A THERM-ANALYTICAL STUDY OF THE PYROTECHNIC REACTIONS OF BLACK PONDER AND ITS CONSTITUENTS

M.E. BROWN and R.A. RUGUNANAN

Chemistry Department, Rhodes University, Grahamstown, 6140 (South Africa)

ABSTRACT

Simultaneous TG-DTA studies of black powder compositions, as well as of binary mixtures of the constituents, in nitrogen, showed no reaction between sulphur and charcoal. The charcoal/KNO₃ combination undergoes a strongly **exothermic reaction between 380 and 55O'C.**

During normal thermal analysis of sulphur-containing mixtures, sulphur vaporizes above its liquid-liquid transition (171^oC) and below the melting **point of KN03 (315'C) so there is no significant reaction between sulphur** vapour and solid KNO₃. If the escape of sulphur vapour is reduced, through **use of high heating rates, or a preheated furnace, some of the sulphur can be** induced to react with molten KNO₃. The reaction between sulphur vapour and **molten KN03 in ternary systems is regarded as the "pre-ignition' reaction, and** the higher temperature oxidation of solid charcoal by molten KNO₃ propagates **the combustion of black powder. In air, sulphur oxidizes at temperatures** below the melting-point of KNO₃.

INTRODUCTION

Although black powder has a long and intriguing history C1,23. relatively few thermo-analytical studies have been reported C3,41. The thermal properties of its individual constituents are, however, well documented [5-9].

KN03 undergoes a rhombic-to-trigonal phase transition at 116'C and melts at 325'C. Decomposition occurs above 65O'C. Sulphur changes from an initially rhombic to a monoclinic structure at 90⁰C and melts at 101⁰C. In an

Thermal Analysis Proc. 9th ICTA Congress, Jerudetn, Israel, **21-25 Aug. 1988** 0040-6031/88/\$03.50 © 1988 Elsevier Science Publishers B.V.

inert atmosphere, at a heating rate of 20°C min-', vaporization of sulphur begins just above its liquid-liquid transition at 171'C. In air, at the same heating rate, vaporization is accompanied by partial oxidation. Charcoal is the constituent with the most-variable properties 183. In an inert atmosphere, moisture is lost below 120°C, and organic volatiles below 8OO'C. Combustion in air begins above 3OO'C.

EXPERIMENTAL

Powdered sulphur, KNO₃ and charcoal (moisture 4.5%, volatiles 16.0%, fixed **carbon 77.2% and ash 2.2%) were supplfed by AECI Explosives and Chemicals Ltd.** Dry sieved (<53 um) powders were mixed by end-over-end tumbling. Pastes **were prepared by adding the required amount of water to the mixed powder and mixing further by hand,**

Thermal analyses using a Stanton Redcroft STA-780 simultaneous TG-DTA and a Perkin-Elmer DSCZ, were supplemented by hot-stage optical microscopy, scanning electron microscopy, infrared spectroscopy and X-ray diffraction.

RESULTS

Low-temperature processes observed in the TG-DTA traces of the mixtures included the removal of water, the phase transitions of sulphur and of KNO₂. **and the melting of sulphur, as observed in the traces of the fndividual** constituents. In air, at 202 \pm 5⁰C, a broad exothermic reaction between sulphur and atmospheric oxygen $(|AH = -3.84 \pm 0.25 \text{ kJ g}^{-1})$, compared to the value predicted from thermodynamic data, of - 9.27 kJ q⁻¹) was observed.

The charcoal/sulphur mixture, heated in nitrogen, showed only melting and vaporization of the sulphur below 300°C, followed by devolatilizatfon of the charcoal. A reported reaction between sulphur and the charcoal volatiles E43 was not observed.

The charcoal/KN03 mixture undergoes a strongly exothermic reaction between solid charcoal and molten KN03 (m.pt 315'C) between 380 and 5SO°C. Atmospheric oxygen. if present, also contributes to this reaction. The solid residue contains K₂CO₃. The reaction scheme suggested [3] is:

$$
3C(s) + 2KMO3(\ell) \rightarrow K2CO3(s) + N2(g) + CO2(g) + CO(g)
$$

AH of reaction, calculated from standard enthalpies of formation, is - 2.78 $kJ g^{-1}$ and is in good agreement with the experimental value (- 2.83 ± 0.20 kJ **9⁻¹)** obtained in N₂. The composition of the mixture (87.5% KNO₃), corresponds

414

to the above reaction limited by the carbon present. The mass of the residue in N_2 of 49.7 \pm 2.6% is greater than that predicted if all the potassium was finally present as K₂O (40.8%). The DTA traces confirm the melting of K₂CO₃ **at 891'c.**

Under the conditions applying during normal thermal analysis of the sulphur/KNO₃ mixture, sulphur vaporizes below the melting point of KNO₃ **(315'C) and there is no significant reaction between sulphur vapour and** solid KN03. **If the escape of sulphur vapour is reduced. through use of high heating** rates, or by preheating the furnace (to 460^oC) before introducing the sample, **up to 20% of the sulphur in the mixture can be induced to react with molten** KNO₃. The solid residue contains K₂SO₄ and unreacted KNO₃. In air, sulphur is **oxidized below the melting-point of KN03.**

