INHIBITION OF THE CALCINATION OF CALCIUM CARBONATE

JIN-MO HUANG and KENNETH E. DAUGHERTY

Department of Chemistry, North Texas State University, Denton, TX 76203 (U.S.A.) (Received 22 October 1987)

ABSTRACT

Aluminum oxide (Al_2O_3) , calcium oxide (CaO), vanadium pentoxide (V_2O_5) , and fly ash were respectively mixed with calcium carbonate (calcite, CaCO₃) in a ratio of 1:20 (w/w) and the mixtures were studied at a constant temperature of 700 °C in a DTA-TGA analyzer. The results of calcination rate (wt% h⁻¹) have shown that Al_2O_3 and CaO do not have any effect on the calcination rate of CaCO₃, while V₂O₅ and fly ash inhibit the calcination rate of CaCO₃. An explanation is proposed.

INTRODUCTION

In a previous paper [1], the extended shell model has been developed to explain the calcination reaction of calcium carbonate $(CaCO_3)$

$$CaCO_3(s) \stackrel{\Delta}{\rightleftharpoons} CaO(s) + CO_2(g)$$

From this model, heat transfer and mass transfer are two main factors for predicting the calcination rate of $CaCO_3$.

A previous study [2] showed that lithium carbonate (Li_2CO_3) , with a melting point of 723°C, was the best catalyst among alkali carbonates to enhance the calcination of CaCO₃. In the present study, aluminum oxide (Al₂O₃), calcium oxide (CaO), and fly ash with a melting point higher than that of Li₂CO₃, and vanadium oxide (V₂O₅) with a melting point lower than that of Li₂CO₃ were chosen to mix with pure CaCO₃ in an effort to test the model [1]. The mixtures were analyzed by DTA-TGA, and conclusions reached concerning the extended shell model.

EXPERIMENTAL

The additives used in this study were Al_2CO_3 (certified grade from Fisher Scientific Company), CaO (certified grade from Scientific Company), V_2O_5 (chemical pure grade from Vanadium Corporation of America), and fly ash

(obtained from Raba-Kistner Consultants, Incorporated, San Antonio, TX). They were mixed each manually to a homogeneous mixture with reagent grade $CaCO_3$ in a ratio of 1:20 (w/w).

The DTA-TGA system employed in this study is a Mettler thermal analyzer with a Mettler BE 20 balance controller and a Mettler HE balance. The conditions for running the DTA-TGA included a heating rate of 10 °C min⁻¹, a chart speed of 10 cm h⁻¹, and a 2 mV range for the DTA. The sample amount for each run was carefully controlled at 90.0 \pm 0.5 mg.

Two different thermograms were obtained. One was obtained by programming the temperature to 700°C then keeping it there for about 50 min. From the TGA curve, the calcination rate could be calculated. The calcination rate was expressed as

% calcination rate = $\frac{\text{weight loss (mg)}}{\text{sample weight (mg)} \times \text{time (h)}} \times 100\%$

The other thermogram was obtained by running the instrument to 1000 °C. The transition temperature could then be found from the DTA curve.

The contracting test for additives was run by weighing about 3.00 g of each of the additives into casseroles, with the casseroles then placed in a Lindberg furnace at a known temperature for 1 h. After that, the additives in the casseroles were thoroughly examined and compared.

RESULTS AND DISCUSSION

Table 1 summarizes the data of calcination rate calculated from the TGA curve of DTA-TGA analyzer programmed to 700 °C. All of the calcination rates of the mixtures are lower than that of pure CaCO₃. Because the weight ratio of each additive and pure CaCO₃ is 1:20, the effective weight of CaCO₃ in the mixture must be taken into account in order to do precise comparisons. The corrected average rate is obtained by multiplying the average calcination rate by a corrected factor of 21/20 for the effective

TABLE 1

Composition (1:20)	Calcination rate (wt% h ⁻¹)	Average calcination rate (wt% h ⁻¹)	Corrected average, rate $(wt\% h^{-1})$
$\overline{Al_2O_3 + CaCO_3}$	25.39, 25.50	25.44	26.71
$CaO + CaCO_3$	25.87, 25.70	25.78	27.07
$V_2O_5 + CaCO_3$	19.62, 20.48	20.05	21.05
Fly $ash + CaCO_3$	22.47, 21.67	22.07	23.17
Pure CaCO ₃	26.16, 26.62	26.39	26.39

