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ABSTRACT 

The utilization of thermogravimetry should allow an estimate of the extent of reaction for 
consecutive equations such as 

A%B+gas, and B%C+gas 

based on the amount of gas liberated. 
An expression was developed for the concurrent determination of the rate constants, k, 

and k,, for the above two consecutive irreversible first-order reactions, which required the 
measurement of reaction rates (slopes). Then a computer algorithm was presented to 
implement this expression. This algorithm involved a modification of an algorithm previously 
reported by the authors, and was tested for the cases of theoretical and experimental data. 
Values of k, and k, obtained for these cases are compared with assumed and previously 
reported values. 

INTRODUCTION 

Thermal decompositions of various materials by means of TG (or DSC) 
often involve one-step irreversible unimolecular or pseudounimolecular reac- 
tions. A mechanism of higher complexity which is not reducible to a simple 
one-step process is one involving two consecutive irreversible first-order 
reactions 

A%B + gas (la) 

B&2 + gas (lb) 

In the preceding expressions, A, B and C denote starting material, inter- 
mediate product and final product, respectively; k, and k, represent the 
rate constants for the two steps. 

The concentrations of A, B and C as a function of time can readily be 
estimated once the rate constants are known. In this respect, the following 
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pertinent equations were derived as far back as the 19th century [l-4] (a 
denotes the initial concentration of A). 

[A] = a exp( -kit) (2) 

[B] = [ak,/(k,-k,)l[-exp(-k,t)+exp(-k,t)] (3) 

[Cl =a{1 + [VW1 -b)l[b exd-WI -4 ew(-bd} (4) 
The converse and more practical problem of determining the rate constants 
rapidly and accurately from experimental data has been previously at- 
tempted using tables, and manual and graphical methods [5-71. Although 
such procedures have been successful, they employ non-computer methods. 
The manual method used [6] is of a tedious and slow nature and only 
utilized two pairs of data. The use of tables and graphs did allow a rapid 
and accurate determination of the rate constants. However, some of these 
procedures employed only three pairs of data and involved displacement 
measurements between experimental and theoretical curves. 

The utilization of TG should allow the estimation of the extent of the 
reactions depicted in eqns. (l), based on the amount of gas liberated. Thus, 
it appeared of practical and theoretical interest to investigate these reactions 
further. The aim of this paper is to develop a computer algorithm for the 
series first-order irreversible reactions which will allow a relatively rapid and 
accurate determination of values of rate constants k, and k,. 

THEORETICAL ASPECTS 

Although the following derived expressions are of a general nature, they 
will be applied to the case where the gas is the same in steps (la) and (lb). It 
can be shown that the extent of reaction based on the amount of gas 
liberated is equal to ([A] + 2[C])/2u. Letting F= [A] + 2[C], we may write 
using eqns. (2) and (4) 

F=u{2- [(k,-2k,)/(k,-k,)] exp(-kit) 

- [ki/(ki -k,)] exp(-k&j (5) 

From the preceding, F = 2u(u, where (Y is the extent of overall reaction 
based on the amount of gas liberated. Then eqn. (5) becomes 

2(1 - a) = K, exp( -k,t) + K, exp( -k,t) (6) 

where K, = (k, - 2k,)/( k, - k,) and K, = k,/( k, - k,). Upon differentia- 
tion of eqn. (6) and substitution of the expression for K, exp( - k2f) from 
eqn. (6) into the resulting expression, we can obtain employing natural 
logarithms 

ln[p-k,(l-a)] = -k,t+ln[K,(k,-k,)/2] (7) 
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where p = da/dt. If we now let the subscript 0 refer to an initial set of data 
values, there is finally obtained 

ln{ [p - &(I - a)],/[ P - &(I - a>]> = ki(t - to> (8) 

From eqn. (8), it can readily be seen that if we let the left-hand side of eqn. 
(8) equal Y then 

Y=A,X+A, (9) 

where A, = k,, X= t - t, and A, = 0. 
Using eqn. (9), we can now employ the concepts of a computer algorithm 

previously devised and reported by the authors [8,9]. However, this al- 
gorithm will be slightly modified (to be discussed later on), and values of k, 
and k, will again be determined via an iteration procedure wherein a 
minimum value of A, will be obtained for the conditions employed. 

