ENTHALPY OF FORMATION OF Co(cytosine)₂Cl₂

P M BURKINSHAW and C T MORTIMER

Chemistry Department, The University of Keele, Keele, Staffordshire ST5 5BG (Gt. Britain)

EG TYLER

Department of Chemistry of Biology, North Staffordshire Polytechnic, Stoke-on-Trent, Staffordshire ST4 2DE (Gt. Britain)

(Received 24 November 1987)

ABSTRACT

The value $\Delta H_{\rm f}^{\Theta}[{\rm Co(cytosine)_2Cl_2,cr}] = -835.0 \pm 4~{\rm kJ~mol^{-1}}$ has been determined from solution calorimetry. The mean bond dissociation $\overline{D}({\rm Co-cytosine}) = 216 \pm 13~{\rm kJ~mol^{-1}}$ is calculated

The enthalpy, $\Delta H(1) = -51.7 \pm 3$ kJ mol⁻¹, of reaction (1) (below) has been calculated from the relationship $\Delta H(1) = \Delta H(2) - 2\Delta H(3) - \Delta H(4)$, using the measured values $\Delta H(2) = -29.7 \pm 1.5$ kJ mol⁻¹, $\Delta H(3) = 0.41 \pm 0.08$ kJ mol⁻¹ of cytosine and $\Delta H(4) = -82.2 \pm 2.1$ kJ mol⁻¹, at 298 K

$$Co(cy)_2Cl_2(cr) \rightarrow CoCl_2(cr) + 2cytosine(cr)$$
 (1)

$$Co(cy)_2Cl_2(cr) + 27[HCl, 553 1H_2O](sln) \rightarrow solution A$$
 (2)

$$2 \text{cytosine(cr)} + 27 [\text{HCl}, 553 \text{ 1H}_2\text{O}] (\text{sln}) \rightarrow \text{solution B}$$
 (3)

$$CoCl_2(cr)$$
 + solution B \rightarrow solution A (4)

Using the $\Delta H_{\rm f}^{\oplus}$ values cytosine(cr) -235.4 ± 0.9 [1], ${\rm CoCl_2(cr)}=-312.5\pm0.5$ kJ mol⁻¹ [2], we calculate the value $\Delta H_{\rm f}^{\oplus}[{\rm Co(cytosine)_2Cl_2,cr}]=-835.0\pm4$ kJ mol⁻¹ Incorporating the enthalpy of sublimation of this complex, $\Delta H_{\rm sub}^{298}=162\pm14$ kJ mol⁻¹ [1,3] leads to the value $\Delta H_{\rm f}^{\oplus}[{\rm Co(cytosine)_2Cl_2,g}]=-673.0\pm18$ kJ mol⁻¹

The enthalpies $\Delta H_{\rm d}^{298}$ of the dissociation of crystalline complex ${\rm CoL_2Cl_2}$, where L is pyridine, 2-methylpyridine, triphenylphosphine [4] and acetonitrile [5] to crystalline ${\rm CoCl_2}$ and gaseous ligand have been reported previously and values are shown in Table 1. They are based on

$$CoL_2Cl_2(cr) \rightarrow CoCl_2(cr) + 2L(g)$$
 ΔH_d^{298}
 $CoL_2Cl_2(g) \rightarrow CoCl_2(g) + 2L(g)$ ΔH_g^{298}

2 2 1				
L	$\Delta H_{ m d}^{298}$	$\Delta H_{ m sub}^{298}$	ΔH_{g}^{298}	$\overline{\overline{D}}(M-L)$
pyridine	189	[100] ^a	323	162
2-methylpyridine	172	[100]	306	153
acetonitrile	100 ^ь	[100]	312	156
triphenylphosphine	242	[100]	342	171
cytosine	351	162 ± 14 °	433	216

TABLE 1
Enthalpies of dissociation of CoL₂Cl₂ complexes (kJ mol⁻¹)

 $\Delta H_{\rm f}^{\, \oplus}({\rm CoCl_2,cr}) = -312.5 \pm 0.5 \ {\rm kJ \ mol^{-1}} \ [2], \ \Delta H_{\rm sub}^{298}({\rm cytosine}) = 155 \pm 3 \ {\rm kJ \ mol^{-1}} \ [3],$ and a more recent value $\Delta H_{\rm sub}^{298}({\rm PPh_3}) = 96.2 \pm 0.2 \ {\rm kJ \ mol^{-1}} \ [6]$ than was used previously [4] Enthalpies of the gas-phase dissociation reactions $\Delta H_{\rm g}^{298}$ can be calculated by incorporating the enthalpies of sublimation of the complexes and the value $\Delta H_{\rm sub}({\rm CoCl_2}) = 234 \pm 2 \ {\rm kJ \ mol^{-1}}$ [7]

Also shown in Table 1 are the mean bond dissociation energies of the metal ligand bonds $\overline{D}(M-L) = \frac{1}{2}\Delta H_g^{298}$

The structure of gaseous $Co(cy)_2Cl_2$ is not known However, a crystal study of the complex $Cu(cy)_2Cl_2$ has been made [8] This species is essentially planar with two strong Cu-N(3) bonds (1 955 Å) and two Cu-Cl bonds Weak intramolecular Cu-O(2) interactions (2 808 Å) above and below the plane complete the octahedral geometry It is possible that the structure of gaseous $Co(cy)_2Cl_2$ will be similar If $\overline{D}(Co-N)$, pyridine) = $\overline{D}(Co-N)$, cytosine), then $\overline{D}(C-O)$, cytosine) = 50 kJ mol⁻¹, a value which is consistent with the likely structure of this complex

The complex Co(cy)₂Cl₂ was prepared by the method given in ref 9 The CHN microanalysis was satisfactory Enthalpies of solution reactions were measured by use of an L K B solution calorimeter Temperature changes in the vessel were determined with a platinum resistance sensor which formed one arm of a modified Whetstone bridge The amplified off-balance potential was recorded by a BBC Model B micro-computer Measurement of the enthalpy of solution of THAM in acid gave results to within 0.05% of the anticipated value. Uncertainties quoted are twice the standard deviation of the mean value of five determinations in each case.

REFERENCES

- 1 R Sabbah, M Nabayian and M Laffitte, CR Acad Sci, 284 (1977) 953
- 2 Technical Note 270 3/4 National Bureau of Standards, Washington DC, (1968) 1969
- 3 PB Burkinshaw and CT Mortimer, J Chem Soc Dalton Trans, (1984) 75
- 4 S J Ashcroft, G Beech and C T Mortimer, J Chem Soc A, (1967) 929
- 5 C Airoldi, A P Chagas and O A De Oliveira, J Chem Thermodyn, 15 (1983) 153

^a Brackets indicate estimated values ^b Ref 5 ^c Ref 3

- 6 J B Pedley and J Rylance, CATCH Data, Organic and Organometallic Compounds, University of Sussex, 1977
- 7 MP Kularnı and VV Dadape, High Temp Sci, 3 (1979) 277
- 8 M Sundaralingan and J A Carrabine, J Mol Biol, 61 (1971) 287
- 9 M Goodgame and KW Johns, Inorg Chim Acta, 46 (1980) 23