TABLE 2

Composition (1:20)	Transition temperature (°C)	Average transition temperature (° C)
$\overline{Al_2O_3 + CaCO_3}$	839, 837, 838	838
$CaO + CaCO_3$	838, 839	838
$V_2O_5 + CaCO_3$	843, 842	842
Fly $ash + CaCO_3$	840, 841, 841	841
Pure CaCO ₃	837, 838, 838	838

Transition temperatures of the additive-CaCO₃ mixtures (from the DTA curve)

weight of CaCO₃ in the mixture. It is apparent from Table 1 that $Al_{2}O_{3}$ and CaO do not have a significant catalytic or inhibitive effect on the calcination rate of $CaCO_3$, while V_2O_5 and fly ash demonstrate an inhibitive effect on the calcination rate of $CaCO_3$.

In the DTA-TGA thermogram the transition temperature (the peak of the DTA curve) corresponds to the temperature of completion of calcination. Table 2 shows the transition temperatures of the mixtures. Again, Al_2O_3 and CaO do not change the transition temperature of CaCO₃, so they do not have any effect on the calcination rate of CaCO₃. Vanadium pentoxide and fly ash have an inhibitive effect, causing the calcination of CaCO₃ to be completed at a higher temperature.

Table 3 shows the melting points of Al₂O₃, CaO, V₂O₅ [3], and fly ash [4]. Because the melting points of Al₂O₃, CaO, and fly ash are relatively high, they are expected to be thermally inert at 700°C. This was tested by placing them in a 700°C Lindberg furnace for 1 h, after which none of them showed any significant contraction. Although the melting point of V₂O₅ is only 690°C, it does not contract after heating in a 680°C Lindberg furnace for 1 h. It starts to melt at 690°C and is completely liquefied at 700°C.

The extended shell model [1] can be used to explain the above calcining results. From the argument of heat transfer, Al_2O_3 , CaO, V_2O_5 , and fly ash do not contract around 700 °C, so they cannot enhance the heat transfer by increasing the contacting area among CaCO₃ particles. As a result, the calcination rate cannot be increased by adding these additives to pure

Melting points of the additives				
Additive	Melting point (° C)			
$\overline{\text{Al}_2\text{O}_3}$	2072			
CaO	2614			
V_2O_5	690			
Fly ash	~ 1245			

TABLE 3

 $CaCO_3$. With regard to the mass transfer, Al_2O_3 and CaO are thermally inert; they can neither promote nor hinder the escape of carbon dioxide during the calcination of CaCO₂. But this is not true for V_2O_5 and fly ash. Vanadium pentoxide melts at 690°C and completely liquefies at 700°C. The expanding liquid fills the interstitial space and hinders the CO₂ from escaping freely among the CaCO₃ particles. As a result, the temperature of completion of calcination is higher than that of pure CaCO₃, and the calcination rate is lower than that of pure CaCO₃ at 700 °C. Although the major components of fly ash are metallic oxides with very high melting points, some constituents [5] with relatively low melting points are present, such as phophorous pentoxide which has a melting point of 583°C [3]. The low melting constituents melt at a temperature below 700°C and hinder the escape of CO_2 produced from the calcination of CaCO₃. That is why fly ash shows an inhibitive effect on the calcination of CaCO₃. This has been shown by study of the calcination rate of a P_2O_5 -CaCO₃ (1:20) mixture. The measured calcination rate is only 21.21 wt% h^{-1} , which is lower than the value of 26.39 wt% h^{-1} for pure CaCO₃.

REFERENCES

- 1 J.M. Huang and K.E. Daugherty, Thermochim. Acta, 118 (1987) 135.
- 2 J.M. Huang and K.E. Daugherty, Thermochim. Acta, 115 (1987) 57.
- 3 R.C. Weast, Handbook of Chemistry and Physics, 60th edn., Chemical Rubber Company, Boca Raton, FL, 1980.
- 4 J.M Huang, Fly Ash Fusion, Masters Thesis, Department of Chemistry, New Mexico Highlands University, Las Vegas, NM, 1984.
- 5 N.K. Roy, M.J. Murtha, and G. Burnet, Proceedings of the Fifth International Ash Utilization Symposium, 25–27 February 1979, Technical Information Center, United States Department of Energy, METC/SP-79/10, Part 1, pp. 140–164.