DTG AND DTA STUDIES ON SUGAR DERIVATIVES

F.J. REY, M*.C. RAMOS-SANCHEZ, M.L. RODRIGUEZ-MENDEZ, J. MARTIN-GIL and F.J. MARTIN-GIL* E.T.S.I.I. Universidad de Valladolid, 47011 Valladolid, Spain * Hospital del Río-Hortega, Valladolid, Spain

ABSTRACT

Many biological compounds which perform essential functions contain saccharides bonded to other types of structures. Sugar derivatives such as aminosugars, sugar alcohols (polyols), nucleosides, nucleotides, etc. (that have recently attracted increased attention, especially in the field of antibiotics) were now subjected to DTG and DTA studies in order to observe the differences with the results obtained on typical sugars.

INTRODUCTION

Interest in the thermal behaviour of sugars carried us to study the DTG and DTA-DSC curves of typical monosaccharides and polysaccharides. Present work on pyrolysis of sugar derivatives is also of great interest in terms of aiding in the understanding of the relationships between chemical structure and thermal activity for carbohydrates and by their medicinal value (aminoglycosides).

EXPERIMENTAL

All the samples were of analytical grade. They'were purchased by Merck and the aminoglycoside antibiotics by Hosbon, Upjohn and Antibioticos S.A of Leon. Idoxuridine was supplied by Viñas S.A. of Barcelona and Vidarabine by Parke-Davis. Thermal analysis was **car**ried out on a Perkin-Elmer 3600 and the DTA 1700. Instrument calibration was performed by a standard Indium sample. The material (approximately 5 mg) was wheighed in platinum (TG) or alumina crucibles (ATD). Ignited alumina was used as the reference material. The atmosphere was static air and the heating rate of 10°C/min.

Thermal Analysis Proc. 9th ICTA Congress, Jerusalem, Israel, 21–25 Aug. 1988 0040-6031/88/\$03.50 © 1988 Elsevier Science Publishers B.V. We found an excellent agreement between the decomposition phenomena observed for typical sugars and the results now reported (Table 1 and 2). Thus, the first DTG decomposition peak continues being a polymerization marker such as it is evidenced when we compare the DTG curves of amino sugars with those of aminoglycosides or the DTG curves of cardiotonic heterosides with those of di and oligosaccharides. In the same way, the first DTA effects show that the polyols were more stable than sugar analogues and much more stable than sugar acids: The temperature maxima of the peaks for Galactitol and Galactose were 189°C and 168°C respectively. The endotherms for Glucose and Gluconic acid having their peaks at 156°C and 125°C, respectively (Figs 1a and 1b).

The influence of other structural factors such as the fact that the Ascorbic acid has a p-lactonic ring unlike the Gluconic acid, also was evidenced by the higher stability of Ascorbic acid

Among the polyols included in this study, Galactitol and Mannitol, showed near identical calorimetric curves; nevertheless, a shoulder at 330° C of the peak at 316° C for Galactitol might suggest that their stability is higher than the stability of Mannitol, in agreement with the order of stability of their dehydrogenated analogues, i.e., Galactose > Mannose. When we compare each pair of values, it is obvious that hydrogenation of Galactose and Mannose retarded the onset of decomposition by 30° C approximately. An other feature is that the cyclitol Inositol is more stable that the polyols to which we have referred above.

As already mentioned in a previous report (1), the specific differences observed in monosaccharides are reflected in the thermal behaviour of polysaccharides: Within the aminoglycosides, Kanamycin, Gentamycin, Klobamycin, Tobramycin and Amikacin were more stable than Ribostamycin, Neomycin and Streptomycin, when judging from the DTG peak temperatures (Fig.2). This in agreement with the relative higher stability of ribofuranosyl versus pyranosyl rings. On the other hand, complex sulfates are more stable than neutral aminoglycoside antibiotics.

Within the sugar nucleosides and nucleotides screened here, the order of stability Vidarabine Adenosine is in accordance with the stability observed in the corresponding monomers Arabinose and Ribose.

With sugars containing PO₄, I or CN groups, two different types of behaviour could be distinguished: Phosphated sugars AMP and CoA had peak temperatures below Adenosine (similarly occurred with Idoxuridine) whereas the cyanogen glycoside Amygdalin has the same stability than nonsubstituted disaccharides.

68

RESULTS

TABLE 1

First thermal effects on sugar derivatives (in static air and at rate of 10°C/min)

Carbohydrates derivatives	Onset ef		I I	effect	effect II	
	TG	DTA (AH)	DTG	DTA endo	DTG	
	۶C	°C cal/g	۶C	٥C	۶C	
Polyols						
Galactitol	230	189 (68)	-	-	316 330	
Mannitol	240	170 (55)	-	-	315	
Inositol	260	228 (64)	-	-	377 411	
Other monosaccharide derivatives						
D-Gluconic acid	-	125 (69)	123sh 155	175exo 216 260sh	278	
L-Ascorbic acid	190	193 (59)	210 230	220exo 240	-	
Esculin 1.5 H ₂ 0 (a coumarin glucoside)	210	202 (143)	-	285exo 308	280	
Aminosugars:						
D-Galactosamine HCl	166	192 (99)	195	240	-	
N-Acetyl-D-Glucosamine	180	216 (100)	209	295 324	-	
Aminoglycoside antibiotics		171 (15)				
Tobramycin	235	218 (28) 276 (4)	286	-	-	
Amikacin	205	204 (27)	289	-	-	
Amikacin SO ₄	220	255 (36)	260	300	322	
Gentamycin SO ₄	220	265	249	-	299	
Klobamycin SO ₄	240	270 (28)	268	297	307	
Kanamycin SO ₄	240	262 (25)	261	293	301	
Ribostamycin SO ₄	205	230 (1)	234	291	272	
Neomycin SO ₄	205	164 (13) 247 (14)	240	287	294	
Streptomycin SO ₄	183	228 (2)	220	297	294 330	
Lincosamyds						
Lincomycin HC1	180	228 (36)	245	260exo	-	
Disaccharide deriv.						

