SOLID-SOLID INTERACTION BETWEEN FERRIC OXIDE AND SODIUM NITRATE AND THERMAL STABILITY OF THE SODIUM FERRITES PRODUCED

G A EL-SHOBAKY, A A IBRAHIM and S EL-DEFRAWY *National Research Centre, Dokkl, Cawo (Egypt)* (Received 24 November 1987)

ABSTRACT

The interaction between α -Fe,O₃ and NaNO₃ was studied using DTA, TG, DTG and X-ray diffraction techniques

The results obtained revealed that fernc oxide prevented the thermal decomposition of sodium nitrate, even when heated for a long period at 500° C, owing to the formation of some type of solid solution of $Fe₂O₃$ in the molten NaNO₃. When these solids were mixed in equimolar ratios they underwent solid-solid interaction at $700\degree$ C yielding well-crystallized NaFeO₂(tetragonal) and α -NaFeO₂(hexagonal) phases Heating at 800 °C resulted in the thermal decomposition of most of the $NaFeO₂$ produced and led to the formation of a small amount of β -NaFeO₂ without affecting the crystallinity of the α -NaFeO₂ The α - and β -NaFeO₂ phases disappeared on heating at 900 °C, while well-crystallized NaFeO₂ (tetragonal) and $\text{Na}_{10}\text{Fe}_{16}\text{O}_{29}$ phases appeared Heating at 1000 °C brought about a complete conversion of NaFeO₂ into well-crystallized Na₁₀Fe₁₆O₂₉, which decomposed completely at 1100 °C giving α -Fe₂O₃ and NaFeO₂(tetragonal) However, the ferrite produced suffered some type of deformation

Similar results were obtained for $Fe₂O₃$ and $NaNO₃$ mixed in a molar ratio of 2 1, however, β -NaFeO₂ was not produced and Na₁₀Fe₁₆O₂₉ was stable even when heated at lloo"c

INTRODUCTION

Sodium fernte exists in two stable forms having the formulae NaFeO, and $Na_{10}Fe_{16}O_{29}$ [1–5] The former compound exists in three different crystallographic forms α , β and γ [1,3,4] Alpha-NaFeO, can be prepared by an interaction between α -Fe₂O₃ and molten NaOH at about 200 °C in an inert atmosphere, or via solid-solid interaction between α -Fe₂o₃ and Na₂CO₃ at temperatures between 500 and 700 °C Sodium ferrite, $Na_{10}Fe_{16}O_{29}$, can be obtained by the interaction between NaFeO₂ and ferric oxide at 850° C [3,4] The preparation and physlcochenncal, magnetic and structural characterization of sodium ferrities have been the object of several investigations [3,4,6-10] However, the various factors affecting the thermal stability of sodium ferrites have received less attention

This paper reports the results of a study on the solid-solid interactions between $Fe₂O₃$ and NaNO₂ (molar ratios 1 1 and 2 1) and on the thermal stability of the sodium ferntes produced The techmques employed were DTA, TG, DTG and X-ray diffraction

EXPERIMENTAL

Materials

Two specimens of fernc oxide and sodium nitrate were prepared by mixing finely powdered, well-crystallized, α -Fe₂O₃ with NaNO₃ with the addition of a small amount of distilled water The Fe, O_3 , NaN O_3 , molar ratios were 1 1 and 2 1 The solid samples produced were dried at 100° C and calcined in air at temperatures between 500 and 1100° C, the time of heating was fixed at 6 h

Techmques

DTA, TG and DTG analyses of the two $Fe₂O₃$ -NaNO₃ specimens were carried out using a Netzsch-Geratebau simultaneous thermal analysis apparatus (STA 409, type 6 223) The rate of heating was 10° C min⁻¹ and 200 mg of each specimen was used

An X-ray investigation of the thermal products of the solids was performed with a Philips diffractometer (type PW 1390) The patterns were run with iron-filtered Co radiation ($\lambda = 1.7889$ Å) at 40 kV and 30 mA with a scanning speed of 2° in 2θ min⁻¹