APPLICATIONS OF THE METHOD 

The procedure was initially tested using two sets of theoretical data. Thus, 
in the first case, values of k, = 0.0444 and k, = 0.00123 were assumed. The 
following eight data triads in the order t, a and p X lo3 were calculated and 
used, respectively: 70, 0.5065, 1.544; 100, 0.5395, 0.8137; 130, 0.5602, 
0.6062; 160, 0.5772, 0.5372; 190, 0.5928, 0.5054; 220, 0.6076, 0.4838; 310, 
0.6488, 0.4320; 340, 0.6615, 0.4164. The values at t = 70 were taken as the 
initial values. Then employing a modified version of the algorithm previ- 
ously mentioned, values of k, = 0.0452 and k, = 0.00123 were obtained. 
When an additional data triad was used, i.e., 370, 0.6738 and 0.4013, values 
of k, = 0.0429 and k, = 0.00123 were obtained. Averages of the preceding 
values were k, = 0.0441 and k, = 0.00123 in excellent agreement with as- 
sumed values. (The computer run time using BASICA (IBM) was ca. 3 min; 
however, this time can be greatly reduced using QuickBASIC 3.0 (Microsoft) 
or Turbo BASIC (Borland).) 

It should be noted here that for the algorithm employed, eqn. (9) did not 
act as a well-behaved function. Thus, in Table 1 are shown values of k,, k, 

and intercept for various k, values. Owing to space limitations, only 
portions of the results obtained are depicted. As values of k, increased from 
an initial value of 0.0001 in increments of 0.00001, values of A, actually 
increased (see Table 1). It was only when k, began to approach its proper 
value that A, began to decrease. This can be observed from the table for 
values of k, = 0.00121 and greater. However, as the k, value kept increas- 
ing, an error message appeared and the program aborted. (This was due to 
the appearance of the logarithm of a negative number.) Thus, it was 
necessary to modify the previously mentioned algorithm, as previously 
indicated. An ‘error trap’ was instituted so that if the positive A, values 



TABLE 1 

Values of k,, k, and intercept from theoretical data 

X Y X Y X Y 

30 0.6663135 
60 0.9777541 
90 1.10504 

120 1.168298 
150 1.212562 
180 1.251483 
240 1.326013 
270 1.362788 
k, = 0.0001 
k, = 2.385181E-03, 
A, = 0.7938945 

30 0.6745191 
60 0.9915468 
90 1.121052 

120 1.184985 
150 1.229445 
180 1.268414 
240 1.342964 
270 1.379737 
k, = 0.00013 
k, = 2.411183E-03 
A, = 0.8054891 

30 1.106969 
60 1.887497 
90 2.283729 

120 2.447151 
150 2.522115 
180 2.568837 
240 2.64655 
270 2.683075 
k, = 0.00102 
k, = 5.208578E-03 
A, = 1.526018 

30 1.332136 
60 2.664511 
90 3.994508 

120 5.328824 
150 6.704555 
180 7.929853 
240 10.56589 
270 9.941309 
k, = 0.00123 
k, = 3.895993E-02 
A, = 0.5059085 

60 
30 0.669023 

0.9823001 
90 1.11032 

120 1.173793 
150 1.218121 
180 1.257057 
240 1.331594 
270 1.368369 
k, = 0.00011 
k, = 2.393715E-03 
A, = 0.7977176 

30 1.089987 
60 1.842628 
90 2.216448 

120 2.370017 
150 2.441778 
180 2.487673 
240 2.565046 
270 2.601598 
k, = 0.00100 
k, = 4.986339E-03 
A, = 1.491344 

30 1.306047 
60 2.548523 
90 3.606192 

120 4.312487 
150 4.656368 
180 4.786401 
240 4.900394 
270 4.934016 
k, = 0.00121 
k, = 1.356853E-02 
A, =1.947788 

30 1.332149 
60 2.664573 
90 3.994748 

120 5.329716 
150 6.707978 
180 7.941132 
240 10.72346 
270 10.01909 
k, =1.23001E-03 
k, = 3.947419E-02 
A, = 0.4640336 