TABLE 1 (cont.)

Carbohydrate	Onset	effect	effect I		effect II	
drivatives	TG	DTA (AH)	DTG	DTA (AH)	DTG	
	ōC	⁰C cal/g	ōC	⁰C cal/g	۶C	
"Sugar nucleosides and nucleotides"		******				
Vidarabine	272	268 (37)	295	290 (-80)	-	
Adenosine	234	239 (50)	-	285 (-97)	285	
Thymidine	210	192 (36)	-	250 267 (-53)		
Idoxuridine	186	(188) -	192	192 (-24)	297	
AMP	195	208 (8)	214	215 (- 9)	-	
СоА	205	205 217 (58)	208 230	(265) -	285	
Cardiotonic heterosides						
Digitonin	240	220 (4)	283sh	(280) -	323	

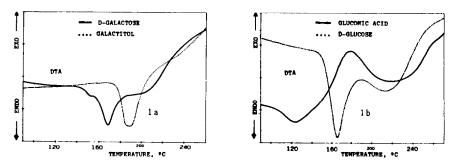
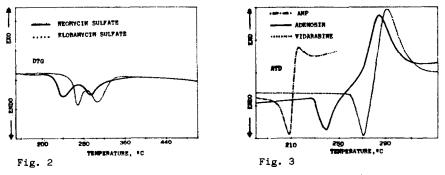


Fig. 1. DTA curves of: 1a) Galactitol and Galactose, 1b) Glucose and Gluconic acid. Heating rate 10° C min⁻¹ in static air.

Finally, and also for characterization purposes the nucleosides and nucleotides Vidarabine, Adenosine, Idoxuridine and AMP (adenosine 5'-monophosphate) showed in their DTA registra successive endothermic and exothermic peaks in the 200-300°C region (Fig. 3).

70


TABLE 2

Last thermal effects on sugar derivatives (in static air and at rate of $10\,^{\rm o}{\rm C/min})$

Carbohydrates	effect III effect IV		combustion	
derivatives	DTA exo	DTA exo	∆н (<u>∧</u> т)	DTG
	٥C	°C	cal/g ºC	۶C
Polyols				
Galactitol	303 338	415	-1663 (220-550)	-
Mannitol	313 341	428	-1221 (230-530)	527
Inosito1	346	478	-1606 (260-540)	-
Other monosaccharides derivatives				
D-Gluconic acid	317	430	-1150 (220-490)	408 447
L-Ascorbic acid	360	445	-1715 (245-530)	506
Esculin 1.5 H ₂ 0 (a coumarin glucoside)	427 483	558	-1982 (308-600)	520
Aminosugars:				
D-Galactosamine HCl	360	490	-2015 (240-650)	494
N-Acety1-D-Glucosamine	386	505	-1650 (295-750)	512
Aminoglycoside antibiotic	<u>6</u>			
Tobramycin	400	479 582	-1710 (400-640)	516
Amikacin	350 380 endo	502 630	-1721 (380-680)	624
Amikacin SO ₄	370	493 548	-1574 (305-580)	478 566
Gentamycin SO ₄	355	482 560	-1525 (310-650)	529
Klobamycin SO ₄	350	516 573 658	-1685 (313-676)	540
Kanamycin SO ₄	405	552 625	-1574 (300-650)	580
Ribostamycin SO ₄	380 455	510 597 650	-1663 (308-687)	510-580
Neomycin SO ₄	365	493 577	-1608 (287-645)	500-530
Streptomycin SO ₄	416	530 590	-1528 (300-640)	525 620
Lincosamyds				
Lincomycin HCl	403	483	- 813 (345-655)	500
Disaccharide deriv.				
Amygdalin 3 H ₂ 0	321	443 492	-1400 (250-550)	500

TABLE 2 (cont.)

Carbohydrates derivatives	effect III DTA exo ºC	effect IV DTA exo ºC	combustion ∆H (∆T) cal/g ºC	DTG ₽C
"Sugar nucleosides				<u>,</u>
and nucleotides" Vidarabine	380	477 530	-1515 (390-650)	527-560
Adenosine	425	477 532	-1435 (437-635)	520-560
Thymidine	365 386	482	- 462 (307-550)	-
Idoxuridine	385	462 516	-1662 (260-665)	480-530
AMP	378 425	580	-1680 (250-700)	500-620
CoA	376	493	-1603 (265-535)	500-520
Cardiotonic heterosides Digitonin	374	442 515	-1895 (280-560)	520-540

DTG traces of Neomycin Sulfate and Klobamycin Sulfate (Fig 2) and DTA traces of AMP, Adenosin and Vidarabine in static air, 10^{9} C min⁻¹(Fig 3).

The reported different phenomena, presented in this communication in a preliminary form, need a precise comparison with the literature concerning carbohydrate derivatives in order to put forward basic contributions in characterizing the thermal behaviour of this very important class of compounds.

REFERENCES

1 Mª. C. Ramos-Sánchez, F.J. Rey, Mª L. Rodrígu -Méndez, F.J. Martín-Gil and J. Martín-Gil, Proc. 9th. ICTA, Jerusalem, 19