RESULTS AND DISCUSSION

Thermal behavlour of Fe,O,-NaNO, sokds

Figures 1 and 2 show DTA, TG and DTG curves of nuxtures of fenc oxide and sodium nitrate (molar ratios of $1 \t1$ and $2 \t1$) Two strong, sharp endothernuc peaks are observed for both samples The maxima of these peaks are located at 310 and 734 \degree C for the sample with a molar ratio of 1 1 and at 280 and $710\degree$ C for the sample with a molar ratio of 2 1 The peaks at 280 and 310° C are not accompanied by any loss in weight, whereas the peaks at 710 and 734" C are followed by 14% and 23% loss m weight for the sohds having the compositions $2Fe₂O₃$ NaNO₃ and Fe₂O₃ NaNO₃, respectively The peaks at 280 and 310 $^{\circ}$ C may characterize a phase transformation rather than a chermcal interaction In fact pure sodium nitrate melts at 306 8 $^{\circ}$ C and decomposes at 380 $^{\circ}$ C [11] These peaks thus correspond to the

Fig 1 DTA curves of nurtures of sohds of femc oxide and sodium mtrate wth the compositions (a) $Fe₂O₃$ NaNO₃ and (b) $2Fe₂O₃$ NaNO₃

change $\text{NaNO}_3(s) \rightarrow \text{NaNO}_3(l)$ The absence of any endothermic peak in the DTA curves (Fig 1) at temperatures near the normal decomposition temperature of sodium nitrate clearly indicate the role of $Fe₂O₃$ in hindering the thermal decomposition of the molten NaNO₃. The peaks at 710 and 734 $\rm{^{\circ}C}$ may correspond to solid-sohd interaction between fernc oxide and sodium mitrate, producing sodium ferrite compound(s). In fact, it has been reported by Neroslavskaya et al [9] that Fe₂O₃ interacted with Na₂CO₃ at 700^oC to produce sodium fernte, NaFeO₂ The identification of the sodium fernte compounds formed at the different temperatures was performed using XRD measurements (see below)

X-ray investigation of the thermal products of ferric oxide and NaNO₃

XRD revealed that the fernc oxide employed consisted entirely of the well-crystallized α -Fe₂O₃ phase. Figures 3 and 4 represent the X-ray diffraction patterns of the Fe₂O₃ NaNO₃ and $2Fe₂O₃$ NaNO₃ samples, respectively, precalcined for 6 h at 500, 700, 800, 900, 1000 and 1100° C Additional samples were subjected to prolonged heating for 24 h at 500° C It can be seen from Figs. 3 and 4 that all the diffraction lines of the α -Fe₂O₃ and NaNO, phases were detected m the patterns of the samples precalcmed at 500 °C for 6 h and 24 h These results clearly indicate the effect of $Fe₂O₃$ in preventing the thermal decomposition of the molten $NaNO₃$ even when heated at 500° C for a long period, and also show the absence of any

Fig 2 TG and DTG curves of nuxtures of sohds of femc oxide and sodmm mtrate wth the compositions (a) $Fe₂O₃$ NaNO₃ and (b) $2Fe₂O₃$ NaNO₃

chenucal interaction between these solids at ths temperature The acquired thermal stability of sodium mtrate m the presence of ferric oxide may be tentatively attnbuted to the possible formation of some type of sohd solution of $Fe₂O₃$ in the molten NaNO₃. The absence of any solid-solid interaction at 500° C is not surprising In fact, it has been reported by several workers that the solid-solid interaction between α -Fe₂O₃ and $Na₂CO₃$ does not take place at temperatures below 700 °C [7,9] However, Thery and Collongues [3,4] have reported a possible chermcal interaction, m the solid state, between γ -Fe₂O₃ and Na₂CO₃ producing sodium ferrities at temperatures starting from 500° C

Heatmg the samples at 700°C led to the disappearance of all the diffraction lines of the free NaNO₃ phase (cf. Figs. 3 and 4) and a subsequent appearance of two sets of diffraction hnes The diffraction lines of α -Fe₂O₃ were detected in the patterns of the various samples precalcined at $500-1100$ ° C These lines are not given in Figs. 3 and 4 with the exception of the solids precalcmed at 500" C. The *d* spacings of the newly detected lines were calculated to be 2 64, 4 $30_{0.8}$, 3 $02_{0.7}$, 4.45 $_{0.65}$, 2 $84_{0.50}$ and 2 19_x , 5.37_{0.7}, 2.49_{0.5}, 1.51_{0.4}. These lines characterized two sodium ferrite phases, namely NaFeO₂(tetragonal) and α -NaFeO₂(hexagonal), respectively [12]. The intensities of the diffraction lines of the tetragonal form were almost

