054	0.0003		
xn-C ₄ H ₉ OH	+(1-x)TBP at	303.15 K					
0.0291	0.0401	0.0001	0.6050	0.5077	0.0009		
0.0858	0.1124	-0.0013	0.6671	0.4874	-0.0003		
0.1480	0.1900	0.0006	0.7281	0.4466	-0.0004		
0.2012	0.2514	0.0001	0.7646	0.4109	-0.0010		
0.3131	0.3660	0.0001	0.8068	0.3602	-0.0010		
0.3879	0.4285	-0.0011	0.8361	0.3194	-0.0002		
0.4630	0.4760	-0.0015	0.8610	0.2808	0.0007		
0.5515	0.5090	0.0022	0.8709	0.2644	0.0011		

 a_1 , a_2 , a_3 are obtained by the least-squares method, and the standard deviations s are given in Table 4. The V_m^E vs. x plots are given in Figs. 3-5.

DISCUSSION

The excess molar volumes V_m^E for n-alkanol + TBP and n-alkanol + n-alkane are positive over the whole mole fraction x range and increase with

TABLE 3

Experimental excess molar volumes for $n-C_nH_{2n+1}OH + n-C_nH_{2n+2}$ at 298.15 K

x	$V_{\rm m}^{\rm E}$ (cm ³ mol ⁻¹)	$\frac{S_{\rm m}^{\rm E}~({\rm cm}^3}{{\rm mol}^{-1}})$	<i>x</i>	$V_{\rm m}^{\rm E} ({\rm cm}^3 { m mol}^{-1})$	$\frac{S_{\rm m}^{\rm E}~({\rm cm}^3}{{\rm mol}^{-1}})$		
$\overline{x n - C_4 H_9 C}$	$\overline{\mathbf{H} + (1 - x)\mathbf{n} - \mathbf{C}_s}$	H ₁₈					
0.1374	0.2125	0.0011	0.8123	0.1245	-0.0009		
0.2973	0.2909	-0.0018	0.8477	0.1032	-0.0002		
0.4347	0.2877	0.0005	0.8791	0.0834	0.0002		
0.5535	0.2546	0.0016	0.9014	0.0688	0.0004		
0.6551	0.2101	-0.0001	0.9213	0.0557	0.0007		
0.7508	0.1598	-0.0012	0012 0.9353 0.0463		0.0009	0.0009	
$x n-C_5 H_{11}OH + (1-x)n-C_8 H_{18}$							
0.1570	0.1740	0.0024	0.8089	0.0568	-0.0010		
0.2708	0.2123	-0.0026	0.8553	0.0392	-0.0005		
0.3994	0.2106	-0.0023	0.8797	0.0311	0.0008		
0.5177	0.1862	0.0048	0.8983	0.0250	0.0009		
0.6202	0.1419	0.0008	0.9136	0.0203	0.0010		
0.7075	0.1002	-0.0021	0.9255	0.0168	0.0010		
0.7628	0.0756	-0.0020					
$x n-C_5 H_{11}$	OH + (1 - x)n-C	$C_{10}H_{22}$					
0.0772	0.1794	0.0141	0.7487	0.2022	-0.0038		
0.1999	0.2749	-0.0129	0.8087	0.1603	-0.0005		
0.3085	0.3218	0.0004	0.8454	0.1265	-0.0034		
0.4957	0.3214	0.0080	0.8871	0.0950	0.0017		
0.6013	0.2857	0.0013	0.9127	0.0748	0.0042		
0.7076	0.2283	-0.0045	0.9350	0.0566	0.0054		
$x n-C_5 H_{11}OH + (1-x)n-C_{12}H_{26}$							
0.0789	0.1894	0.0115	0.7763	0.2499	-0.0054		
0.2339	0.3313	-0.0126	0.8192	0.2135	-0.0029		
0.3385	0.3824	0.0005	0.8666	0.1670	-0.0002		
0.4370	0.3960	0.0063	0.8971	0.1349	0.0026		
0.5525	0.3782	0.0044	0.9242	0.1034	0.0041		
0.6646	0.3280	-0.0031	0.9434	0.0797	0.0046		

TABLE 4

Values of the parameters a_0 , a_1 , a_2 , a_3 of eqn. (1) and standard deviations s