The behaviour of sulphur in the ternary mixtures is similar to that described above. The TG-DTA traces of black powder (composition: 70% KNO₃, 10% charcoal by mass, 20% sulphur) in N₂ are shown in Fig. 1. The usual **endotherms of sulphur and KN03 are observed. Vaporization of sulphur occurs between 165 and 276'C, and at higher heating rates (50°C min-') and large** sample masses, the range was extended to 310° C. The mass loss (20.7 \pm 0.5%) **confirms the complete removal of unreacted sulphur. The oxidation of charcoal** by KNO₃ (mass loss 29.2 \pm 0.9%) follows between 390 and 550^OC and is then followed between 600 and 1000^oC by decomposition of unreacted KNO₃ (mass loss of 17.2 \pm 1.2%). DSC traces of black powder heated at 80⁰C min^{-1°} in N₂ **showed only a slight exotherm beginning at 334'C due to the reaction between** sulphur and KNO₃. This reaction could be enhanced by introducing the sample **into a preheated (46O'C) furnace. In air, sulphur oxidizes between 190 and** 290^OC (mass loss 21.4 \pm 0.8%) (Fig. 2). TG shows that some charcoal is

oxidized by air at 300°C,but that oxidation becomes more rapid at temperatures above the melting point of KNO₃ (mass loss 21.4 \pm 0.4%).

DTA traces of black powder paste, heated at 20°C mfn-' in an inert atmosphere, or in air, showed that water vaporizes completely between 25 and 13O'C without influencing the higher-temperature reactions. OSC traces of ternary mixtures, with a constant charcoal/KNO₃ ratio, but increasing proportion of sulphur, were recorded in N₂ and in air (Figs. 3 and 4, respectively). The first exotherm in N₂ arises from the S/KNO₃ reaction and, in air, from the S/O₂ reaction. Enthalpies calculated from DSC curves are **given in Table 1.**

mixtures wfth increasing sulphur mixtures with fncreasing suiphur

TABLE i

Enthalpies of reaction for ternary mixtures with increasing sulphur content								
---	--	--	--	--	--	--	--	--

In N₂, the contribution to the total ΔH from the first exotherm increases **as the sulphur content increases, while the** AH **from the second exotherm** decreases on account of the KNO₃ consumed in the first exotherm. The total **enthalpy change therefore generally decreases with increasing sulphur content.** In air, a slight **decrease in the total AH occurs from 0 to 7% sulphur, but then increases with further increase in the sulphur content. The** contribution to AH from the S/O₂ exotherm increases with increasing sulphur **but the contribution from the second exothenn remains constant for mixtures between 7 and 20% sulphur.**

At heating rates of 80°C min", a single **and not very reproducible** exotherm, in which the S/KNO₃ and charcoal/KNO₃ exotherms merge to form a single exotherm with onset temperature just above the m.pt of KNO₃, was **observed (Fig. 5).**

CONCLUSIONS

DSC, TG and DTA of black powder (composition 70% KN0₃, 20% sulphur and 10% **charcoal), as used for the manufacture of safety fuse, has shown that two** exothermic reactions occur at temperatures above the melting point of KNO₃ **(315'C). Through examination of the binary mixtures of the constituents of black powder, it was confirmed that the first exothermic process is a reaction** between sulphur and KNO₃. This reaction was found to depend very much on the **prevention of the escape of sulphur vapour from the reaction system. The** second exothermic process is the oxidation of solid charcoal by molten KNO₂.

The presence of the water in the paste does not appear to alter or affect

any of the high-temperature rections as it is readily removed from the low mass samples in a broad endothermic process which overlaps some of the lower **temperature transitions of the constituents.**

The reaction between sulphur vapour and molten KNO₃ has been called "the **pre-ignition reaction" [31 because it is presumed that the heat evolved in this reaction raises the temperature of the system to a high enough value for** the exothermic reaction between charcoal and molten KNO₃ to take place. This **latter reaction is called the "propagation reaction" C31. These processes were seen to merge at high heating-rates.**

The reactions occurring during thermal analysis at slow heating rates are **not necessarily those which take place during the ignition and combustion of black powder, but thermal analysis does provide insights into the main factors** which have to be taken into account in studying the combustion [10].

REFERENCES

- 1. J.R. **Partington, "A History of Greek Fire and Gunpowder", W. Heffer and Sons, 1960.**
- 2. E. Gray, H. Marsh and M. McLaren, J. Mater. Sci., 17 (1982) 3385.
- **3. C. Campbell and 6. Weingarten, Trans. Far. Sac.,55 (1959) 2221.**
- **4. J.D. Blackwood and F.P. Bowden, Proc. Roy. Sac., A, 213 (1952) 285.**
- 5. E.S. Freeman, J. Am. Chem. Soc., 79 (1957) 383.
- 6. S. Gordon and C. Campbell, Anal. Chem., 27 (1955) 1102.
- **7. W.N. Tuller (Ed.), 'The' Sulphur Data Book", McGraw-Hill, New York, 1954.**
- **8. E.L. Charsley, S.B. Warrington, J. Robertson and P.N.A. Seth, 9th Int. Pyro. Sem.,** (1984) 759, **Thermochim..Acta, 72 (257) 1984. -**
- **9. R.A. Sasse, 9th Int. Pyro. Sem., (1984) 471.**
- **10. M.E. Brown and R.A. Rugunanan, to be published.**

ACKNOWLEDGEMENT The project was supported by AECI Explosives & Chemicals Ltd and the SA CSIR.

418