Fig 3 X-ray diffraction patterns of the thermal products of the solid $Fe₂O₃$ NaNO₃ (1) NaNO₃, (2) α -Fe₂O₃, (3) NaFeO₂(tetragonal), (4) α -NaFeO₂, (5) β -NaFeO₂(hexagonal), (6) $Na_{10}Fe_{16}O_{29}$

Fig 4 X-ray diffraction patterns of the thermal products of the solid $2Fe₂O₃$ NaNO₃ (1) NaNO₃, (2) α -Fe₂O₃, (3) NaFeO₂, (4) α -NaFeO₂, (5) β -NaFeO₂, (6) Na₁₀Fe₁₆O₂₉

twice those of the hexagonal form The formation of these compounds may proceed accordmg to the reaction

$$
3Fe2O3 + 6NaNO3 \frac{700 °C}{2} + 4NaFeO2(tetragonal) + 2NaFeO2(hexagonal)+ 6NO2(g) + 3/2O2(g)
$$

The completion of this reaction, in the samples with the compositions $Fe₂O₃$ NaNO₃ and 2FeO₃ NaNO₃ should be followed by a loss in weight of 22 and 12 5%, respectively. These values are very close to those found experimentally (cf Fig 2), indicating the absence of any unreacted $NaNO₃$ This conclusion agrees well with the XRD measurements

It can be seen from Figs 3 and 4 that an increase in the precalcination temperature to $800\degree$ C results in a considerable decrease (about 80%) in the crystalhmty of NaFeO(tetragonal), without affecting the crystalhmty of α -NaFeO₂(hexagonal). These results indicate the thermal stability of the α -phase at 800 $^{\circ}$ C and show the transformation of the majority of the tetragonal $NaFeO₂$ into a poorly crystalline compound Some of the diffraction lines, of very low intensity, characterizing β -NaFeO₂ [13] were also found in the diffraction patterns of Fe₂O₃ NaNO₃ preheated at 800[°]C The formation of NaFeO₂(orthorhombic) occurred via transformation of a very small amount of NaFeO₂(tetragonal) Babcock-Hitach [7] reported the formation of β -NaFeO₂ via an interaction between a black liquor (rich in NaOH) and powdered Fe₂O₃ in a fluidized bed furnace at 800 $^{\circ}$ C

It can also be seen from Figs 3 and 4 that a further increase m the precalcination temperature to 900 °C produces the disappearance of both α and β -NaFeO₃ with the recrystallization of NaFeO₂ in the tetragonal form. This treatment also led to the appearance of all the diffraction lines of well-crystallized $Na_{10}Fe_{16}O_{29}$ These results enable us to write

 $NaFeO$, (amorphous) $\frac{900\text{°C}}{2}NaFeO$, (tetragonal)

 $10NaFeO₂(tetragonal) + 3Fe₂O₃ \frac{900 °C}{10}Na₁₀Fe₁₆O₂₉$

 $10NaFeO₂(\alpha$ and β) + 3Fe₂O₃ $\frac{900 °C}{2}Na₁₀Fe₁₆O₂₀$

These reactions are not accompamed by a loss or gam m weight of the reacting species, m accordance wth the TG and DTG results (Fig 2) The fact that more of the DTA curves of the various samples include any endothermic or exothermic peaks at temperatures near $900\,^{\circ}$ C may indicate that the above-mentioned reactions take place very slowly at $900\,^{\circ}$ C and/or the thermal effects accompanying the reaction are too small to be easily detected The presence of a well-crystallized unreacted portion of NaFeO,- (tetragonal) phase with the $Na_{10}Fe_{16}O_{29}$ phase in the samples precalcined for 6 h at $900\,^{\circ}$ C may indicate that the reactions leading to the formation of $Na_{10}Fe_{16}O_{29}$ take place slowly at 900 °C The completion of these reactions required prolonged heating at 900°C or roasting at higher temperatures (1000 °C) In fact, the precalcination at 1000 °C of Fe,O₃ and NaNO₃ mixed in molar ratios of 1 1 and 2 1 resulted in a complete transformation of NaFeO₂ into well-crystallized Na₁₀Fe₁₆O₂₉ as shown from Figs 3 and 4

