Note

DISCUSSING COEFFICIENT VALUES OF THE COMPENSATION FOR THERMAL DISSOCIATION REACTIONS OF THE TYPE $A(SOLID) \rightleftharpoons B(SOLID) + C(GAS)$

JANUSZ PYSIAK

Institute of Chemistry, Plock Branch of Warsaw University of Technology, Plock (Poland)

BOGDAN SABALSKI

Institute of Mathematics, University of Warsaw (Poland) (Received 8 May 1987)

While analysing the Arrhenius equation the values of coefficients a and b in the compensation equation have been theoretically proved, and conditions for k and *T* were determined, which enabled the coefficient *b* to be treated as constant.

In papers by Pysiak [1,2] and in many others (see ref. 3 and references quoted therein) dealing with the thermal dissociation of solids, it has been found experimentally that coefficients of the compensation equation

$$
\ln A = a + bE \tag{1}
$$

where A and E (parameters of the Arrhenius equation) mostly take the values $a=0$ and $0 < b < 1$.

In this paper we show that values of coefficients a and *b* can be proved theoretically while analysing the Arrhenius equation

$$
k = A e^{-E/RT}
$$
 (2)

One can conclude on the basis of the character of the parameters occurring in eqn. (2) that usually A , E , T , $R > 0$, so we can obtain at once the simple

Lemma 1. Let us assume that $k = Ae^{-E/RT}$ and A, E, T, R > 0, then $k > 0$.

Proof. It results from the properties of the exponential function that we always have $e^{-E/RT} > 0$, so $Ae^{-E/RT} > 0$, since $A > 0$. Thus $k > 0$, which was to be proved.

Lemma 2. Let us assume that parameters *A* and *k* are connected with the Arrhenius equation (2) such that $A > k$.

Proof. Since $E/RT > 0$, then $e^{-E/RT} > e^0 = 1$, since the exponential func-

tion rises. Therefore $Ae^{-E/RT} > A$, and $A > Ae^{-E/RT} = k$, which was to be proved.

Lemma 3. Let us assume that $\ln A = bE$, then in such a case

$$
0 < b < 1 \text{ if and only if } 1 < A < e^E \tag{3}
$$

 $b_1 < b < b_2$, if and only if $e^{b_1 E} < A < e^{b_2 E}$ (4)

Proof. We can show the correctness of eqn. (4) since eqn. (3) is a special case: it is enough to substitute values for $b_1 = 0$ and $b_2 = 1$ in eqn. (4) in order to obtain eqn. (3).

Let us assume that $b_1 < b < b_2$. Then we have $b_1 E < bE < b_2 E$. From the assumption that $\ln A = bE$ we obtain $b_1 E < \ln A < b_2 E$ and $e^{b_1 E} < e^{\ln A}$ $e^{b_2 E}$, and on basis of the definition of the logarithmic function we can obtain $e^{\ln A} = A$. That is $e^{b_1 E} < A < e^{b_2 E}$, which was to be proved.

Lemma 4. $k = Ae^{-E/RT} \Leftrightarrow A/k = e^{E/RT} \Leftrightarrow \ln(A/k) = E/RT \Leftrightarrow E =$ *RT ln(A/k)*

Proof. It can be proved immediately by means of simple mathematical transformations.

Now we can express the theorem.

Theorem 1. Let us assume that $\ln A = bE$ and $k > 1$; then we obtain $0 < b < 1$.

Proof. From Lemma 2 it is known that $A > k$, so we obtain $\ln A > \ln k$, because the logarithmic function rises and $k > 1$ was assumed.

Hence, if $\ln k > \ln 1 = 0$, then in this expression

 $0 < \ln k < \ln A$, thus $1 < (\ln A/\ln k)$ and $1/[1 - (\ln A/\ln k)] < 0$.

Simultaneously, from Lemma 3 it is known that in order to obtain $b \in (0, 1)$ it is enough that we can obtain both $1 < A < e^E$ and then $E =$ $RT\ln(A/k) = \ln(A/k)^{RT}$ on the basis of Lemma 4.

Hence if $A \le e^{\mathcal{E}} \Leftrightarrow A \le e^{\ln[(A/k)RT]} = [(A/k)/RT] \Leftrightarrow \ln A \le RT \ln(A/k)$ *k*), and since $1 \le k \le A$ (on the basis of Lemma 2), then $1 \le (A/k)$ and $0 = \ln 1 < \ln(A/k)$. Therefore on the basis of the inequality $\ln A < RT$ ln(A/k) one can obtain the inequality $[\ln A/\ln(A/k)] < RT$, since $\ln(A/\sqrt{k})$ k) > 0. Taking into account the fact that $[\ln A/\ln(A/k)] = [\ln A/(\ln A \ln k$] = 1/[1 - ($\ln k$ / $\ln A$)] < 0, then the inequality $\ln A/\ln(A/k)$ < RT always occurs (since $T \ge 0$), and $1 < A < e^E$; therefore (on the basis of Lemma 3) $0 < b < 1$, which was to be proved.

Hence if we assume that $k > 1$, then on basis of the Arrhenius equation (2) we calculate that coefficient *b* in the compensation equation (1) falls between 0 and 1 which, of course, does not mean that it is stable [4].

Therefore the considerations we present here do not explain the problem of stability of the coefficient *b,* they only allow us to evaluate initially the values of coefficients a and *b* in eqn. (1).

Similar considerations can be used to support Theorem 1, and then we find that

Theorem 2. Let us assume that $\ln A = bE$ *and* $RT > 1$ *(i.e.* $T > 1/R$ *), so* then we have $0 < h < 1$.

Proof. If $k > 1$, then the thesis results directly from eqn. (1). So we assume that $0 < k < 1$ (there is no other possibility: cf. Lemma 1). Because $k = Ae^{-E/RT}$, therefore $Ae^{-E/RT} < 1$ and $A < e^{E/RT}$. We also know that $RT > 1$, therefore $1/RT < 1$, then $0 < A < e^{E/RT}$, which means (on the basis of Lemma 4) that we have $0 < b < 1$, which was to be proved.

The considerations presented here may be continued in order to determine which conditions parameters *k* and *T* should meet in order to give $b_1 < b < b_2$, where b_1 and b_2 represent any real numbers. We intend to find conditions for parameters k and T , so that if they are met one could treat the coefficient *b* as constant.

REFERENCES

- 1 J. Pysiak, Commentary on the DSc thesis, Warsaw Technical University, Warsaw, 1975.
- 2 J. Pysiak and M. Dunikowska-Gawrohska, Second Polish Conference on Calorimetry and Thermal Analysis, Institute of Physical Chemistry of the Polish Academy of Sciences, 1976.
- 3 E.A. Prodan, M.M. Pavluchenko and C.A. Prodan, Zakhonomemosti topokhimicheskikh reaktzi, Minsk, 1976.
- 4 J. Pysiak and B. Sabalski, J. Thermal Anal., 17 (1979) 287.