60 0.9868974 
30 

90 

0.6717582 

1.115653 
120 1.179354 
150 1.223748 
180 1.262701 
240 1.337245 
270 1.374018 
k, = 0.00012 
kl = 2.402383E-03 
A, = 0.8015822 

30 1.098402 
60 1.864705 
90 2.249364 

120 2.407659 
150 2.48095 
180 2.527241 
240 2.604776 
270 2.641314 
k2 = 0.00101 
k, = 5.093883E-03 
A, = 1.508423 

30 1.318938 
60 2.604533 
90 3.780615 

120 4.694289 
150 5.224177 
180 5.432524 
240 5.584894 
270 5.615345 
k, = 0.00122 
k, = 1.673725E-02 
A, = 1.896856 

30 1.332163 
60 2.664636 
90 3.994986 

120 5.330608 
150 6.711412 
180 7.95254 
240 10.90888 
270 10.1042 
k, = 1.23002E-03 
k, = 4.006167E-02 
A, = 0.4161396 
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TABLE 1 (continued) 

X Y X Y X Y 

30 1.332203 30 1.332176 
60 2.664697 
90 3.995227 

120 5.331501 
150 6.714859 
180 7.964081 
240 11.13884 
270 10.19639 
k, = 1.23003E-03 
k, = 4.075427E-02 
A, = 0.3597374 

30 1.332216 
60 2.664884 
90 3.995948 

120 5.334186 
150 6.72527 
180 7.999523 
240 12.63333 
270 10.54088 
k, = 1.23006E-03 
k, = 4.457655E-02 
A, = 5,112028E-02 

30 1.332189 
60 2.66476 
90 3.995469 

120 5.332396 
150 6.718317 
180 7.975756 
240 11.43797 
270 10.29888 
k 2 = 1.23004E-03 
k, = 0.0416083 
A, = 0.2902856 

30 1.332218 
60 2.664891 
90 3.995974 

120 6.334289 
150 6.725632 
180 8.00082 
240 12.75469 
270 10.55508 
k, = 1.230061E-03 
k, = 4.485062E-02 
A, = 2.923489E-02 

60 2.664822 
90 3.995706 

120 5.333291 
150 6.721787 
180 7.987569 
240 11.86676 
270 10.41206 
k, = 1.23005E-03 
k, = 4.274274E-02 
A, = 0.1984344 

30 1.332219 
60 2.664897 
90 3.995997 

120 5.334378 
150 6.725994 
180 8.002024 
240 12.90526 
270 10.56948 
k, = 1.230062E-03 
k, = 0.0451822 
A, = 2.818585E-03 

30 1.33222 
60 2.664904 
90 3.996024 

120 5.334468 
150 6.726356 
180 8.003323 
240 13.08259 
270 10.5841 
k, = 1.230063E-03 
k, = 4.556659E-02 
A, = - 2.774143E-02 

k, = 0.0451822, k, =1.230062E-03 and intercept = 2.818585E-03. The preceding are the 
final values! 

became too negative (thereby causing an error message), this trap redirected 
the computer_to recover the k, value associated with the positive A, value 
(prior to becoming negative) and to then employ smaller increments (re- 
duced by a factor of ten) for k,. This allowed k, to increase very slowly and 
in this manner final values of k, and k, could be obtained even when A, 
became slightly negative, without any error messages or program abort. This 
can be seen from the table, beginning with a value of k, = 0.00121. As the 
value of k, increased to 0.00123, there was a sharp drop in A, from 1.897 to 
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0.506. A further increase in k, to a value of 0.00124 would result in an error 
message and an aborted program unless the program, via an error trap, 
caused k, = 0.00123 to increase in much smaller increments. Thus, incre- 
ments of 1 X 10v9 were finally employed, leading to final values for k, and 
k,. From the table, the absolute value of A, at k, = 1.230062 X lop3 was 
smaller than the absolute value of the negative A, value at k, = 1.230063 x 

10v3 so that the final values of k, and k, were those previously noted for 
the eight data triads. (It should also be noted here that although the value of 
k, changes very slowly, the corresponding value for k, changes much more 
rapidly.) 