It can also be observed from Figs 3 and 4 that the firing of the different samples at 1100 °C resulted in a complete decomposition of $Na_{10}Fe_{16}O_{29}$, in the case of the sample with an equimolar ratio of α -Fe₂O₃ and NaNO₃, producing well-crystallized α -ferric oxide and NaFeO₂(tetragonal) However, the relative intensities of most of the diffraction lines of $NaFeO₂$ produced at 1100° C were effectively diminished (cf Fig 3) These results may indicate some type of deformation or disordering of the NaFeO, lattice In contrast, for the sample with a composition of $2Fe₂O₃$, NaNO₃, the sodium ferrite, $Na_{10}Fe_{16}O_{29}$, underwent partial thermal decomposition by firmg at elevated temperatures (1100 $^{\circ}$ C) (Fig 4) These results indicate the role of excess Fe,O₃ in increasing the thermal stability of $Na_{10}Fe_{16}O_{29}$ It seems that the presence of excess $Fe₂O₃$, more than twice the amount required for the formation of ferrite, shifts the reaction $\rm Na_{10}Fe_{16}C$ $1100 °C$ \Rightarrow 10NaFeO₂ + 3Fe₂O₃ in the reverse direction

CONCLUSIONS

The mam conclusions that can be derived from the experimental results are as follows

(1) Fernc oxide nuxed with sodium nitrate m molar ratios of 1 1 or 2 1 prevented the thermal decomposition of NaNO_3 even when heated for a long period at 500°C Pure NaNO, decomposes readily at 380" C The induced thermal stability of ths compound may result from the formation of some type of solid solution of $Fe₂O₃$ in molten NaNO₃

(2) Solid-solid interactions between α -Fe₂O₃ and NaNO₃ occurred at $700\degree$ C leading to the production of well-crystallized sodium ferrites NaFeO, (tetragonal and hexagonal forms) Most of the tetragonal form decomposed at 800 °C yielding amorphous compound(s) together with a small amount of β -NaFeO₂(orthorhombic)

(3) Alpha-Fe₂O₃ interacted with NaFeO₂ at 900 $^{\circ}$ C producing well-crystallized $\text{Na}_{10}\text{Fe}_{16}\text{O}_{29}$ which remained stable at 1000°C This compound decomposed readily at $1100\degree$ C in the sample containing an equimolar ratio of $Fe₂O₃$ and NaNO₃ However, an important increase in the thermal stability of $Na_{10}Fe_{16}O_{29}$ was observed for the sample with the composition $2Fe₂O₃$ NaNO₃

REFERENCES

- 1 D Dodero, J Chim Phys, 49 (1952) 211
- 2 D Dodero and M Deportes, C R Acad Sci, 242 (1956) 2939
- 3 M Thery and P Collongues, C R Acad **Scl ,** 247 (1958) 2003
- 4 P Collongues and M Thery, Bull Soc Chim Fr, 5-26 (1959) 1141
- 5 P Pascal, Nouveau Traité de Chimie Minérale, Tome II, Masson, Paris, 1966, pp 695, 696
- 6 E M Kruger and Yu D Tetrayakov, Izv Akad Nauk, SSSR, Neorg Mater, 8(2) (1972) 404
- 7 K K Babcock-Hltachl, Japan, Koka, Tokyo, Koho, 58,132,193 (1983), Cl D 21C ll/OO, 06 Aug 1983, Appl 82/14, 335, 2 Feb 1982
- 8 D W Seetharaman and L I Staffanson, Scand J Metall, 13 (11) (1984) 32
- 9 L L Neroslavskaya, O A Shabalına, V I Izotov and A V Kalyamın, Izv Akad Nauk, SSSR, Met, 2 (1986) 97
- 10 E Martinez-Tamayo, A Beltran-Porter and D Beltran-Porter, Thermochim Acta, 97 (1986) 97
- 11 D Charles and M S Hodgman, Handbook of Chermstry and Physics, Chermcal Rubber Pubhshmg, 1962, p 657
- 12 Powder Diffraction File (JCPDS), International Centre for Diffraction Data, Swarthmore, PA, 1979
- 13 W Fukabe, J Phys Sot Jpn, 16 (1961) 1181