Mixture	<i>T</i> (K)	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	$s \overline{(cm^3)}$ mol ⁻¹
CH ₃ OH+TBP	298.15	0.4524	-0.2743	0.1508	-0.1378	0.0020
$n-C_4H_9OH+TBP$	298.15	1.9448	-0.6518	-0.1166	0.2536	0.0008
$n-C_4H_9OH+TBP$	303.15	1.9751	~ 0.7278	- 0.1124	0.2703	0.0010
$n-C_5H_{11}OH + TBP$	298.15	2.0361	-0.7128	- 0.0778	0.1838	0.0009
$n-C_4H_9OH + n-C_8H_{18}$	298.15	1.0837	0.5989	0.3885	0.1613	0.0010
$n-C_{5}H_{11}OH + n-C_{8}H_{18}$	298.15	0.7494	0.0534	0.1386	0.1057	0.0021
$n-C_5H_{11}OH + n-C_{10}H_{22}$	298.15	1.2506	0.3881	0.4802	0.6000	0.0069
$n-C_5H_{11}OH + n-C_{12}H_{26}$	298.15	1.5372	0.2949	0.5594	0.4466	0.0063

Fig. 4. Excess molar volumes V_m^E of $xn-C_4H_9OH + (1-x)TBP$. ———, Calculated from eqn. (1); •, 298.15 K; •, 303.15 K.

increasing chain length of molecules of n-alkanol or n-alkane. The values of $V_{\rm m}^{\rm E}$ increase in the sequence CH₃OH + TBP < n-C₄H₉OH + TBP < n-C₅H₁₁OH + TBP; n-C₄H₉OH + TBP at 298.15 K < n-C₄H₉OH + TBP at

Fig. 5. Excess molar volumes V_m^E at 298.15 K. _____, Calculated from eqn. (1); \blacklozenge , $xn-C_5H_{11}OH + (1-x)n-C_8H_{18}$; \blacklozenge , $xn-C_4H_9OH + (1-x)n-C_8H_{18}$; \blacksquare , $xn-C_5H_{11}OH + (1-x)n-C_{12}H_{26}$.

303.15 K; $n-C_5H_{11}OH + n-C_8H_{18} < n-C_4H_9OH + n-C_8H_{18} < n-C_5H_{11}OH + n-C_{10}H_{22} < n-C_5H_{11}OH + n-C_{12}H_{26}$.

The excess molar volumes obtained here can be explained as follows. Alkanols are self-associated due to H-bonding. The H-bondings are broken on dilution with a non-polar (e.g. n-alkane) or weak polar (e.g. TBP) solvent giving positive contributions to the excess volumes. The disruption of the original order of both the n-alkanol and TBP or both n-alkanol and n-alkane molecules might also make a contribution to the excess volumes, due to non-specific interactions between unlike molecules. The chain length of an alkane or an n-alkanol has a considerable effect on excess volumes, due to the steric structure. Because of these, the values of V_m^E increase with increasing chain length of the n-alkanol and n-alkane in n-alkanol + TBP systems and in n-alkanol + n-alkane systems, respectively.

It has been found [9] that the dimerization constant of TBP dimer is about 2.9 dm³ mol⁻¹. This value is small, therefore the dissociation TBP dimer and the interaction between TBP and n-alcohol molecules are only providing a small contribution to V_m^E of the TBP + n-alcohol binary systems. It can be seen from Fig. 4 that values of V_m^E for n-C₄H₉OH + TBP at 298.15 K and 303.15 K are positive with a positive temperature coefficient. Perhaps the H-bonding breaking increases with increasing temperature of the mixture. The volume behavior summarized above can be explained. When a mixture is formed, changes in self-association and physical interaction of the van der Waals type lead to an increase in volume; changes of "free volume" and interstitial accommodation also lead to change of volume.

REFERENCES

- 1 A.J. Terszczanowicz and G.C. Benson, J. Chem. Thermodyn., 9 (1977) 1189.
- 2 A.J. Terszczanowicz and G.C. Benson, J. Chem. Thermodyn., 12 (1980) 173.
- 3 A.J. Terszczanowicz and G.C. Benzon, J. Chem. Thermodyn., 13 (1981) 253.
- 4 J. Timmermans, Physicochemical Constants of Pure Organic Compounds, Elsevier, New York, 1950.
- 5 J.A. Riddick and W.B. Bunger, Techniques in Chemistry, Vol. II, Organic Solvents, Wiley-Interscience, New York, 1970.
- 6 Xie Xin You and Liu Yun, Chemistry (China), 12 (1984) 23.
- 7 M.K. Kumaran and M.L. McGlashan, J. Chem. Thermodyn., 9 (1977) 259.
- 8 R.H. Stokes, R.H. Levin and K.N. Marsh, J. Chem. Thermodyn., 2 (1970) 245.
- 9 A.S. Kertes, in C. Hanson (Ed.), Recent Advances in Liquid-Liquid Extraction, Pergamon, London, 1971, Chap. 2.