In the second case where theoretical values were employed to test the 
algorithm, values of k, = 0.0167 and k, = 0.00265 were assumed. It may be 
mentioned here that these values are close to the values obtained from 
experimental data (in mm’) which will be treated subsequently. Contrary 
to the procedure used in the first case, a plot of (Y vs. t was now constructed 
using the theoretical values in order to determine values of p at various 
times. In this manner, the following values of t, a and p x lo3 (calcd.) are 
given, respectively: 60, 0.344, 3.60; 90, 0.442, 2.70; 150, 0.568, 1.55; 180, 
0.612, 1.24; 240, 0.679, 1.00; 300, 0.730, 0.720; 390, 0.789, 0.580; 450, 0.821, 
0.475; 510, 0.847, 0.408. In order to obtain accurate slopes, the theoretical 
plot of cx vs. t was varied from about (Y = 0.2 to 0.9 (initial and final points 
cannot be used), and values at t = 60 were used as initial values. The nine 
data triads afforded values of k, = 0.0174 and k, = 0.00265, in good agree- 
ment with assumed values. (It cannot be overemphasized that many values 
of cr and t are necessary to obtain the required accurate slopes: the 
experimental data to be discussed next had relatively few such values.) 

The algorithm was finally tested using experimental data previously 
reported [6] for the hydrolysis of 2,7_dicyanonaphthalene. Ammonia was 
liberated and titrated to obtain values of (Y and t. A plot of the experimental 
data is shown in Fig. 1. From this figure, it can be seen that the early values 
are undoubtedly too low, probably because of the time lag for quantitatively 
sweeping the ammonia formed from the reaction vessel [5]. Thus, if the 
initial data is neglected, there can be at best only five data triads available 
for testing, which is a relatively small number for obtaining accurate slopes. 
From the smooth plot, the following values of t (mm), (Y and p X lo3 
(n-m-‘) were obtained, respectively: 90, 0.432, 3.39; 120, 0.518, 2.25; 180, 
0.621, 1.32; 240, 0.692, 0.900; 300, 0.738, 0.688. Values at t = 90 min were 
employed as the initial values. From the five data triads used, values of 
k, = 1.12 h-’ and k, = 0.150 h-’ were calculated by the authors (RS). 
When additional approximate data triads were extracted from the smooth 
curve (t = 150, 210 and 270 min), values of k, = 1.08 h-i and k, = 0.147 
hP ’ were obtained. 

By utilizing a manual method, Kaufler (K) reported [6] corresponding 
values of k, = 1.007 h-i and k, = 0.161 h-’ whereas, using tables and 
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Fig. 1. Conversion vs. time for the hydrolysis of 2,7_dicyanonaphthalene [6]. 

graphs, Swain (S) reported [5] values of k, = 0.937 h-’ and k, = 0.180 h-‘. 
In order to estimate the best fit to the experimental data, a standard error of 
estimate (SEE) was defined as 

SEE= [Z(y -ye)2/n]"2 (10) 

where n = number of data sets used for the comparison, y = values from 
assuming the calculated values of k, and k,, and ye = corresponding 
experimental (Y values. In this manner, the following approximate values 
were calculated using values at t = 90-360: SEE(S) = 0.008, SEE(K) = 
0.009 and SEE(RS) = 0.014. From the preceding, it is apparent that the best 
fit was obtained by (S). While the next best fit was obtained by (K), as 
mentioned previously, (K) used a tedious manual procedure which utilized 
only two pairs of data ( cx and t) and involved successive approximations 
which must have required hours of calculation. As indicated previously, one 
possible reason for the relatively high SEE value for (RS) lies in the poor 
accuracy of values obtained for slopes due to the relatively small number of 
experimental values available (in this regard, it may be stressed that none of 
the other procedures utilized slopes). However in view of the success of the 
computer algorithm when employing theoretical data, we conclude that this 
procedure is promising and look forward to its being utilized in the future. 
Finally, it may be mentioned that eqn. (8) also can be applied for the case of 
two parallel first-order reactions, each yielding a common product. 
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